Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation

Francesca Magrinelli, Alessandro Picelli, Pierluigi Tocco, Angela Federico, Laura Roncari, Nicola Smania, Giampietro Zanette, Stefano Tamburin, Francesca Magrinelli, Alessandro Picelli, Pierluigi Tocco, Angela Federico, Laura Roncari, Nicola Smania, Giampietro Zanette, Stefano Tamburin

Abstract

Cardinal motor features of Parkinson's disease (PD) include bradykinesia, rest tremor, and rigidity, which appear in the early stages of the disease and largely depend on dopaminergic nigrostriatal denervation. Intermediate and advanced PD stages are characterized by motor fluctuations and dyskinesia, which depend on complex mechanisms secondary to severe nigrostriatal loss and to the problems related to oral levodopa absorption, and motor and nonmotor symptoms and signs that are secondary to marked dopaminergic loss and multisystem neurodegeneration with damage to nondopaminergic pathways. Nondopaminergic dysfunction results in motor problems, including posture, balance and gait disturbances, and fatigue, and nonmotor problems, encompassing depression, apathy, cognitive impairment, sleep disturbances, pain, and autonomic dysfunction. There are a number of symptomatic drugs for PD motor signs, but the pharmacological resources for nonmotor signs and symptoms are limited, and rehabilitation may contribute to their treatment. The present review will focus on classical notions and recent insights into the neuropathology, neuropharmacology, and neurophysiology of motor dysfunction of PD. These pieces of information represent the basis for the pharmacological, neurosurgical, and rehabilitative approaches to PD.

Figures

Figure 1
Figure 1
A simplified view of the functional anatomy of the basal ganglia (BG). The main input and output connections and the basic internal circuitry of the BG are shown. Here are represented the direct pathway (panel (a)), the indirect pathway (panel (b)), and the alteration of the balance between the direct and indirect pathways in Parkinson's disease (panel (c)). Blue arrows show the excitatory glutamatergic pathways, red arrows indicate the inhibitory GABAergic pathways, and green arrows mark the dopaminergic pathway. CMA: cingulate motor area; D1: dopamine D1 receptor; D2: dopamine D2 receptor; GPe: external segment of the globus pallidus; GPi: internal segment of the globus pallidus; MC: primary motor cortex; PMC: premotor cortex; SMA: supplementary motor area; SNc: substantia nigra pars compacta; SNr: substantia nigra pars reticulata; STN: subthalamic nucleus; VA/VL: ventral anterior/ventrolateral thalamic nuclei.
Figure 2
Figure 2
The parallel motor, oculomotor, associative, and limbic circuits of the basal ganglia. ACA: anterior cingulate area; CMA: cingulate motor area; DLPFC: dorsolateral prefrontal cortex; FEF: frontal eye fields; GPi: internal segment of the globus pallidus; LOFC: lateral orbitofrontal cortex; MC: primary motor cortex; MD: mediodorsal nucleus of the thalamus; MDpl: mediodorsal nucleus of thalamus, pars lateralis; MOFC: medial orbitofrontal cortex; PMC: premotor cortex; SEF: supplementary eye field; SMA: supplementary motor area; SNr: substantia nigra pars reticulata; VAmc: ventral anterior nucleus of thalamus, pars magnocellularis; VApc: ventral anterior nucleus of thalamus, pars parvocellularis; VLa: anterior ventrolateral nucleus of the thalamus; VLcr: ventrolateral nucleus of thalamus, pars caudalis, rostral division; VLm: ventrolateral nucleus of thalamus, pars medialis; VS: ventral striatum [12, 13].

References

    1. de Lau L. M., Breteler M. M. Epidemiology of Parkinson's disease. Lancet Neurology. 2006;5(6):525–535. doi: 10.1016/S1474-4422(06)70471-9.
    1. Pringsheim T., Jette N., Frolkis A., Steeves T. D. L. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Movement Disorders. 2014;29(13):1583–1590. doi: 10.1002/mds.25945.
    1. Archibald N., Miller N., Rochester L. Neurorehabilitation in Parkinson disease. Handbook of Clinical Neurology. 2013;110:435–442. doi: 10.1016/b978-0-444-52901-5.00037-x.
    1. Hughes A. J., Daniel S. E., Kilford L., Lees A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of Neurology Neurosurgery and Psychiatry. 1992;55(3):181–184. doi: 10.1136/jnnp.55.3.181.
    1. Sethi K. Levodopa unresponsive symptoms in Parkinson disease. Movement Disorders. 2008;23(supplement 3):S521–S533. doi: 10.1002/mds.22049.
    1. Chaudhuri K. R., Schapira A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. The Lancet Neurology. 2009;8(5):464–474. doi: 10.1016/S1474-4422(09)70068-7.
    1. Federico A., Maier A., Vianello G., et al. Screening for mild cognitive impairment in Parkinson’s disease. Comparison of the Italian versions of three neuropsychological tests. Parkinson's Disease. 2015;2015:10. doi: 10.1155/2015/681976.681976
    1. Varalta V., Picelli A., Fonte C., et al. Relationship between cognitive performance and motor dysfunction in patients with Parkinson's disease: a pilot cross-sectional study. BioMed Research International. 2015;2015:6. doi: 10.1155/2015/365959.365959
    1. Schrag A., Sauerbier A., Chaudhuri K. R. New clinical trials for nonmotor manifestations of Parkinson's disease. Movement Disorders. 2015;30(11):1490–1504. doi: 10.1002/mds.26415.
    1. Kalia L. V., Kalia S. K., Lang A. E. Disease-modifying strategies for Parkinson's disease. Movement Disorders. 2015;30(11):1442–1450. doi: 10.1002/mds.26354.
    1. Rascol O., Perez-Lloret S., Ferreira J. J. New treatments for levodopa-induced motor complications. Movement Disorders. 2015;30(11):1451–1460. doi: 10.1002/mds.26362.
    1. Alexander G. E., DeLong M. R., Strick P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041.
    1. DeLong M. R., Wichmann T. Basal ganglia circuits as targets for neuromodulation in Parkinson disease. The JAMA Neurology. 2015;72(11):1354–1360. doi: 10.1001/jamaneurol.2015.2397.
    1. Albin R. L., Young A. B., Penney J. B. The functional anatomy of basal ganglia disorders. Trends in Neurosciences. 1989;12(10):366–375. doi: 10.1016/0166-2236(89)90074-X.
    1. DeLong M. R. Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences. 1990;13(7):281–285. doi: 10.1016/0166-2236(90)90110-V.
    1. Obeso J. A., Rodriguez-Oroz M. C., Rodriguez M., et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends in Neurosciences. 2000;23(10):S8–S19.
    1. Benarroch E. E. Intrinsic circuits of the striatum. Complexity and clinical correlations. Neurology. 2016;86(16):1531–1542. doi: 10.1212/wnl.0000000000002599.
    1. Oorschot D. E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. Journal of Comparative Neurology. 1996;366(4):580–599. doi: 10.1002/(sici)1096-9861(19960318)366:4<580::aid-cne3>;2-0.
    1. Obeso J. A., Rodriguez-Oroz M. C., Rodriguez M., DeLong M. R., Olanow C. W. Pathophysiology of levodopa-induced dyskinesias in Parkinson's disease: problems with the current model. Annals of Neurology. 2000;47(4):S22–S34.
    1. Giugni J. C., Okun M. S. Treatment of advanced Parkinson's disease. Current Opinion in Neurology. 2014;27(4):450–460. doi: 10.1097/WCO.0000000000000118.
    1. Kalia L. V., Brotchie J. M., Fox S. H. Novel nondopaminergic targets for motor features of Parkinson's disease: review of recent trials. Movement Disorders. 2013;28(2):131–144. doi: 10.1002/mds.25273.
    1. Brown P., Eusebio A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Movement Disorders. 2008;23(1):12–20. doi: 10.1002/mds.21796.
    1. Hammond C., Bergman H., Brown P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences. 2007;30(7):357–364. doi: 10.1016/j.tins.2007.05.004.
    1. Armstrong I. T., Chan F., Riopelle R. J., Munoz D. P. Control of saccades in Parkinson's disease. Brain and Cognition. 2002;49(2):198–201.
    1. Antoniades C. A., Carpenter R. H. S., Temel Y. Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: similar improvements in saccadic and manual responses. NeuroReport. 2012;23(3):179–183. doi: 10.1097/wnr.0b013e32834f6daa.
    1. Pagonabarraga J., Kulisevsky J., Strafella A. P., Krack P. Apathy in Parkinson's disease: clinical features, neural substrates, diagnosis, and treatment. The Lancet Neurology. 2015;14(5):518–531. doi: 10.1016/s1474-4422(15)00019-8.
    1. Weintraub D., David A. S., Evans A. H., Grant J. E., Stacy M. Clinical spectrum of impulse control disorders in Parkinson's disease. Movement Disorders. 2015;30(2):121–127. doi: 10.1002/mds.26016.
    1. Wu T., Hallett M. The cerebellum in Parkinson's disease. Brain. 2013;136(3):696–709. doi: 10.1093/brain/aws360.
    1. Bostan A. C., Dum R. P., Strick P. L. The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(18):8452–8456. doi: 10.1073/pnas.1000496107.
    1. Jahanshahi M., Jones C. R. G., Zijlmans J., et al. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson's disease. Brain. 2010;133(3):727–745. doi: 10.1093/brain/awq012.
    1. Ballanger B., Baraduc P., Broussolle E., Bars D. L., Desmurget M., Thobois S. Motor urgency is mediated by the contralateral cerebellum in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry. 2008;79(10):1110–1116. doi: 10.1136/jnnp.2007.141689.
    1. Helmich R. C., Hallett M., Deuschl G., Toni I., Bloem B. R. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. 2012;135(11):3206–3226. doi: 10.1093/brain/aws023.
    1. Schweder P. M., Hansen P. C., Green A. L., Quaghebeur G., Stein J., Aziz T. Z. Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. NeuroReport. 2010;21(14):914–916. doi: 10.1097/WNR.0b013e32833ce5f1.
    1. Koch G., Brusa L., Carrillo F., et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73(2):113–119. doi: 10.1212/WNL.0b013e3181ad5387.
    1. Dickson D. W., Braak H., Duda J. E., et al. Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. The Lancet Neurology. 2009;8(12):1150–1157. doi: 10.1016/s1474-4422(09)70238-8.
    1. Braak H., Ghebremedhin E., Rüb U., Bratzke H., Del Tredici K. Stages in the development of Parkinson's disease-related pathology. Cell and Tissue Research. 2004;318(1):121–134. doi: 10.1007/s00441-004-0956-9.
    1. Dickson D. W. Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harbor Perspectives in Medicine. 2012;2(8) doi: 10.1101/cshperspect.a009258.a009258
    1. Beach T. G., Adler C. H., Sue L. I., et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathologica. 2010;119(6):689–702. doi: 10.1007/s00401-010-0664-3.
    1. Marras C., Lang A. Parkinson's disease subtypes: lost in translation? Journal of Neurology, Neurosurgery and Psychiatry. 2013;84(4):409–415. doi: 10.1136/jnnp-2012-303455.
    1. Thenganatt M. A., Jankovic J. Parkinson disease subtypes. JAMA Neurology. 2014;71(4):499–504. doi: 10.1001/jamaneurol.2013.6233.
    1. Galvan A., Wichmann T. Pathophysiology of parkinsonism. Clinical Neurophysiology. 2008;119(7):1459–1474. doi: 10.1016/j.clinph.2008.03.017.
    1. Karachi C., Grabli D., Bernard F. A., et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. The Journal of Clinical Investigation. 2010;120(8):2745–2754. doi: 10.1172/jci42642.
    1. Yarnall A., Rochester L., Burn D. J. The interplay of cholinergic function, attention, and falls in Parkinson's disease. Movement Disorders. 2011;26(14):2496–2503. doi: 10.1002/mds.23932.
    1. Zhou F.-M., Wilson C. J., Dani J. A. Cholinergic interneuron characteristics and nicotinic properties in the striatum. Journal of Neurobiology. 2002;53(4):590–605. doi: 10.1002/neu.10150.
    1. Armentero M. T., Pinna A., Ferré S., Lanciego J. L., Müller C. E., Franco R. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacology and Therapeutics. 2011;132(3):280–299. doi: 10.1016/j.pharmthera.2011.07.004.
    1. Postuma R. B., Lang A. E., Munhoz R. P., et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology. 2012;79(7):651–658. doi: 10.1212/wnl.0b013e318263570d.
    1. Berardelli A., Rothwell J. C., Thompson P. D., Hallett M. Pathophysiology of bradykinesia in parkinson's disease. Brain. 2001;124(11):2131–2146. doi: 10.1093/brain/124.11.2131.
    1. Espay A. J., Beaton D. E., Morgante F., Gunraj C. A., Lang A. E., Chen R. Impairments of speed and amplitude of movement in Parkinson's disease: a pilot study. Movement Disorders. 2009;24(7):1001–1008. doi: 10.1002/mds.22480.
    1. Evarts E. V., Teräväinen H., Calne D. B. Reaction time in Parkinson's disease. Brain. 1981;104(1):167–186. doi: 10.1093/brain/104.1.167.
    1. Jahanshahi M., Brown R. G., Marsden C. D. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson's disease. Brain. 1992;115(2):539–564. doi: 10.1093/brain/115.2.539.
    1. Pascual-Leone A., Valls-Solé J., Brasil-Neto J. P., Cohen L. G., Hallett M. Akinesia in Parkinson's disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology. 1994;44(5):884–891. doi: 10.1212/WNL.44.5.884.
    1. Dick J. P., Rothwell J. C., Day B. L., et al. The bereitschaftspotential is abnormal in parkinson's disease. Brain. 1989;112(1):233–244. doi: 10.1093/brain/112.1.233.
    1. Jahanshahi M., Jenkins I. H., Brown R. G., Marsden C. D., Passingham R. E., Brooks D. J. Self-initiated versus externally triggered movements I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain. 1995;118(4):913–933. doi: 10.1093/brain/118.4.913.
    1. Little S., Brown P. The functional role of beta oscillations in Parkinson's disease. Parkinsonism & Related Disorders. 2014;20(supplement 1):S44–S48. doi: 10.1016/s1353-8020(13)70013-0.
    1. Engel A. K., Fries P. Beta-band oscillations—signalling the status quo? Current Opinion in Neurobiology. 2010;20(2):156–165. doi: 10.1016/j.conb.2010.02.015.
    1. Brown P., Marsden C. D. Bradykinesia and impairment of EEG desynchronization in Parkinson's disease. Movement Disorders. 1999;14(3):423–429. doi: 10.1002/1531-8257(199905)14:3<423::AID-MDS1006>;2-V.
    1. Brown P., Oliviero A., Mazzone P., Insola A., Tonali P., Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. Journal of Neuroscience. 2001;21(3):1033–1038.
    1. Kühn A. A., Tsui A., Aziz T., et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity. Experimental Neurology. 2009;215(2):380–387. doi: 10.1016/j.expneurol.2008.11.008.
    1. Little S., Pogosyan A., Neal S., et al. Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology. 2013;74(3):449–457. doi: 10.1002/ana.23951.
    1. Corcos D. M., Chen C.-M., Quinn N. P., McAuley J., Rothwell J. C. Strength in Parkinson's disease: relationship to rate of force generation and clinical status. Annals of Neurology. 1996;39(1):79–88. doi: 10.1002/ana.410390112.
    1. Beraidelli A., Dick J. P. R., Rothwell J. C., Day B. L., Marsden C. D. Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry. 1986;49(11):1273–1279. doi: 10.1136/jnnp.49.11.1273.
    1. Benecke R., Rothwell J. C., Dick J. P. R., Day B. L., Marsden C. D. Performance of simultaneous movements in patients with Parkinson's disease. Brain. 1986;109(4):739–757. doi: 10.1093/brain/109.4.739.
    1. Brown R. G., Marsden C. D. Dual task performance and processing resources in normal subjects and patients with Parkinson's disease. Brain. 1991;114(1):215–231.
    1. Ni Z., Bahl N., Gunraj C. A., Mazzella F., Chen R. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology. 2013;80(19):1746–1753. doi: 10.1212/WNL.0b013e3182919029.
    1. Rothwell J. C., Edwards M. J. Parkinson's disease. Handbook of Clinical Neurology. 2013;116:535–542. doi: 10.1016/b978-0-444-53497-2.00042-5.
    1. Conte A., Khan N., Defazio G., Rothwell J. C., Berardelli A. Pathophysiology of somatosensory abnormalities in Parkinson disease. Nature Reviews Neurology. 2013;9(12):687–697. doi: 10.1038/nrneurol.2013.224.
    1. Fellows S. J., Noth J., Schwarz M. Precision grip and Parkinson's disease. Brain. 1998;121(9):1771–1784. doi: 10.1093/brain/121.9.1771.
    1. Tamburin S., Fiaschi A., Idone D., Lochner P., Manganotti P., Zanette G. Abnormal sensorimotor integration is related to disease severity in Parkinson's disease: a TMS study. Movement Disorders. 2003;18(11):1316–1324. doi: 10.1002/mds.10515.
    1. Sabatini U., Boulanouar K., Fabre N., et al. Cortical motor reorganization in akinetic patients with Parkinson's disease. A functional MRI study. Brain. 2000;123(2):394–403. doi: 10.1093/brain/123.2.394.
    1. Yu H., Sternad D., Corcos D. M., Vaillancourt D. E. Role of hyperactive cerebellum and motor cortex in Parkinson's disease. Neuroimage. 2007;35(1):222–233. doi: 10.1016/j.neuroimage.2006.11.047.
    1. Lindenbach D., Bishop C. Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neuroscience and Biobehavioral Reviews. 2013;37(10):2737–2750. doi: 10.1016/j.neubiorev.2013.09.008.
    1. Johnson M. T. V., Kipnis A. N., Lee M. C., Loewenson R. B., Ebner T. J. Modulation of the stretch reflex during volitional sinusoidal tracking in Parkinson's disease. Brain. 1991;114(1):443–460. doi: 10.1093/brain/114.1.443.
    1. Brown P., Corcos D. M., Rothwell J. C. Does parkinsonian action tremor contribute to muscle weakness in Parkinson's disease? Brain. 1997;120(3):401–408. doi: 10.1093/brain/120.3.401.
    1. Schneider S. A., Edwards M. J., Mir P., et al. Patients with adult-onset dystonic tremor resembling Parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs) Movement Disorders. 2007;22(15):2210–2215. doi: 10.1002/mds.21685.
    1. Hallett M. Parkinson's disease tremor: pathophysiology. Parkinsonism and Related Disorders. 2012;18(supplement 1):S85–S86.
    1. Deuschl G., Bain P., Brin M. Consensus statement of the movement disorder society on tremor. Ad Hoc Scientific Committee. Movement Disorders. 1998;13(supplement 3):2–32.
    1. Helmich R. C., Janssen M. J. R., Oyen W. J. G., Bloem B. R., Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Annals of Neurology. 2011;69(2):269–281. doi: 10.1002/ana.22361.
    1. Doder M., Rabiner E. A., Turjanski N., Lees A. J., Brooks D. J. Tremor in Parkinson's disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology. 2003;60(4):601–605. doi: 10.1212/01.wnl.0000031424.51127.2b.
    1. Llinás R., Urbano F. J., Leznik E., Ramírez R. R., van Marle H. J. F. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends in Neurosciences. 2005;28(6):325–333. doi: 10.1016/j.tins.2005.04.006.
    1. Terman D., Rubin J. E., Yew A. C., Wilson C. J. Activity patterns in a model for the subthalamopallidal network of the basal Ganglia. The Journal of Neuroscience. 2002;22(7):2963–2976.
    1. Hirschmann J., Hartmann C. J., Butz M., et al. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson's disease. Brain. 2013;136(12):3659–3670. doi: 10.1093/brain/awt271.
    1. Rodriguez-Oroz M. C., Jahanshahi M., Krack P., et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. The Lancet Neurology. 2009;8(12):1128–1139. doi: 10.1016/S1474-4422(09)70293-5.
    1. Andrews C. J., Burke D., Lance J. W. The response to muscle stretch and shortening in Parkinsonian rigidity. Brain. 1972;95(4):795–812. doi: 10.1093/brain/95.4.795.
    1. Delwaide P. J., Pepin J. L., Maertens de Noordhout A. Short-latency autogenic inhibition in patients with Parkinsonian rigidity. Annals of Neurology. 1991;30(1):83–89. doi: 10.1002/ana.410300115.
    1. Valls-Solé J. Neurophysiological characterization of parkinsonian syndromes. Neurophysiologie Clinique. 2000;30(6):352–367. doi: 10.1016/S0987-7053(00)00236-7.
    1. Rothwell J. C., Obeso J. A., Traub M. M., Marsden C. D. The behaviour of the long-latency stretch reflex in patients with Parkinson's disease. Journal of Neurology Neurosurgery and Psychiatry. 1983;46(1):35–44. doi: 10.1136/jnnp.46.1.35.
    1. Melamed E., Ziv I., Djaldetti R. Management of motor complications in advanced Parkinson's disease. Movement Disorders. 2007;22(supplement 17):S379–S384. doi: 10.1002/mds.21680.
    1. Bastide M. F., Meissner W. G., Picconi B., et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Progress in Neurobiology. 2015;132:96–168. doi: 10.1016/j.pneurobio.2015.07.002.
    1. Cilia R., Akpalu A., Sarfo F. S., et al. The modern pre-levodopa era of Parkinson's disease: insights into motor complications from sub-Saharan Africa. Brain. 2014;137(10):2731–2742. doi: 10.1093/brain/awu195.
    1. Doherty K. M., van de Warrenburg B. P., Peralta M. C., et al. Postural deformities in Parkinson's disease. The Lancet Neurology. 2011;10(6):538–549. doi: 10.1016/s1474-4422(11)70067-9.
    1. Grabli D., Karachi C., Welter M.-L., et al. Normal and pathological gait: what we learn from Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry. 2012;83(10):979–985. doi: 10.1136/jnnp-2012-302263.
    1. Castrioto A., Piscicelli C., Pérennou D., Krack P., Debû B. The pathogenesis of Pisa syndrome in Parkinson's disease. Movement Disorders. 2014;29(9):1100–1107. doi: 10.1002/mds.25925.
    1. Jahn K., Deutschländer A., Stephan T., et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. NeuroImage. 2008;39(2):786–792. doi: 10.1016/j.neuroimage.2007.09.047.
    1. Benarroch E. E. Pedunculopontine nucleus: functional organization and clinical implications. Neurology. 2013;80(12):1148–1155. doi: 10.1212/wnl.0b013e3182886a76.
    1. Bohnen N. I., Jahn K. Imaging: what can it tell us about parkinsonian gait? Movement Disorders. 2013;28(11):1492–1500. doi: 10.1002/mds.25534.
    1. Stolze H., Kuhtz-Buschbeck J. P., Drücke H., Jöhnk K., Illert M., Deuschl G. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson's disease. Journal of Neurology Neurosurgery and Psychiatry. 2001;70(3):289–297. doi: 10.1136/jnnp.70.3.289.
    1. Giladi N., Horak F. B., Hausdorff J. M. Classification of gait disturbances: distinguishing between continuous and episodic changes. Movement Disorders. 2013;28(11):1469–1473. doi: 10.1002/mds.25672.
    1. Alam M., Schwabe K., Krauss J. K. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain. 2011;134(1):11–23. doi: 10.1093/brain/awq322.
    1. Heremans E., Nieuwboer A., Spildooren J., et al. Cognitive aspects of freezing of gait in Parkinson's disease: a challenge for rehabilitation. Journal of Neural Transmission. 2013;120(4):543–557. doi: 10.1007/s00702-012-0964-y.
    1. Nutt J. G., Bloem B. R., Giladi N., Hallett M., Horak F. B., Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. The Lancet Neurology. 2011;10(8):734–744. doi: 10.1016/s1474-4422(11)70143-0.
    1. Giladi N., Hausdorff J. M. The role of mental function in the pathogenesis of freezing of gait in Parkinson's disease. Journal of the Neurological Sciences. 2006;248(1-2):173–176. doi: 10.1016/j.jns.2006.05.015.
    1. Perez-Lloret S., Negre-Pages L., Damier P., et al. Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. The JAMA Neurology. 2014;71(7):884–890. doi: 10.1001/jamaneurol.2014.753.
    1. Thevathasan W., Cole M. H., Graepel C. L., et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain. 2012;135(5):1446–1454. doi: 10.1093/brain/aws039.
    1. Bohnen N. I., Frey K. A., Studenski S., et al. Extra-nigral pathological conditions are common in Parkinson's disease with freezing of gait: an in vivo positron emission tomography study. Movement Disorders. 2014;29(9):1118–1124. doi: 10.1002/mds.25929.
    1. Herman T., Rosenberg-Katz K., Jacob Y., Giladi N., Hausdorff J. M. Gray matter atrophy and freezing of gait in Parkinson's disease: is the evidence black-on-white? Movement Disorders. 2014;29(1):134–139. doi: 10.1002/mds.25697.
    1. Almeida Q. J., Lebold C. A. Freezing of gait in Parkinson's disease: a perceptual cause for a motor impairment? Journal of Neurology, Neurosurgery and Psychiatry. 2010;81(5):513–518. doi: 10.1136/jnnp.2008.160580.
    1. Cowie D., Limousin P., Peters A., Hariz M., Day B. L. Doorway-provoked freezing of gait in Parkinson's disease. Movement Disorders. 2012;27(4):492–499. doi: 10.1002/mds.23990.
    1. Nantel J., McDonald J. C., Tan S., Bronte-Stewart H. Deficits in visuospatial processing contribute to quantitative measures of freezing of gait in Parkinson's disease. Neuroscience. 2012;221:151–156.
    1. Cohen R. G., Chao A., Nutt J. G., Horak F. B. Freezing of gait is associated with a mismatch between motor imagery and motor execution in narrow doorways, not with failure to judge doorway passability. Neuropsychologia. 2011;49(14):3981–3988. doi: 10.1016/j.neuropsychologia.2011.10.014.
    1. Jacobs J. V., Horak F. B. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot. Experimental Brain Research. 2007;179(1):29–42. doi: 10.1007/s00221-006-0763-5.
    1. Nieuwboer A., Giladi N. Characterizing freezing of gait in Parkinson's disease: models of an episodic phenomenon. Movement Disorders. 2013;28(11):1509–1519. doi: 10.1002/mds.25683.
    1. Lewis S. J. G., Barker R. A. A pathophysiological model of freezing of gait in Parkinson's disease. Parkinsonism and Related Disorders. 2009;15(5):333–338. doi: 10.1016/j.parkreldis.2008.08.006.
    1. Shine J. M., Matar E., Ward P. B., et al. Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain. 2013;136(12):3671–3681. doi: 10.1093/brain/awt272.
    1. Factor S. A., Scullin M. K., Sollinger A. B., et al. Freezing of gait subtypes have different cognitive correlates in Parkinson's disease. Parkinsonism and Related Disorders. 2014;20(12):1359–1364. doi: 10.1016/j.parkreldis.2014.09.023.
    1. Kudlicka A., Clare L., Hindle J. V. Executive functions in Parkinson's disease: systematic review and meta-analysis. Movement Disorders. 2011;26(13):2305–2315. doi: 10.1002/mds.23868.
    1. Mapelli D., Di Rosa E., Cavalletti M., Schiff S., Tamburin S. Decision and dopaminergic system: an ERPs study of Iowa gambling task in Parkinson's disease. Frontiers in Psychology. 2014;5, article 684 doi: 10.3389/fpsyg.2014.00684.
    1. Frank M. J., Samanta J., Moustafa A. A., Sherman S. J. Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism. Science. 2007;318(5854):1309–1312. doi: 10.1126/science.1146157.
    1. Ricciardi L., Bloem B. R., Snijders A. H., et al. Freezing of gait in Parkinson's disease: the paradoxical interplay between gait and cognition. Parkinsonism and Related Disorders. 2014;20(8):824–829. doi: 10.1016/j.parkreldis.2014.04.009.
    1. Fabbrini G., Latorre A., Suppa A., Bloise M., Frontoni M., Berardelli A. Fatigue in Parkinson's disease: motor or non-motor symptom? Parkinsonism and Related Disorders. 2013;19(2):148–152. doi: 10.1016/j.parkreldis.2012.10.009.
    1. Berardelli A., Conte A., Fabbrini G., et al. Pathophysiology of pain and fatigue in Parkinson's disease. Parkinsonism and Related Disorders. 2012;18(supplement 1):S226–S228.
    1. Defazio G., Berardelli A., Fabbrini G., et al. Pain as a nonmotor symptom of Parkinson disease: evidence from a case-control study. Archives of Neurology. 2008;65(9):1191–1194. doi: 10.1001/archneurol.2008.2.
    1. Tinazzi M., Recchia S., Simonetto S., et al. Hyperalgesia and laser evoked potentials alterations in hemiparkinson: evidence for an abnormal nociceptive processing. Journal of the Neurological Sciences. 2009;276(1-2):153–158. doi: 10.1016/j.jns.2008.09.023.
    1. Tinazzi M., Recchia S., Simonetto S., et al. Muscular pain in Parkinson's disease and nociceptive processing assessed with CO2 laser-evoked potentials. Movement Disorders. 2010;25(2):213–220. doi: 10.1002/mds.22932.
    1. Smith K. M., Eyal E., Weintraub D. Combined rasagiline and antidepressant use in Parkinson disease in the ADAGIO study: effects on nonmotor symptoms and tolerability. JAMA Neurology. 2015;72(1):88–95. doi: 10.1001/jamaneurol.2014.2472.
    1. Trenkwalder C., Chaudhuri K. R., Martinez-Martin P., et al. Prolonged-release oxycodone-naloxone for treatment of severe pain in patients with Parkinson's disease (PANDA): a double-blind, randomised, placebo-controlled trial. The Lancet Neurology. 2015;14(12):1161–1170. doi: 10.1016/s1474-4422(15)00243-4.
    1. Uc E. Y., Doerschug K. C., Magnotta V., et al. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology. 2014;83(5):413–425. doi: 10.1212/WNL.0000000000000644.
    1. Cohen M. L., Aita S., Mari Z., Brandt J. The unique and combined effects of apathy and depression on cognition in Parkinson's disease. Journal of Parkinson's Disease. 2015;5(2):351–359. doi: 10.3233/JPD-140484.
    1. Stanton B. R., Carson A. Apathy: a practical guide for neurologists. Practical Neurology. 2016;16(1):42–47. doi: 10.1136/practneurol-2015-001232.
    1. Bomasang-Layno E., Fadlon I., Murray A. N., Himelhoch S. Antidepressive treatments for Parkinson's disease: a systematic review and meta-analysis. Parkinsonism and Related Disorders. 2015;21(8):833–842. doi: 10.1016/j.parkreldis.2015.04.018.
    1. Santangelo G., Trojano L., Barone P., Errico D., Grossi D., Vitale C. Apathy in Parkinson's disease: diagnosis, neuropsychological correlates, pathophysiology and treatment. Behavioural Neurology. 2013;27(4):501–513. doi: 10.3233/ben-129025.
    1. Zahodne L. B., Gongvatana A., Cohen R. A., Ott B. R., Tremont G. Are apathy and depression independently associated with longitudinal trajectories of cortical atrophy in mild cognitive impairment? The American Journal of Geriatric Psychiatry. 2013;21(11):1098–1106. doi: 10.1016/j.jagp.2013.01.043.
    1. Huang C., Ravdin L. D., Nirenberg M. J., et al. Neuroimaging markers of motor and nonmotor features of Parkinson's disease: an [18F]fluorodeoxyglucose positron emission computed tomography study. Dementia and Geriatric Cognitive Disorders. 2013;35(3-4):183–196. doi: 10.1159/000345987.
    1. Devos D., Moreau C., Maltête D., et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson's disease: a double-blind, placebo-controlled, randomised clinical trial. Journal of Neurology, Neurosurgery and Psychiatry. 2014;85(6):668–674. doi: 10.1136/jnnp-2013-306439.
    1. Leroi I., Pantula H., McDonald K., Harbishettar V. Neuropsychiatric symptoms in Parkinson's disease with mild cognitive impairment and dementia. Parkinson's Disease. 2012;2012:10. doi: 10.1155/2012/308097.308097
    1. Litvan I., Goldman J. G., Tröster A. I., et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: movement Disorder Society Task Force guidelines. Movement Disorders. 2012;27(3):349–356. doi: 10.1002/mds.24893.
    1. Picelli A., Camin M., Tinazzi M., et al. Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson's disease: a preliminary investigation. Neurological Sciences. 2010;31(4):423–430. doi: 10.1007/s10072-010-0228-2.
    1. Abbruzzese G., Marchese R., Avanzino L., Pelosin E. Rehabilitation for Parkinson's disease: current outlook and future challenges. Parkinsonism and Related Disorders. 2016;22(supplement 1):S60–S64. doi: 10.1016/j.parkreldis.2015.09.005.
    1. Tomlinson C. L., Patel S., Meek C., et al. Physiotherapy intervention in Parkinson's disease: systematic review and meta-analysis. The British Medical Journal. 2012;345(7872) doi: 10.1136/bmj.e5004.e5004
    1. Corcos D. M., Robichaud J. A., David F. J., et al. A two-year randomized controlled trial of progressive resistance exercise for Parkinson's disease. Movement Disorders. 2013;28(9):1230–1240. doi: 10.1002/mds.25380.
    1. Picelli A., Melotti C., Origano F., et al. Robot-assisted gait training in patients with parkinson disease: a randomized controlled trial. Neurorehabilitation and Neural Repair. 2012;26(4):353–361. doi: 10.1177/1545968311424417.
    1. Picelli A., Melotti C., Origano F., Waldner A., Gimigliano R., Smania N. Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial. Parkinsonism and Related Disorders. 2012;18(8):990–993. doi: 10.1016/j.parkreldis.2012.05.010.
    1. Picelli A., Melotti C., Origano F., Neri R., Waldner A., Smania N. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson's disease: a randomized controlled trial. Parkinsonism and Related Disorders. 2013;19(6):605–610. doi: 10.1016/j.parkreldis.2013.02.010.
    1. Picelli A., Tamburin S., Passuello M., Waldner A., Smania N. Robot-assisted arm training in patients with Parkinson's disease: a pilot study. Journal of NeuroEngineering and Rehabilitation. 2014;11(1, article 28) doi: 10.1186/1743-0003-11-28.
    1. Picelli A., Melotti C., Origano F., et al. Robot-assisted gait training is not superior to balance training for improving postural instability in patients with mild to moderate Parkinson's disease: a single-blind randomized controlled trial. Clinical Rehabilitation. 2014;29(4):339–347. doi: 10.1177/0269215514544041.
    1. Mehrholz J., Friis R., Kugler J., Twork S., Storch A., Pohl M. Treadmill training for patients with Parkinson's disease. Cochrane Database Of Systematic Reviews. 2015;9 doi: 10.1002/14651858.CD007830.CD007830
    1. Li F., Harmer P., Fitzgerald K., et al. Tai chi and postural stability in patients with Parkinson's disease. The New England Journal of Medicine. 2012;366(6):511–519. doi: 10.1056/nejmoa1107911.
    1. Picelli A., Varalta V., Melotti C., et al. Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson's disease: a pilot, single-blind, randomized controlled trial. Functional Neurology. 2016;31(1):25–31. doi: 10.11138/FNeur/2016.31.1.025.
    1. Monticone M., Ambrosini E., Laurini A., Rocca B., Foti C. In-patient multidisciplinary rehabilitation for Parkinson's disease: a randomized controlled trial. Movement Disorders. 2015;30(8):1050–1058. doi: 10.1002/mds.26256.
    1. Mirelman A., Rochester L., Reelick M., et al. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurology. 2013;13, article 15 doi: 10.1186/1471-2377-13-15.
    1. Mirelman A., Maidan I., Herman T., Deutsch J. E., Giladi N., Hausdorff J. M. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease? Journals of Gerontology, Series A: Biological Sciences and Medical Sciences. 2011;66(2):234–240. doi: 10.1093/gerona/glq201.
    1. Ting L. H., Chiel H. J., Trumbower R. D., et al. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron. 2015;86(1):38–54. doi: 10.1016/j.neuron.2015.02.042.
    1. Mink J. W. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Archives of Neurology. 2003;60(10):1365–1368. doi: 10.1001/archneur.60.10.1365.
    1. Schultz W., Dayan P., Montague P. R. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–1599. doi: 10.1126/science.275.5306.1593.
    1. Yin H. H., Knowlton B. J. The role of the basal ganglia in habit formation. Nature Reviews Neuroscience. 2006;7(6):464–476. doi: 10.1038/nrn1919.
    1. Nackaerts E., Heremans E., Vervoort G., et al. Relearning of writing skills in Parkinson's disease after intensive amplitude training. Movement Disorders. 2016 doi: 10.1002/mds.26565.
    1. Doyon J. Motor sequence learning and movement disorders. Current Opinion in Neurology. 2008;21(4):478–483.
    1. Kojovic M., Bologna M., Kassavetis P., et al. Functional reorganization of sensorimotor cortex in early Parkinson disease. Neurology. 2012;78(18):1441–1448. doi: 10.1212/wnl.0b013e318253d5dd.
    1. Nieuwboer A., Kwakkel G., Rochester L., et al. Cueing training in the home improves gait-related mobility in Parkinson's disease: the RESCUE trial. Journal of Neurology, Neurosurgery and Psychiatry. 2007;78(2):134–140. doi: 10.1136/jnnp.200x.097923.
    1. Hirsch M. A., Farley B. G. Exercise and neuroplasticity in persons living with Parkinson's disease. European Journal of Physical and Rehabilitation Medicine. 2009;45(2):215–229.
    1. Ekker M. S., Janssen S., Nonnekes J., Bloem B. R., de Vries N. M. Neurorehabilitation for Parkinson's disease: future perspectives for behavioural adaptation. Parkinsonism & Related Disorders. 2016;22(supplement 1):S73–S77. doi: 10.1016/j.parkreldis.2015.08.031.
    1. Miller D. B., O'Callaghan J. P. Biomarkers of Parkinson's disease: present and future. Metabolism: Clinical and Experimental. 2015;64(3, supplement 1):S40–S46. doi: 10.1016/j.metabol.2014.10.030.

Source: PubMed

3
Tilaa