Genetic and epigenetic control of ACE2 expression and its possible role in COVID-19

Rafael Silva Lima, Luiz Paulo Carvalho Rocha, Paula Rocha Moreira, Rafael Silva Lima, Luiz Paulo Carvalho Rocha, Paula Rocha Moreira

Abstract

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a pandemic that is claiming hundreds of thousands of lives around the world. Angiotensin-converting enzyme-2 (ACE2) is a key player in COVID-19 due to its pivotal role in the SARS-CoV-2 infection. This enzyme is expressed throughout the body and the studies conducted so far have shown that its expression varies according to several factors, including cell type, sex, age, disease states and probably SARS-CoV-2 infection. Single-nucleotide polymorphisms (SNPs) and epigenetic mechanisms, including DNA methylation, histone post-translational modifications and microRNAs, impact ACE2 expression and may explain structural variation. The understanding of how genetic variants and epigenetic markers act to control ACE2 expression in health and disease states may contribute to comprehend several aspects of COVID-19 that are puzzling researchers and clinicians. This review collects and appraises the literature regarding some aspects in the ACE2 biology, the expression patterns of this molecule, SNPs of the ACE2 gene and epigenetic mechanisms that may impact ACE2 expression in the context of COVID-19.

Keywords: ACE2; COVID-19; SNPs; epigenetic; gene expression.

Conflict of interest statement

The authors declare that they have no conflict of interest.

© 2021 John Wiley & Sons Ltd.

References

    1. Phua J, Weng L, Ling L, et al; for the Asian Critical Care Clinical Trials Group. Intensive care management of coronavirus disease 2019 (COVID‐19): challenges and recommendations. Lancet Respir. Med. 2020;8(5):506–517. 10.1016/S2213-2600(20)30161-2.
    1. Gabutti G, d'Anchera E, Sandri F, Savio M, Stefanati A. Coronavirus: update related to the current outbreak of COVID‐19. Infect Dis Ther. 2020;9(2):1–13. 10.1007/s40121-020-00295-5.
    1. Chen Y, Chen L, Deng Q, et al. The presence of SARS‐CoV‐2 RNA in feces of COVID‐19 patients. J Med Virol. 2020;92(7):833–840. 10.1002/jmv.25825.
    1. To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS‐CoV‐2: an observational cohort study. Lancet Infect. Dis. 2020;20(5):565–574. 10.1016/S1473-3099(20)30196-1.
    1. Wang W, Xu Y, Gao R, et al. Detection of SARS‐CoV‐2 in different types of clinical specimens. JAMA. 2020;323(18):1843–1844. 10.1001/jama.2020.3786.
    1. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS‐CoV‐2 as compared with SARS‐CoV‐1. N Engl J Med. 2020;382(16):1564–1567. 10.1056/NEJMc2004973.
    1. Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. 10.1016/j.cell.2020.02.052.
    1. Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID‐19 pneumonia caused by SARS‐CoV‐2: a prospective cohort study. Eur Respir J. 2020;55(5):2000524. 10.1183/13993003.00524-2020.
    1. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID‐19 infection? Lancet Respir Med. 2020;8(4):e21. 10.1016/S2213-2600(20)30116-8.
    1. Day M. Covid‐19: four fifths of cases are asymptomatic, China figures indicate. BMJ. 2020;369:m1375. 10.1136/bmj.m1375.
    1. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin‐converting enzyme‐related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1‐9. Circ Res. 2000;87(5):E1‐E9. 10.1161/01.res.87.5.e1.
    1. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin‐converting enzyme. Cloning and functional expression as a captopril‐insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238‐33243. 10.1074/jbc.M002615200.
    1. Tukiainen T, Villani AC, Yen A, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550(7675):244‐248. 10.1038/nature24265.
    1. Itoyama S, Keicho N, Hijikata M, et al. Identification of an alternative 5′‐untranslated exon and new polymorphisms of angiotensin‐converting enzyme 2 gene: lack of association with SARS in the Vietnamese population. Am J Med Genet A. 2005;136(1):52‐57. 10.1002/ajmg.a.30779.
    1. Liu C, Li Y, Guan T, et al. ACE2 polymorphisms associated with cardiovascular risk in Uygurs with type 2 diabetes mellitus. Cardiovasc Diabetol. 2018;17(1):127. 10.1186/s12933-018-0771-3.
    1. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin‐converting enzyme‐related carboxypeptidase. J Biol Chem. 2002;277(17):14838‐14843. 10.1074/jbc.M200581200.
    1. Patel VB, Clarke N, Wang Z, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM‐17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol. 2014;66:167‐176. 10.1016/j.yjmcc.2013.11.017.
    1. Kuba K, Imai Y, Ohto‐Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin‐angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010;128(1):119‐128. 10.1016/j.pharmthera.2010.06.003.
    1. Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin‐(1‐7) is an endogenous ligand for the G protein‐coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258‐8263. 10.1073/pnas.1432869100.
    1. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin converting enzyme 2: SARS‐CoV‐2 receptor and regulator of the renin‐angiotensin system. Circ Res. 2020;126(10):1456–1474. 10.1161/CIRCRESAHA.120.317015.
    1. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP. [Pyr1]apelin‐13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension. 2009;54(3):598‐604. 10.1161/HYPERTENSIONAHA.109.134619.
    1. Wang W, McKinnie SM, Patel VB, et al. Loss of Apelin exacerbates myocardial infarction adverse remodeling and ischemia‐reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc. 2013;2(4):e000249. 10.1161/JAHA.113.000249.
    1. Wang W, McKinnie SM, Farhan M, et al. Angiotensin‐converting enzyme 2 metabolizes and partially inactivates Pyr‐Apelin‐13 and Apelin‐17: physiological effects in the cardiovascular system. Hypertension. 2016;68(2):365‐377. 10.1161/HYPERTENSIONAHA.115.06892.
    1. Ceraudo E, Galanth C, Carpentier E, et al. Biased signaling favoring gi over beta‐arrestin promoted by an apelin fragment lacking the C‐terminal phenylalanine. J Biol Chem. 2014;289(35):24599‐24610. 10.1074/jbc.M113.541698.
    1. Sato T, Suzuki T, Watanabe H, et al. Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest. 2013;123(12):5203‐5211. 10.1172/JCI69608.
    1. Zhang L, Zetter MA, Guerra EC, Hernandez VS, Mahata SK, Eiden LE. ACE2 in the second act of COVID‐19 syndrome: peptide dysregulation and possible correction with oestrogen. J Neuroendocrinol. 2021;33(2):e12935. 10.1111/jne.12935.
    1. Mehrabadi ME, Hemmati R, Tashakor A, et al. Induced dysregulation of ACE2 by SARS‐CoV‐2 plays a key role in COVID‐19 severity. Biomed Pharmacother. = Biomedecine & Pharmacotherapie. 2021;137:111363. 10.1016/j.biopha.2021.111363.
    1. Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE, Broer S. A protein complex in the brush‐border membrane explains a Hartnup disorder allele. FASEB J. 2008;22(8):2880‐2887. 10.1096/fj.08-107300.
    1. Singer D, Camargo SM. Collectrin and ACE2 in renal and intestinal amino acid transport. Channels (Austin). 2011;5(5):410‐423. 10.4161/chan.5.5.16470.
    1. Camargo SM, Singer D, Makrides V, et al. Tissue‐specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009;136(3):872‐882. 10.1053/j.gastro.2008.10.055.
    1. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2. Science. 2020;367(6485):1444‐1448. 10.1126/science.abb2762.
    1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270‐273. 10.1038/s41586-020-2012-7.
    1. Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2. Cell. 2020;181(4):894–904. 10.1016/j.cell.2020.03.045.
    1. Wrapp D, Wang N, Corbett KS, et al. Cryo‐EM structure of the 2019‐nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260‐1263. 10.1126/science.abb2507.
    1. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019‐nCoV contains a furin‐like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742. 10.1016/j.antiviral.2020.104742.
    1. Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS‐CoV‐2. Proc Natl Acad Sci U S A. 2020;117(21):11727‐11734. 10.1073/pnas.2003138117.
    1. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237‐261. 10.1146/annurev-virology-110615-042301.
    1. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor‐binding domain complexed with receptor. Science. 2005;309(5742):1864‐1868. 10.1126/science.1116480.
    1. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS‐CoV‐2 on virus entry and its immune cross‐reactivity with SARS‐CoV. Nat Commun. 2020;11(1):1620. 10.1038/s41467-020-15562-9.
    1. Hussain M, Jabeen N, Raza F, et al. Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein. J Med Virol. 2020;92(9):1580–1586. 10.1002/jmv.25832.
    1. Benetti E, Tita R, Spiga O, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID‐19 in the Italian population. Eur J Hum Genet. 2020;28(11):1602‐1614. 10.1038/s41431-020-0691-z.
    1. Othman H, Bouslama Z, Brandenburg JT, et al. Interaction of the spike protein RBD from SARS‐CoV‐2 with ACE2: similarity with SARS‐CoV, hot‐spot analysis and effect of the receptor polymorphism. Biochem Biophys Res Commun. 2020;527(3):702‐708. 10.1016/j.bbrc.2020.05.028.
    1. Hashizume M, Gonzalez G, Ono C, Takashima A, Iwasaki M. Population‐specific ACE2 single‐nucleotide polymorphisms have limited impact on SARS‐CoV‐2 infectivity in vitro. Viruses. 2021;13(1):67. 10.3390/v13010067.
    1. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1‐2):107‐110. 10.1016/s0014-5793(02)03640-2.
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631‐637. 10.1002/path.1570.
    1. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS‐CoV‐2. Cardiovasc Res. 2020;116(6):1097–1100. 10.1093/cvr/cvaa078.
    1. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135–140. 10.1016/j.bbrc.2020.03.044.
    1. Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019‐nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. 10.1038/s41368-020-0074-x.
    1. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single‐cell RNA‐seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019‐nCoV infection. Front Med. 2020;14(2):185–192. 10.1007/s11684-020-0754-0.
    1. Ziegler CGK, Allon SJ, Nyquist SK, et al; HCA Lung Biological Network. Electronic address: lung‐network@humancellatlas.org; HCA Lung Biological Network. SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016‐1035.e19. 10.1016/j.cell.2020.04.035.
    1. Zhang H, Rostami MR, Leopold PL, et al. Expression of the SARS‐CoV‐2 ACE2 receptor in the human airway epithelium. Am J Respir Crit Care Med. 2020;202(2):219–229. 10.1164/rccm.202003-0541OC.
    1. Lukassen S, Lorenz Chua R, Trefzer T, et al. SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;30(10):e105114. 10.15252/embj.20105114.
    1. Wang Z, Xu X. scRNA‐seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS‐COV‐2 infection in spermatogonia, leydig and sertoli cells. Cells. 2020;9(4):920. 10.3390/cells9040920.
    1. Deng Y, Tan X, Li ML, Wang WZ, Wang YK. Angiotensin‐converting enzyme 2 in the rostral ventrolateral medulla regulates cholinergic signaling and cardiovascular and sympathetic responses in hypertensive rats. Neurosci Bull. 2019;35(1):67‐78. 10.1007/s12264-018-0298-3.
    1. Kabbani N, Olds JL. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol Pharmacol. 2020;97(5):351–353. 10.1124/molpharm.120.000014.
    1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264‐7275. 10.1128/JVI.00737-08.
    1. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID‐19. Nat Med. 2020;26(7):1017‐1032. 10.1038/s41591-020-0968-3.
    1. Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID‐19. Proc. Natl. Acad. Sci. U. S. A. 2020;117(26):14857‐14863. 10.1073/pnas.2009637117.
    1. Ahmed M, Advani S, Moreira A, et al. Multisystem inflammatory syndrome in children: a systematic review. EClinicalMedicine. 2020;26:100527. 10.1016/j.eclinm.2020.100527.
    1. Andalib S, Biller J, Di Napoli M, et al. Peripheral nervous system manifestations associated with COVID‐19. Curr Neurol Neurosci Rep. 2021;21(3):9. 10.1007/s11910-021-01102-5.
    1. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID‐19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol. 2020;51(6):613‐628. 10.1007/s10735-020-09915-3.
    1. Xie X, Chen J, Wang X, Zhang F, Liu Y. Age‐ and gender‐related difference of ACE2 expression in rat lung. Life Sci. 2006;78(19):2166‐2171. 10.1016/j.lfs.2005.09.038.
    1. Chen K, Bi J, Su Y, Chappell MC, Rose JC. Sex‐specific changes in renal angiotensin‐converting enzyme and angiotensin‐converting enzyme 2 gene expression and enzyme activity at birth and over the first year of life. Reprod Sci. 2016;23(2):200‐210. 10.1177/1933719115597760.
    1. Liu J, Ji H, Zheng W, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β‐oestradiol‐dependent and sex chromosome‐independent. Biol Sex Differ. 2010;1(1):6. 10.1186/2042-6410-1-6.
    1. Stelzig KE, Canepa‐Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. Estrogen regulates the expression of SARS‐CoV‐2 receptor ACE2 in differentiated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1280‐L1281. 10.1152/ajplung.00153.2020.
    1. Saheb Sharif‐Askari N, Saheb Sharif‐Askari F, Alabed M, et al. Airways expression of SARS‐CoV‐2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol. Ther. Methods Clin. Dev. 2020;18:1‐6. 10.1016/j.omtm.2020.05.013.
    1. Wark PAB, Pathinayake PS, Kaiko G, et al. ACE2 expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma. Respirology. 2021;26(5):442–451. 10.1111/resp.14003.
    1. Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of sex, age, and comorbidities with mortality in COVID‐19 patients: a systematic review and meta‐analysis. Intervirology. 2020;9:1‐12. 10.1159/000512592.
    1. Abate BB, Kassie AM, Kassaw MW, Aragie TG, Masresha SA. Sex difference in coronavirus disease (COVID‐19): a systematic review and meta‐analysis. BMJ Open. 2020;10(10):e040129. 10.1136/bmjopen-2020-040129.
    1. Bonanad C, Garcia‐Blas S, Tarazona‐Santabalbina F, et al. The effect of age on mortality in patients with COVID‐19: a meta‐analysis with 611,583 subjects. J Am Med Dir Assoc. 2020;21(7):915‐918. 10.1016/j.jamda.2020.05.045.
    1. Figliozzi S, Masci PG, Ahmadi N, et al. Predictors of adverse prognosis in COVID‐19: a systematic review and meta‐analysis. Eur J Clin Invest. 2020;50(10):e13362. 10.1111/eci.13362.
    1. Levin AT, Hanage WP, Owusu‐Boaitey N, Cochran KB, Walsh SP, Meyerowitz‐Katz G. Assessing the age specificity of infection fatality rates for COVID‐19: systematic review, meta‐analysis, and public policy implications. Eur J Epidemiol. 2020;35(12):1123‐1138. 10.1007/s10654-020-00698-1.
    1. Patanavanich R, Glantz SA. Smoking is associated with COVID‐19 progression: a meta‐analysis. Nicotine Tob Res. 2020;22(9):1653‐1656. 10.1093/ntr/ntaa082.
    1. Rossato M, Russo L, Mazzocut S, Di Vincenzo A, Fioretto P, Vettor R. Current smoking is not associated with COVID‐19. Eur Respir J. 2020;55(6):2001290. 10.1183/13993003.01290-2020.
    1. Shastri MD, Shukla SD, Chong WC, et al. Smoking and COVID‐19: what we know so far. Respir. Med. 2021;176:106237. 10.1016/j.rmed.2020.106237.
    1. Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS‐CoV‐2 infection and monocyte response through a HIF‐1α/glycolysis‐dependent axis. Cell Metab. 2020;32(3):437‐446 e5. 10.1016/j.cmet.2020.07.007.
    1. Li W, Wang R, Ma JY, et al. A human long non‐coding RNA ALT1 controls the cell cycle of vascular endothelial cells via ACE2 and cyclin D1 pathway. Cell Physiol Biochem. 2017;43(3):1152‐1167. 10.1159/000481756.
    1. Zhang R, Wu Y, Zhao M, et al. Role of HIF‐1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2009;297(4):L631‐L640. 10.1152/ajplung.90415.2008.
    1. Li X, Molina‐Molina M, Abdul‐Hafez A, Uhal V, Xaubet A, Uhal BD. Angiotensin converting enzyme‐2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L178‐L185. 10.1152/ajplung.00009.2008.
    1. Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. Hypoxia, HIF‐1α, and COVID‐19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin. 2020;41(12):1539‐1546. 10.1038/s41401-020-00554-8.
    1. Bradding P, Richardson M, TSC H, et al. ACE2, TMPRSS2, and furin gene expression in the airways of people with asthma‐implications for COVID‐19. J Allergy Clin Immunol. 2020;146(1):208–211. 10.1016/j.jaci.2020.05.013.
    1. Clarke NE, Belyaev ND, Lambert DW, Turner AJ. Epigenetic regulation of angiotensin‐converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin Sci. 2014;126(7):507‐516. 10.1042/CS20130291.
    1. Oarhe CI, Dang V, Dang M, et al. Hyperoxia downregulates angiotensin‐converting enzyme‐2 in human fetal lung fibroblasts. Pediatr Res. 2015;77(5):656‐662. 10.1038/pr.2015.27.
    1. Patel VB, Basu R, Oudit GY. ACE2/Ang 1‐7 axis: a critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte. 2016;5(3):306‐311. 10.1080/21623945.2015.1131881.
    1. Reich HN, Oudit GY, Penninger JM, Scholey JW, Herzenberg AM. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int. 2008;74(12):1610‐1616. 10.1038/ki.2008.497.
    1. Roca‐Ho H, Riera M, Palau V, Pascual J, Soler M. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563. 10.3390/ijms18030563.
    1. Tikellis C, Pickering R, Tsorotes D, et al. Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clin Sci. 2012;123(8):519‐529. 10.1042/CS20110668.
    1. Wang G, Lai FM, Lai KB, et al. Discrepancy between intrarenal messenger RNA and protein expression of ACE and ACE2 in human diabetic nephropathy. Am J Nephrol. 2009;29(6):524‐531. 10.1159/000185629.
    1. Chou CH, Chuang LY, Lu CY, Guh JY. Interaction between TGF‐β and ACE2‐Ang‐(1‐7)‐Mas pathway in high glucose‐cultured NRK‐52E cells. Mol Cell Endocrinol. 2013;366(1):21‐30. 10.1016/j.mce.2012.11.004.
    1. de Lang A, Osterhaus AD, Haagmans BL. Interferon‐gamma and interleukin‐4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology. 2006;353(2):474‐481. 10.1016/j.virol.2006.06.011.
    1. Takase O, Marumo T, Imai N, et al. NF‐kappaB‐dependent increase in intrarenal angiotensin II induced by proteinuria. Kidney Int. 2005;68(2):464‐473. 10.1111/j.1523-1755.2005.00424.x.
    1. Du F, Liu B, Zhang S. COVID‐19: the role of excessive cytokine release and potential ACE2 down‐regulation in promoting hypercoagulable state associated with severe illness. J Thromb Thrombolysis. 2021;51(2):313‐329. 10.1007/s11239-020-02224-2.
    1. Burrell LM, Risvanis J, Kubota E, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J. 2005;26(4):369‐375; discussion 322‐4. 10.1093/eurheartj/ehi114.
    1. Kittana N. Angiotensin‐converting enzyme 2‐Angiotensin 1‐7/1‐9 system: novel promising targets for heart failure treatment. Fundam Clin Pharmacol. 2018;32(1):14‐25. 10.1111/fcp.12318.
    1. Zisman LS, Keller RS, Weaver B, et al. Increased angiotensin‐(1‐7)‐forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin‐converting enzyme Homologue ACE2. Circulation. 2003;108(14):1707‐1712. 10.1161/01.CIR.0000094734.67990.99.
    1. Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM. Angiotensin II AT1 receptors regulate ACE2 and angiotensin‐(1‐7) expression in the aorta of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2005;289(3):H1013‐H1019. 10.1152/ajpheart.00068.2005.
    1. Keidar S, Gamliel‐Lazarovich A, Kaplan M, et al. Mineralocorticoid receptor blocker increases angiotensin‐converting enzyme 2 activity in congestive heart failure patients. Circ Res. 2005;97(9):946‐953. 10.1161/01.RES.0000187500.24964.7A.
    1. Sanchez‐Aguilar M, Ibarra‐Lara L, Del Valle‐Mondragon L, et al. Rosiglitazone, a Ligand to PPARγ, improves blood pressure and vascular function through renin‐angiotensin system regulation. PPAR Res. 2019;2019:1371758. 10.1155/2019/1371758.
    1. Shin YH, Min JJ, Lee JH, et al. The effect of fluvastatin on cardiac fibrosis and angiotensin‐converting enzyme‐2 expression in glucose‐controlled diabetic rat hearts. Heart Vessels. 2017;32(5):618‐627. 10.1007/s00380-016-0936-5.
    1. Vuille‐dit‐Bille RN, Camargo SM, Emmenegger L, et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE‐inhibitors. Amino Acids. 2015;47(4):693‐705. 10.1007/s00726-014-1889-6.
    1. Danser AHJ, Epstein M, Batlle D. Renin‐angiotensin system blockers and the COVID‐19 pandemic: at present there is no evidence to abandon renin‐angiotensin system blockers. Hypertension. 2020;75(6):1382–1385. 10.1161/HYPERTENSIONAHA.120.15082.
    1. South AM, Diz DI, Chappell MC. COVID‐19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318(5):H1084‐H1090. 10.1152/ajpheart.00217.2020.
    1. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus‐induced lung injury. Nat Med. 2005;11(8):875‐879. 10.1038/nm1267.
    1. Zhang S, Liu Y, Wang X, et al. SARS‐CoV‐2 binds platelet ACE2 to enhance thrombosis in COVID‐19. J Hematol Oncol. 2020;13(1):120. 10.1186/s13045-020-00954-7.
    1. Stewart CA, Gay CM, Ramkumar K, et al. SARS‐CoV‐2 infection induces EMT‐like molecular changes, including ZEB1‐mediated repression of the viral receptor ACE2, in lung cancer models. bioRxiv. 2020. 10.1101/2020.05.28.122291.
    1. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS‐CoV‐2 infection. Eur J Intern Med. 2020;76:14–20. 10.1016/j.ejim.2020.04.037.
    1. Imai Y, Kuba K, Rao S, et al. Angiotensin‐converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112‐116. 10.1038/nature03712.
    1. Zoufaly A, Poglitsch M, Aberle JH, et al. Human recombinant soluble ACE2 in severe COVID‐19. Lancet Respir Med. 2020;8(11):1154‐1158. 10.1016/S2213-2600(20)30418-5.
    1. Bosso M, Thanaraj TA, Abu‐Farha M, Alanbaei M, Abubaker J, Al‐Mulla F. The two faces of ACE2: the role of ACE2 receptor and its polymorphisms in hypertension and COVID‐19. Mol Ther Methods Clin Dev. 2020;18:321‐327. 10.1016/j.omtm.2020.06.017.
    1. Yang JK, Zhou JB, Xin Z, et al. Interactions among related genes of renin‐angiotensin system associated with type 2 diabetes. Diabetes Care. 2010;33(10):2271‐2273. 10.2337/dc10-0349.
    1. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID‐19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):216. 10.1186/s12916-020-01673-z.
    1. Yates AD, Achuthan P, Akanni W, et al. Ensembl 2020. Nucleic Acids Res. 2020;48(D1):D682‐D688. 10.1093/nar/gkz966.
    1. Pearson JV, Huentelman MJ, Halperin RF, et al. Identification of the genetic basis for complex disorders by use of pooling‐based genomewide single‐nucleotide‐polymorphism association studies. Am J Hum Genet. 2007;80(1):126‐139. 10.1086/510686.
    1. Burrell LM, Harrap SB, Velkoska E, Patel SK. The ACE2 gene: its potential as a functional candidate for cardiovascular disease. Clin Sci. 2013;124(2):65‐76. 10.1042/CS20120269.
    1. Patel SP, Raju PA. Gingival crevicular fluid and serum levels of resistin in obese and non‐obese subjects with and without periodontitis and association with single nucleotide polymorphism at ‐420. J Indian Soc Periodontol. 2014;18(5):555‐559. 10.4103/0972-124X.142438.
    1. Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS‐CoV‐2 and COVID‐19: the most important research questions. Cell Biosci. 2020;10:40. 10.1186/s13578-020-00404-4.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‐506. 10.1016/S0140-6736(20)30183-5.
    1. Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS‐CoV‐2, hypertension, multi‐organ failure, and COVID‐19 disease outcome. J Microbiol Immunol Infect = Wei mian yu gan ran za zhi. 2020;53(3):425‐435. 10.1016/j.jmii.2020.04.015.
    1. Luo Y, Liu C, Guan T, et al. Association of ACE2 genetic polymorphisms with hypertension‐related target organ damages in south Xinjiang. Hypertens Res. 2019;42(5):681‐689. 10.1038/s41440-018-0166-6.
    1. Zhang Q, Cong M, Wang N, et al. Association of angiotensin‐converting enzyme 2 gene polymorphism and enzymatic activity with essential hypertension in different gender: a case‐control study. Medicine. 2018;97(42):e12917. 10.1097/MD.0000000000012917.
    1. Liu PP, Blet A, Smyth D, Li H. The science underlying COVID‐19: implications for the cardiovascular system. Circulation. 2020;142(1):68‐78. 10.1161/CIRCULATIONAHA.120.047549.
    1. Ejaz H, Alsrhani A, Zafar A, et al. COVID‐19 and comorbidities: deleterious impact on infected patients. J Infect Public Health. 2020;13(12):1833‐1839. 10.1016/j.jiph.2020.07.014.
    1. Kruit A, Ruven HJ, Grutters JC, van den Bosch JM. Angiotensin‐converting enzyme 2 (ACE2) haplotypes are associated with pulmonary disease phenotypes in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22(3):195‐203.
    1. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID‐19) outbreak ‐ an update on the status. Mil Med Res. 2020;7(1):11. 10.1186/s40779-020-00240-0.
    1. Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019‐nCoV/SARS‐CoV‐2) receptor ACE2 in different populations. Cell Discov. 2020;6:11. 10.1038/s41421-020-0147-1.
    1. Menachery VD, Yount BL Jr, Debbink K, et al. A SARS‐like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21(12):1508‐1513. 10.1038/nm.3985.
    1. Wang J, Xu X, Zhou X, et al. Molecular simulation of SARS‐CoV‐2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection. J Gen Virol. 2020;101(9):921–924. 10.1099/jgv.0.001452.
    1. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID‐19: interleukin‐6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. 10.1016/j.ijantimicag.2020.105954.
    1. Martinez‐Sanz J, Jimenez D, Martinez‐Campelo L, et al. Role of ACE2 genetic polymorphisms in susceptibility to SARS‐CoV‐2 among highly exposed but non infected healthcare workers. Emerg Microbes Infect. 2021;10(1):493‐496. 10.1080/22221751.2021.1902755.
    1. Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM. Circulating activities of angiotensin‐converting enzyme, its homolog, angiotensin‐converting enzyme 2, and neprilysin in a family study. Hypertension. 2006;48(5):914‐920. 10.1161/01.HYP.0000244543.91937.79.
    1. Yang X, Schadt EE, Wang S, et al. Tissue‐specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995‐1004. 10.1101/gr.5217506.
    1. Zhong J, Yan Z, Liu D, et al. Association of angiotensin‐converting enzyme 2 gene A/G polymorphism and elevated blood pressure in Chinese patients with metabolic syndrome. J Lab Clin Med. 2006;147(2):91‐95. 10.1016/j.lab.2005.10.001.
    1. Wray S, Arrowsmith S. The physiological mechanisms of the sex‐based difference in outcomes of COVID19 infection. Front Physiol. 2021;12:627260. 10.3389/fphys.2021.627260.
    1. Viveiros A, Rasmuson J, Vu J, et al. Sex differences in COVID‐19: candidate pathways, genetics of ACE2, and sex hormones. Am J Physiol Heart Circ Physiol. 2021;320(1):H296‐H304. 10.1152/ajpheart.00755.2020.
    1. Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. Covid‐19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double x‐chromosome in females be protective against SARS‐COV‐2 compared to the single x‐chromosome in males?. Int J Mol Sci. 2020;21(10):3474. 10.3390/ijms21103474.
    1. Dhangadamajhi G, Mohapatra BN, Kar SK, Ranjit M. Gene polymorphisms in angiotensin I converting enzyme (ACE I/D) and angiotensin II converting enzyme (ACE2 C‐‐>T) protect against cerebral malaria in Indian adults. Infect Genet Evol. 2010;10(2):337‐341. 10.1016/j.meegid.2010.01.009.
    1. Inbar‐Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R. Basic concepts of epigenetics. Fertil Steril. 2013;99(3):607‐615. 10.1016/j.fertnstert.2013.01.117.
    1. Hombach S, Kretz M. Non‐coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3‐17. 10.1007/978-3-319-42059-2_1.
    1. Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol. 2018;837:8‐24. 10.1016/j.ejphar.2018.08.021.
    1. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5):a019133. 10.1101/cshperspect.a019133.
    1. Mukerjee S, Zhu Y, Zsombok A, Mauvais‐Jarvis F, Zhao J, Lazartigues E. Perinatal exposure to western diet programs autonomic dysfunction in the male offspring. Cell Mol Neurobiol. 2018;38(1):233‐242. 10.1007/s10571-017-0502-4.
    1. Fan R, Mao SQ, Gu TL, et al. Preliminary analysis of the association between methylation of the ACE2 promoter and essential hypertension. Mol Med Rep. 2017;15(6):3905‐3911. 10.3892/mmr.2017.6460.
    1. Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon‐regulated genes might suggest increased COVID‐19 susceptibility and severity in lupus patients. Clin Immunol. 2020;215:108410. 10.1016/j.clim.2020.108410.
    1. Zhao M, Liu S, Luo S, et al. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun. 2014;54:127‐136. 10.1016/j.jaut.2014.07.002.
    1. Chai P, Yu J, Ge S, Jia R, Fan X. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID‐19) receptor ACE2 in malignancies: a pan‐cancer analysis. J Hematol Oncol. 2020;13(1):43. 10.1186/s13045-020-00883-5.
    1. Thanou A, Sawalha AH. SARS‐CoV‐2 and systemic lupus erythematosus. Current Rheumatol Rep. 2021;23(2):8. 10.1007/s11926-020-00973-w.
    1. Yang L, Chai P, Yu J, Fan X. Effects of cancer on patients with COVID‐19: a systematic review and meta‐analysis of 63,019 participants. Cancer Biol Med. 2021;18(1):298‐307. 10.20892/j.issn.2095-3941.2020.0559.
    1. Tikoo K, Patel G, Kumar S, et al. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochem Pharmacol. 2015;93(3):343‐351. 10.1016/j.bcp.2014.11.013.
    1. Kawabe Y, Mori J, Morimoto H, et al. ACE2 exerts anti‐obesity effect via stimulating brown adipose tissue and induction of browning in white adipose tissue. Am J Physiol Endocrinol Metabol. 2019;317(6):E1140‐E1149. 10.1152/ajpendo.00311.2019.
    1. Li Y, Li H, Zhou L. EZH2‐mediated H3K27me3 inhibits ACE2 expression. Biochem. Biophys. Res. Commun. 2020;526(4):947‐952. 10.1016/j.bbrc.2020.04.010.
    1. Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID‐19. J Infect Dis. 2020;222(4):556–563. 10.1093/infdis/jiaa332.
    1. Liu Q, Du J, Yu X, et al. miRNA‐200c‐3p is crucial in acute respiratory distress syndrome. Cell Discov. 2017;3:17021. 10.1038/celldisc.2017.21.
    1. Lu D, Chatterjee S, Xiao K, et al. MicroRNAs targeting the SARS‐CoV‐2 entry receptor ACE2 in cardiomyocytes. J Mol Cell Cardiol. 2020;148:46‐49. 10.1016/j.yjmcc.2020.08.017.
    1. Zhang R, Su H, Ma X, et al. MiRNA let‐7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L547‐L557. 10.1152/ajplung.00387.2018.
    1. Fang Y, Gao F, Hao J, Liu Z. microRNA‐1246 mediates lipopolysaccharide‐induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin‐converting enzyme 2. Am J Transl Res. 2017;9(3):1287‐1296.
    1. Huang YF, Zhang Y, Liu CX, Huang J, Ding GH. microRNA‐125b contributes to high glucose‐induced reactive oxygen species generation and apoptosis in HK‐2 renal tubular epithelial cells by targeting angiotensin‐converting enzyme 2. Eur Rev Med Pharmacol Sci. 2016;20(19):4055‐4062.
    1. Lambert DW, Lambert LA, Clarke NE, Hooper NM, Porter KE, Turner AJ. Angiotensin‐converting enzyme 2 is subject to post‐transcriptional regulation by miR‐421. Clin Sci. 2014;127(4):243‐249. 10.1042/CS20130420.
    1. Trojanowicz B, Imdahl T, Ulrich C, Fiedler R, Girndt M. Circulating miR‐421 targeting leucocytic angiotensin converting enzyme 2 is elevated in patients with chronic kidney disease. Nephron. 2019;141(1):61‐74. 10.1159/000493805.
    1. Fernandes T, Hashimoto NY, Magalhaes FC, et al. Aerobic exercise training‐induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin‐converting enzyme‐angiotensin ii, and synergistic regulation of angiotensin‐converting enzyme 2‐angiotensin (1‐7). Hypertension. 2011;58(2):182‐189. 10.1161/HYPERTENSIONAHA.110.168252.
    1. Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ. Contribution of renin‐angiotensin system to exercise‐induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol. 2014;23(5):298‐305. 10.1016/j.carpath.2014.05.006.
    1. Kemp JR, Unal H, Desnoyer R, Yue H, Bhatnagar A, Karnik SS. Angiotensin II‐regulated microRNA 483‐3p directly targets multiple components of the renin‐angiotensin system. J Mol Cell Cardiol. 2014;75:25‐39. 10.1016/j.yjmcc.2014.06.008.
    1. Arthurs AL, Lumbers ER, Pringle KG. MicroRNA mimics that target the placental renin‐angiotensin system inhibit trophoblast proliferation. Mol Hum Reprod. 2019;25(4):218‐227. 10.1093/molehr/gaz010.
    1. Goyal R, Van‐Wickle J, Goyal D, Longo LD. Antenatal maternal low protein diet: ACE‐2 in the mouse lung and sexually dimorphic programming of hypertension. BMC Physiol. 2015;15:2. 10.1186/s12899-015-0016-6.
    1. Bozgeyik I. Therapeutic potential of miRNAs targeting SARS‐CoV‐2 host cell receptor ACE2. Meta Gene. 2021;27:100831. 10.1016/j.mgene.2020.100831.
    1. Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP. MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID‐19. Drugs. 2021;81(5):517–531. 10.1007/s40265-021-01474-5.
    1. Mukhopadhyay D, Mussa BM. Identification of novel hypothalamic microRNAs as promising therapeutics for SARS‐COV‐2 by regulating ACE2 and TMPRSS2 expression: an in silico analysis. Brain Sci.. 2020;10(10):666. 10.3390/brainsci10100666.
    1. Nersisyan S, Shkurnikov M, Turchinovich A, Knyazev E, Tonevitsky A. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PloS One. 2020;15(7):e0235987. 10.1371/journal.pone.0235987.
    1. Jia H. Pulmonary angiotensin‐converting enzyme 2 (ACE2) and inflammatory lung disease. Shock. 2016;46(3):239‐248. 10.1097/SHK.0000000000000633.
    1. Sarzi‐Puttini P, Giorgi V, Sirotti S, et al. COVID‐19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020;38(2):337‐342.
    1. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome ‐coronavirus‐2 (SARS‐CoV‐2; Coronavirus Disease‐19). Clin Exp Pediatr. 2020;63(4):119‐124. 10.3345/cep.2020.00493.
    1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein. Cell. 2020;181(2):281‐292.e6. 10.1016/j.cell.2020.02.058.
    1. Kaparianos A, Argyropoulou E. Local renin‐angiotensin II systems, angiotensin‐converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr Med Chem. 2011;18(23):3506‐3515. 10.2174/092986711796642562.
    1. Fan Z, Wu G, Yue M, et al. Hypertension and hypertensive left ventricular hypertrophy are associated with ACE2 genetic polymorphism. Life Sci. 2019;225:39‐45. 10.1016/j.lfs.2019.03.059.
    1. Malard L, Kakinami L, O'Loughlin J, et al. The association between the Angiotensin‐Converting Enzyme‐2 gene and blood pressure in a cohort study of adolescents. BMC Med Genet. 2013;14:117. 10.1186/1471-2350-14-117.
    1. Wang SX, Fu CY, Zou YB, et al. Polymorphisms of angiotensin‐converting enzyme 2 gene associated with magnitude of left ventricular hypertrophy in male patients with hypertrophic cardiomyopathy. Chin Med J (Engl). 2008;121(1):27‐31.
    1. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID‐19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363‐374. 10.1038/s41577-020-0311-8.
    1. Menachery VD, Eisfeld AJ, Schafer A, et al. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon‐stimulated gene responses. mBio. 2014;5(3):e01174. 10.1128/mBio.01174-14.
    1. Menachery VD, Schafer A, Burnum‐Johnson KE, et al. MERS‐CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc. Natl. Acad. Sci. U. S. A. 2018;115(5):E1012‐E1021. 10.1073/pnas.1706928115.
    1. Li S, Ma F, Yokota T, et al. Metabolic reprogramming and epigenetic changes of vital organs in SARS‐CoV‐2‐induced systemic toxicity. JCI Insight. 2021;6(2):e145027. 10.1172/jci.insight.145027.

Source: PubMed

3
Tilaa