Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach

Quinten Collier, Jelle Veraart, Ben Jeurissen, Floris Vanhevel, Pim Pullens, Paul M Parizel, Arnold J den Dekker, Jan Sijbers, Quinten Collier, Jelle Veraart, Ben Jeurissen, Floris Vanhevel, Pim Pullens, Paul M Parizel, Arnold J den Dekker, Jan Sijbers

Abstract

Purpose: Diffusion kurtosis imaging (DKI) is an advanced magnetic resonance imaging modality that is known to be sensitive to changes in the underlying microstructure of the brain. Image voxels in diffusion weighted images, however, are typically relatively large making them susceptible to partial volume effects, especially when part of the voxel contains cerebrospinal fluid. In this work, we introduce the "Diffusion Kurtosis Imaging with Free Water Elimination" (DKI-FWE) model that separates the signal contributions of free water and tissue, where the latter is modeled using DKI.

Theory and methods: A theoretical study of the DKI-FWE model, including an optimal experiment design and an evaluation of the relative goodness of fit, is carried out. To stabilize the ill-conditioned estimation process, a Bayesian approach with a shrinkage prior (BSP) is proposed. In subsequent steps, the DKI-FWE model and the BSP estimation approach are evaluated in terms of estimation error, both in simulation and real data experiments.

Results: Although it is shown that the DKI-FWE model parameter estimation problem is ill-conditioned, DKI-FWE was found to describe the data significantly better compared to the standard DKI model for a large range of free water fractions. The acquisition protocol was optimized in terms of the maximally attainable precision of the DKI-FWE model parameters. The BSP estimator is shown to provide reliable DKI-FWE model parameter estimates.

Conclusion: The combination of the DKI-FWE model with BSP is shown to be a feasible approach to estimate DKI parameters, while simultaneously eliminating free water partial volume effects. Magn Reson Med 80:802-813, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Keywords: Bayesian estimation; diffusion kurtosis imaging; free water elimination; partial volume effects; shrinkage prior.

© 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

Figures

Figure 1
Figure 1
Condition numbers in a real data slice for (a) the Diffusion Kurtosis Imaging (DKI) model and (b) the “Diffusion Kurtosis Imaging with Free Water Elimination” (DKI‐FWE) model. Panel (c) shows the histograms of the condition numbers of both the DKI and DKI‐FWE fit. Condition numbers larger than 15e4 have been set to 15e4 for visual clarity.
Figure 2
Figure 2
a: The maximum likelihood estimate of the probability of success Ps where the DKI‐FWE model is significantly better at describing the data compared to the standard DKI model for simulated data in function of the true free water signal fraction f. Colored bands indicate the 95% confidence interval (b) B0 image overlayed with the voxels where the DKI‐FWE model describes the data significantly better compared to the standard DKI model (red). Cerebrospinal fluid (CSF) regions are indicated with a green contour plot.
Figure 3
Figure 3
Error distributions of f (a), fractional anisotropy (FA) (b), mean diffusivity (MD) (c), and mean kurtosis (MK) (d), for 3 different diffusion model and estimation technique combinations: BSP with the DKI‐FWE model (solid blue), ML with the DKI‐FWE model (dashed red) and BSP with the standard DKI model (dotted yellow).
Figure 4
Figure 4
Real data maps of DKI‐FWE model metrics (f, FA, MD, and MK) using the BSP estimator.
Figure 5
Figure 5
Real data difference maps of DKI‐FWE model metrics (f, FA, MD, and MK) between the BSP estimator and the ML estimator.
Figure 6
Figure 6
Distribution of BSP estimator (blue) and ML estimator (orange) parameter estimates of a selection of four parameters from the DKI‐FWE model in a real human data set. CSF was masked out to make parameters representative of brain tissue.
Figure 7
Figure 7
Real data maps of DKI model metrics (FA, MD, and MK) using the BSP estimator.
Figure 8
Figure 8
Real data difference maps between the DKI‐FWE model and the DKI model in terms of their common model metrics (FA, MD, and MK). Both model parameters are estimated using the BSP estimator.

References

    1. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53:1432–40.
    1. Lu H, Jensen JH, Ramani A, Helpern JA. Three‐dimensional characterization of non‐Gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 2006;19:236–47.
    1. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–67.
    1. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534–546.
    1. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. Diffusion MRI of complex neural architecture. Neuron 2003;40:885–895.
    1. Jensen JH, Helpern JA. MRI quantification of non‐Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698–710.
    1. Cheung MM, Hui ES, Chan KC, Helpern JA, Qi L, Wu EX. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. NeuroImage 2009;45:386–392.
    1. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 2010;254:876–881.
    1. Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology 2012;263:492–501.
    1. Gong NJ, Wong CS, Chan CC, Leung LM, Chu YC. Correlations between microstructural alterations and severity of cognitive deficiency in Alzheimer's disease and mild cognitive impairment: a diffusional kurtosis imaging study. Magn Reson Imaging 2013;31:688–694.
    1. Wang JJ, Lin WY, Lu CS, Weng YH, Ng SH, Wang CH, Liu HL, Hsieh RH, Wan YL, Wai YY. Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 2011;261:210–217.
    1. Giannelli M, Toschi N, Passamonti L, et al. Response: diffusion kurtosis and diffusion‐tensor MR imaging in Parkinson disease. Radiology 2012;265:646–647.
    1. Blockx I, De Groof G, Verhoye M, Van Audekerke J, Raber K, Poot D, Sijbers J, Osmand AP, Von Hörsten S, Van der Linden A. Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. NeuroImage 2012;59:957–967.
    1. Gao Y, Zhang Y, Wong CS, Wu PM, Zhang Z, Gao J, Qiu D, Huang B. Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging. NMR Biomed 2012;25:1369–1377.
    1. Helpern JA, Adisetiyo V, Falangola MF, Hu C, Di Martino A, Williams K, Castellanos FX, Jensen JH. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention‐deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging 2011;33:17–23.
    1. Jiang Q, Qu C, Chopp M, et al. MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury. NMR Biomed 2011;24:1119–1128.
    1. Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, Gullapalli RP. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage 2012;59:467–477.
    1. Grossman EJ, Ge Y, Jensen JH, Babb JS, Miles L, Reaume J, Silver JM, Grossman RI, Inglese M. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma 2012;29:2318–2327.
    1. Jensen JH, Falangola MF, Hu C, Tabesh A, Rapalino O, Lo C, Helpern JA. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR Biomed 2011;24:452–7.
    1. Fung SH, Roccatagliata L, Gonzalez RG, Schaefer PW. MR diffusion imaging in ischemic stroke. Neuroimaging Clin N Am 2011;21:345–377.
    1. Hui ES, Du F, Huang S, Shen Q, Duong TQ. Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. Brain Res 2012;1451:100–109.
    1. Rudrapatna SU, Wieloch T, Beirup K, Ruscher K, Mol W, Yanev P, Leemans A, van der Toorn A, Dijkhuizen RM. Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology. NeuroImage 2014;97:363–373.
    1. Hori M, Aoki S, Fukunaga I, Suzuki Y, Masutani Y. A new diffusion metric, diffusion kurtosis imaging, used in the serial examination of a patient with stroke. Acta Radiol Short Rep 2012;1:2.
    1. Metzler‐Baddeley C, O'Sullivan MJ, Bells S, Pasternak O, Jones DK. How and how not to correct for CSF‐contamination in diffusion MRI. NeuroImage 2012;59:1394–403.
    1. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 2006;24:478–88.
    1. Chou MC, Lin YR, Huang TY, Wang CY, Chung HW, Juan CJ, Chen CY. FLAIR diffusion‐tensor MR tractography: comparison of fiber tracking with conventional imaging. Am J Neuroradiol 2005;26:591–597.
    1. Papadakis NG, Martin KM, Mustafa MH, Wilkinson ID, Griffiths PD, Huang CL, Woodruff PW. Study of the effect of CSF suppression on white matter diffusion anisotropy mapping of healthy human brain. Magn Reson Med 2002;48:394–398.
    1. Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, De Coene B, Lewis PD, Pennock JM, Oatridge A, Young IR, Bydder GM. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992;16:841–844.
    1. Andersson L, Bolling M, Wirestam R, Holtas S, Stahlberg F. Combined diffusion weighting and CSF suppression in functional MRI. NMR Biomed 2002;15:235–240.
    1. Pierpaoli C, Jones DK. Removing CSF contamination in brain DT‐MRIs by using a two‐compartment tensor model. In Proceedings of 12th Annual Meeting of ISMRM, Kyoto, Japan, 2004. p. 1215.
    1. Vallée E, Douaud G, Monsch AU, Gass A, Wu W, Smith SM, Jbabdi S. Modelling free water in diffusion MRI. In Proceedings of 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 0474.
    1. Pasternak O, Sochen N, Gur I, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med 2009;62:717–30.
    1. Collier Q, Veraart J, Jeurissen B, den Dekker AJ, Sijbers J. A theoretical study of the free water elimination model. In Proceedings of 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 1044.
    1. Poot DHJ, den Dekker AJ, Achten E, Verhoye M, Sijbers J. Optimal experimental design for diffusion kurtosis imaging. IEEE Trans Med Imaging 2010;29:819–29.
    1. Kiselev VG, Il'yasov KA. Is the “biexponential diffusion” biexponential? Magn Reson Med 2007;57:464–469.
    1. Kiselev VG. The cumulant expansion: an overarching mathematical framework for understanding diffusion NMR In: Jones DK, editor. Diffusion MRI: theory, methods, and applications. Oxford: Oxford University Press; 2010. pp. 152–168.
    1. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval‐Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497–505.
    1. Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 2014;71:411–20.
    1. While PT, Vidić I, Goa PE. A caveat to Bayesian estimation in intravoxel incoherent motion modelling. In Proceedings of 24th Annual Meeting of ISMRM, Singapore, 2016. p. 1049.
    1. While PT. A comparative simulation study of Bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion‐weighted MRI. Magn Reson Med 2017;78:2373–2387.
    1. Dietrich O, Raya JG, Reeder SB, Ingrisch M, Reiser MF, Schoenberg SO. Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn Reson Imaging 2008;26:754–762.
    1. den Dekker AJ, Sijbers J. Data distributions in magnetic resonance images: a review. Phys Med 2014;30:725–741.
    1. Sijbers J, den Dekker AJ, Scheunders P, Van Dyck D. Maximum‐likelihood estimation of Rician distribution parameters. IEEE Trans Med Imaging 1998;17:357–361.
    1. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910–914.
    1. Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two‐compartment model for diffusion tensor imaging. NeuroImage 2014;103:323–333.
    1. Dey DK, Rao CR. Bayesian thinking, modeling and computation, vol. 25 Houson: Gulf Professional Publishing, 2005.
    1. Bernardo JM, Smith AF. Bayesian theory. Bristol: IOP Publishing, 2001.
    1. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis, vol. 2 Boca Raton, FL: CRC Press, 2014.
    1. Kay SM. Fundamentals of statistical signal processing: estimation theory, vol. 1 Upper Saddle River, NJ: Pearson Education, 2013.
    1. Gilks WR, Richardson S, Spiegelhalter D. Markov chain Monte Carlo in practice. Boca Raton: CRC Press, 1995.
    1. MATLAB, The Mathworks Inc., Natick, Massachusetts. version 8.5.0.197613 (R2015a), 2015.
    1. Byrd RH, Schnabel RB, Shultz GA. Approximate solution of the trust region problem by minimization over two‐dimensional subspaces. Math Program 1988;40:247–263.
    1. Moré JJ, Sorensen DC. Computing a trust region step. SIAM J Sci Stat Comput 1983;4:553–572.
    1. van den Bos A. Parameter estimation for scientists and engineers. Hoboken, NJ: Wiley‐Interscience, 2007.
    1. Sijbers J, den Dekker AJ, Raman E, Van Dyck D. Parameter estimation from magnitude MR images. Int J Imaging Syst Technol 1999;10:109–114.
    1. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999;42:515–25.
    1. Papadakis NG, Murrills CD, Hall LD, Huang CLH, Carpenter TA. Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 2000;18:671–679.
    1. Veraart J, Novikov DS, Christiaens D, Ades‐aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. NeuroImage 2016;142:1–28.
    1. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs‐ringing artifact removal based on local subvoxel‐shifts. Magn Reson Med 2015;76:1574–1581.
    1. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging. NeuroImage 2003;20:870–888.
    1. Andersson JL, Sotiropoulos SN. An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging. NeuroImage 2015;125:1063–1078.
    1. Seber GAF, Wild CJ. Nonlinear regression. New York: Wiley, 1998.
    1. Cintrón‐Arias A, Banks HT, Capaldi A, Lloyd AL. A sensitivity matrix based methodology for inverse problem formulation. J Inverse Ill‐posed Probl 2009;17:545–565.
    1. Rodriguez‐Fernandez M, Mendes P, Banga JR. A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 2006;83:248–65.
    1. Trefethen lN, David B. Numerical linear algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997.
    1. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 2004;51:807–815.
    1. Veraart J, Sijbers J, Leemans A, Jeurissen B. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage 2013;81:335–346.
    1. Chuhutin A, Hansen B, Jespersen SN. Precision and accuracy of diffusion kurtosis estimation and the influence of b‐value selection. NMR Biomed 2017;30:1–14.
    1. Mood AM. Introduction to the theory of statistics. New York: McGraw‐Hill, 1950.
    1. Huelsenbeck JP, Crandall KA. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol Syst 1997;28:437–466.
    1. Byrd RH, Gilbert JC, Nocedal J. A trust region method based on interior point techniques for nonlinear programming. Math Program 2000;89:149–185.
    1. Byrd RH, Hribar ME, Nocedal J. An interior point algorithm for large‐scale nonlinear programming. SIAM J Optim 1999;9:877–900.
    1. Waltz RA, Morales JL, Nocedal J, Orban D. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 2006;107:391–408.
    1. Reisert M, Kellner E, Dhital B, Hennig J, Kiselev VG. Disentangling micro from mesostructure by diffusion MRI: a Bayesian approach. NeuroImage 2017;147:964–975.
    1. Veraart J, Novikov DS, Fieremans E. TE dependent diffusion imaging (TEdDI) distinguishes between compartmental T2 relaxation times. NeuroImage 2017. 10.1016/j.neuroimage.2017.09.030.
    1. Bender B, Klose U. Cerebrospinal fluid and interstitial fluid volume measurements in the human brain at 3T with EPI. Magn Reson Med 2009;61:834–841.
    1. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005;54:507–512.
    1. Atlas SW, editor. Magnetic resonance imaging of the brain and spine, vol. 1 Philadelphia: Lippincott Williams & Wilkins, 2009.
    1. Piechnik SK, Evans J, Bary LH, Wise RG, Jezzard P. Functional changes in CSF volume estimated using measurement of water T2 relaxation. Magn Reson Med 2009;61:579–586.
    1. Collier Q, Veraart J, den Dekker AJ, Vanhevel F, Parizel PM, Sijbers J. Solving the free water elimination estimation problem by incorporating T2 relaxation properties. In Proceedings of 25th Annual Meeting of ISMRM, Honolulu, Hawaii, USA, 2017. p. 1783.

Source: PubMed

3
Tilaa