The Role of B Cells and Antibodies in Multiple Sclerosis, Neuromyelitis Optica, and Related Disorders

Silke Häusser-Kinzel, Martin S Weber, Silke Häusser-Kinzel, Martin S Weber

Abstract

Our pathophysiological concept of the most common central nervous system demyelinating disease, multiple sclerosis, strikingly evolved by recent discoveries suggesting that B lymphocytes substantially contribute in its initiation and chronic propagation. In this regard, activated B cells are nowadays considered to act as important antigen-presenting cells for the activation of T cells and as essential source of pro-inflammatory cytokines. Hereby, they create a milieu in which other immune cells differentiate and join an orchestrated inflammatory infiltration of the CNS. Without a doubt, this scientific leap was critically pioneered by the empirical use of anti-CD20 antibodies in recent clinical MS trials, which revealed that the therapeutic removal of immature and mature B cells basically halted development of new inflammatory flares in otherwise relapsing MS patients. This stabilization occurred largely independent of any indirect effect on plasma cell-produced antibody levels. On the contrary, peripherally produced autoantibodies are probably the most important B cell component in two other CNS demyelinating diseases which are currently in the process of being delineated as separate disease entities. The first one is neuromyelitis optica in which an antibody response against aquaporin-4 targets and destroys astrocytes, the second, likely distinct entity embraces a group of patients containing antibodies against myelin oligodendrocyte glycoprotein. In this review, we will describe and summarize pro-inflammatory B cell properties in these three CNS demyelinating disorders; we will however also provide an overview on the emerging concept that B cells or B cell subsets may exert immunologically counterbalancing properties, which may be therapeutically desirable to maintain and foster in inflammatory CNS demyelination. In an outlook, we will discuss accordingly, how this potentially important aspect can be harnessed to advance future B cell-directed therapeutic approaches in multiple sclerosis and related diseases.

Keywords: B cells; anti-CD20 therapy; antigen-presenting cell; central nervous system; cytokine secretion; multiple sclerosis; neuromyelitis optica-spectrum disorders; regulatory B cells.

Figures

Figure 1
Figure 1
B cells, T cells, and myeloid cells shape each other's immune response via direct interaction and/or secretion of cytokines. (A) B cells encounter protein antigens specifically via their B cell receptor and present linearized peptides bound to the major histocompatibility complex (MHC) class II to T cells. Thereby, they act as efficient antigen-presenting cells and control the differentiation of T cells by the density of co-stimulatory molecules on their cell surface and the cytokine milieu they provide. In turn, this interaction fosters (B) the differentiation of B cells into antibody-producing plasma cells and memory B cells. B and plasma cells secrete pro- and anti-inflammatory cytokines, which affect the expression of co-stimulatory molecules and the production of chemokines/cytokines by myeloid antigen-presenting cells. Vice versa, myeloid cells have an impact on B cell activity through the secretion of distinct cytokines and chemokines. (C) Myeloid antigen-presenting cells, such as monocytes, macrophages, and dendritic cells internalize antigen randomly or opsonized antigen specifically via Fcγ receptors, process them, and present the linearized peptides via MHC class II to T cells. They are able to induce both pro- and anti-inflammatory T cells, controlled by the expression density of co-stimulatory molecules on myeloid APC and their distinct secretion of cytokines.

References

    1. Kinzel S, Weber MS. B cell-directed therapeutics in multiple sclerosis: rationale and clinical evidence. CNS Drugs (2016) 30:1137–48. 10.1007/s40263-016-0396-6
    1. Weber MS, Prod'homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, et al. . B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol. (2010) 68:369–83. 10.1002/ana.22081
    1. Weber MS, Hemmer B. Cooperation of B cells and T cells in the pathogenesis of multiple sclerosis. Results Probl Cell Differ. (2010) 51:115–26. 10.1007/400_2009_21
    1. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. (2006) 116:2385–92. 10.1172/JCI28330
    1. Pollinger B, Krishnamoorthy G, Berer K, Lassmann H, Bosl MR, Dunn R, et al. . Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med. (2009) 206:1303–16. 10.1084/jem.20090299
    1. Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod'homme T, Varrin-Doyer M, et al. . MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med. (2013) 210:2921–37. 10.1084/jem.20130699
    1. Grewal IS, Flavell RA. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev. (1996) 153:85–106. 10.1111/j.1600-065X.1996.tb00921.x
    1. Martin S, Agarwal R, Murugaiyan G, Saha B. CD40 expression levels modulate regulatory T cells in Leishmania donovani infection. J Immunol. (2010) 185:551–9. 10.4049/jimmunol.0902206
    1. Genc K, Dona DL, Reder AT. Increased CD80(+) B cells in active multiple sclerosis and reversal by interferon beta-1b therapy. J Clin Invest. (1997) 99:2664–71. 10.1172/JCI119455
    1. Mathias A, Perriard G, Canales M, Soneson C, Delorenzi M, Schluep M, et al. . Increased ex vivo antigen presentation profile of B cells in multiple sclerosis. Mult Scler. (2016) 23:802–9. 10.1177/1352458516664210
    1. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, et al. . Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. (2007) 178:6092–9. 10.4049/jimmunol.178.10.6092
    1. Harp C, Lee J, Lambracht-Washington D, Cameron E, Olsen G, Frohman E, et al. . Cerebrospinal fluid B cells from multiple sclerosis patients are subject to normal germinal center selection. J Neuroimmunol. (2007) 183:189–99. 10.1016/j.jneuroim.2006.10.020
    1. Harp CT, Ireland S, Davis LS, Remington G, Cassidy B, Cravens PD, et al. . Memory B cells from a subset of treatment-naive relapsing-remitting multiple sclerosis patients elicit CD4(+) T-cell proliferation and IFN-gamma production in response to myelin basic protein and myelin oligodendrocyte glycoprotein. Eur J Immunol. (2010) 40:2942–56. 10.1002/eji.201040516
    1. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. . Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature (2006) 441:235–8. 10.1038/nature04753
    1. Korn T, Mitsdoerffer M, Croxford AL, Awasthi A, Dardalhon VA, Galileos G, et al. . IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci USA. (2008) 105:18460–5. 10.1073/pnas.0809850105
    1. Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, et al. . B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med. (2012) 209:1001–10. 10.1084/jem.20111675
    1. Miyazaki Y, Li R, Rezk A, Misirliyan H, Moore C, Farooqi N, et al. A novel MicroRNA-132-Surtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis. PLoS ONE (2014) 9:e105421 10.1371/journal.pone.0105421
    1. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al. . Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. (2015) 7:310ra166. 10.1126/scitranslmed.aab4176
    1. Lehmann-Horn K, Schleich E, Hertzenberg D, Hapfelmeier A, Kumpfel T, von Bubnoff N, et al. . Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders. J Neuroinflammation (2011) 8:146. 10.1186/1742-2094-8-146
    1. Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest. (2008) 118:3420–30. 10.1172/JCI36030
    1. Fillatreau S, Sweenie CH, Mcgeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. (2002) 3:944–50. 10.1038/ni833
    1. Shen P, Roch T, Lampropoulou V, O'connor RA, Stervbo U, Hilgenberg E, et al. . IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature (2014) 507:366–370. 10.1038/nature12979
    1. Bjarnadottir K, Benkhoucha M, Merkler D, Weber MS, Payne NL, Bernard CC, et al. . B cell-derived transforming growth factor-beta1 expression limits the induction phase of autoimmune neuroinflammation. Sci Rep. (2016) 6:34594. 10.1038/srep34594
    1. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, et al. . Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood (2011) 117:530–41. 10.1182/blood-2010-07-294249
    1. Lehmann-Horn K, Kronsbein HC, Weber MS. Targeting B cells in the treatment of multiple sclerosis: recent advances and remaining challenges. Ther Adv Neurol Disord. (2013) 6:161–73. 10.1177/1756285612474333
    1. Lehmann-Horn K, Kinzel S, Weber M. Deciphering the role of B cells in multiple sclerosis—towards specific targeting of pathogenic function. Int J Mol Sci. (2017) 18:2048. 10.3390/ijms18102048
    1. Crofford LJ, Nyhoff LE, Sheehan JH, Kendall PL. The role of Bruton's tyrosine kinase in autoimmunity and implications for therapy. Exp Rev Clin Immunol. (2016) 12:763–73. 10.1586/1744666X.2016.1152888
    1. Menzfeld C, John M, Van Rossum D, Regen T, Scheffel J, Janova H, et al. . Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia (2015) 63:1083–99. 10.1002/glia.22803
    1. Satterthwaite AB, Cheroutre H, Khan WN, Sideras P, Witte ON. Btk dosage determines sensitivity to B cell antigen receptor cross-linking. Proc Natl Acad Sci USA. (1997) 94:13152–7. 10.1073/pnas.94.24.13152
    1. Whyburn LR, Halcomb KE, Contreras CM, Lowell CA, Witte ON, Satterthwaite AB. Reduced dosage of Bruton's Tyrosine Kinase Uncouples B Cell hyperresponsiveness from autoimmunity in lyn−/− mice. J Immunol. (2003) 171:1850–8. 10.4049/jimmunol.171.4.1850
    1. Kil LP, De Bruijn MJW, Van Nimwegen M, Corneth OBJ, Van Hamburg JP, Dingjan GM, et al. . Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood (2012) 119:3744–56. 10.1182/blood-2011-12-397919
    1. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. . The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci. (2010) 107:13075–80. 10.1073/pnas.1004594107
    1. Kabat EA, Freedman DA. A study of the crystalline albumin, gamma globulin and total protein in the cerebrospinal fluid of 100 cases of multiple sclerosis and in other diseases. Am J Med Sci. (1950) 219:55–64. 10.1097/00000441-195001000-00009
    1. Link H, Huang Y-M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol. (2006) 180:17–28. 10.1016/j.jneuroim.2006.07.006
    1. Siritho S, Freedman MS. The prognostic significance of cerebrospinal fluid in multiple sclerosis. J Neurolog Sci. (2009) 279:21–5. 10.1016/j.jns.2008.12.029
    1. Obermeier B, Mentele R, Malotka J, Kellermann J, Kumpfel T, Wekerle H, et al. . Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med. (2008) 14:688–93. 10.1038/nm1714
    1. Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest. (1998) 102:1045–50. 10.1172/JCI3568
    1. Beltrán E, Obermeier B, Moser M, Coret F, Simó-Castelló M, Boscá I, et al. . Intrathecal somatic hypermutation of IgM in multiple sclerosis and neuroinflammation. Brain (2014) 137:2703–14. 10.1093/brain/awu205
    1. Von Büdingen HC, Kuo TC, Sirota M, Van Belle CJ, Apeltsin L, Glanville J, et al. B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest. (2012) 122:4533–43. 10.1172/JCI63842
    1. Bankoti J, Apeltsin L, Hauser SL, Allen S, Albertolle ME, Witkowska HE, et al. . In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann Neurol. (2014) 75:266–76. 10.1002/ana.24088
    1. Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, et al. . Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med. (2014) 6:248ra106. 10.1126/scitranslmed.3008930
    1. Stern JNH, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, et al. . B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med. (2014) 6:248ra107. 10.1126/scitranslmed.3008879
    1. Genain CP, Cannella B, Hauser SL, Raine CS. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med. (1999) 5:170–5. 10.1038/5532
    1. Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, et al. . Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain (2012) 135:1819–33. 10.1093/brain/aws105
    1. Blauth K, Soltys J, Matschulat A, Reiter CR, Ritchie A, Baird NL, et al. . Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol. (2015) 130:765–81. 10.1007/s00401-015-1500-6
    1. Weber MS, Hemmer B, Cepok S. The role of antibodies in multiple sclerosis. Biochim Biophys Acta (2011) 1812:239–45. 10.1016/j.bbadis.2010.06.009
    1. Reiber H, Ungefehr S, Jacobi C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler. (1998) 4:111–7. 10.1177/135245859800400304
    1. Warren KG, Catz I. Relative frequency of autoantibodies to myelin basic protein and proteolipid protein in optic neuritis and multiple sclerosis cerebrospinal fluid. J Neurol Sci. (1994) 121:66–73. 10.1016/0022-510X(94)90158-9
    1. Brennan KM, Galban-Horcajo F, Rinaldi S, O'leary CP, Goodyear CS, Kalna G, et al. . Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. J Neuroimmunol. (2011) 238:87–95. 10.1016/j.jneuroim.2011.08.002
    1. Derfuss T, Parikh K, Velhin S, Braun M, Mathey E, Krumbholz M, et al. . Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc Natl Acad Sci USA. (2009) 106:8302–7. 10.1073/pnas.0901496106
    1. Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, et al. . Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. (2012) 367:115–23. 10.1056/NEJMoa1110740
    1. Ketelslegers IA, Van Pelt DE, Bryde S, Neuteboom RF, Catsman-Berrevoets CE, Hamann D, et al. . Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Mult Scler J. (2015) 21:1513–20. 10.1177/1352458514566666
    1. Pröbstel A-K, Kuhle J, Lecourt A-C, Vock I, Sanderson NSR, Kappos L, et al. . Multiple sclerosis and antibodies against KIR4.1. N Engl J Med. (2016) 374:1496–8. 10.1056/NEJMc1507131
    1. Spadaro M, Gerdes LA, Krumbholz M, Ertl-Wagner B, Thaler FS, Schuh E, et al. . Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. (2016) 3:e257. 10.1212/NXI.0000000000000257
    1. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. (2005) 202:473–7. 10.1084/jem.20050304
    1. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, et al. . Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain (2007) 130:1224–34. 10.1093/brain/awm047
    1. Agre P, Nielsen S. The aquaporin family of water channels in kidney. Nephrologie (1996) 17:409–15.
    1. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. (2013) 93:1543–62. 10.1152/physrev.00011.2013
    1. Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. (1995) 108:2993–3002.
    1. Nielsen S, Arnulf Nagelhus E, Amiry-Moghaddam M, Bourque C, Agre P, Petter Ottersen O. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. (1997) 17:171–80. 10.1523/JNEUROSCI.17-01-00171.1997
    1. Matiello M, Schaefer-Klein J, Sun D, Weinshenker BG. Aquaporin 4 expression and tissue susceptibility to neuromyelitis optica. JAMA Neurol. (2013) 70:1118–25. 10.1001/jamaneurol.2013.3124
    1. Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M, et al. . Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain (2010) 133:2578–91. 10.1093/brain/awq177
    1. Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. (2014) 24:83–97. 10.1111/bpa.12099
    1. Lucchinetti CF, Mandler RN, Mcgavern D, Bruck W, Gleich G, Ransohoff RM, et al. . A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain (2002) 125:1450–61. 10.1093/brain/awf151
    1. Wrzos C, Winkler A, Metz I, Kayser DM, Thal DR, Wegner C, et al. . Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions. Acta Neuropathol. (2014) 127:523–38. 10.1007/s00401-013-1220-8
    1. Levy M, Wildemann B, Jarius S, Orellano B, Sasidharan S, Weber MS, et al. . Immunopathogenesis of neuromyelitis optica. Adv Immunol. (2014) 121:213–42. 10.1016/B978-0-12-800100-4.00006-4
    1. Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, et al. . Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain (2007) 130:1235–43. 10.1093/brain/awm062
    1. Jarius S, Franciotta D, Paul F, Ruprecht K, Bergamaschi R, Rommer PS, et al. . Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. J Neuroinflamm. (2010) 7:52. 10.1186/1742-2094-7-52
    1. Kowarik MC, Astling D, Gasperi C, Wemlinger S, Schumann H, Dzieciatkowska M, et al. . CNS Aquaporin-4-specific B cells connect with multiple B-cell compartments in neuromyelitis optica spectrum disorder. Ann Clin Transl Neurol. (2017) 4:369–80. 10.1002/acn3.418
    1. Kitley J, Woodhall M, Waters P, Leite MI, Devenney E, Craig J, et al. . Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology (2012) 79:1273–7. 10.1212/WNL.0b013e31826aac4e
    1. Probstel AK, Rudolf G, Dornmair K, Collongues N, Chanson JB, Sanderson NS, et al. . Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype. J Neuroinflamm. (2015) 12:46. 10.1186/s12974-015-0256-1
    1. Sepulveda M, Armangue T, Martinez-Hernandez E, Arrambide G, Sola-Valls N, Sabater L, et al. . Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. J Neurol. (2016) 263:1349–60. 10.1007/s00415-016-8147-7
    1. Varrin-Doyer M, Shetty A, Spencer CM, Schulze-Topphoff U, Weber MS, Bernard CC, et al. . MOG transmembrane and cytoplasmic domains contain highly stimulatory T-cell epitopes in MS. Neurol Neuroimmunol Neuroinflamm. (2014) 1:e20. 10.1212/NXI.0000000000000020
    1. Bruno R, Sabater L, Sospedra M, Ferrer-Francesch X, Escudero D, Martinez-Caceres E, et al. . Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus. Eur J Immunol. (2002) 32:2737–47. 10.1002/1521-4141(2002010)32:10<2737::AID-IMMU2737>;2-0
    1. Shetty A, Gupta SG, Varrin-Doyer M, Weber MS, Prod'homme T, Molnarfi N, et al. . Immunodominant T-cell epitopes of MOG reside in its transmembrane and cytoplasmic domains in EAE. Neurol Neuroimmunol Neuroinflamm. (2014) 1:e22. 10.1212/NXI.0000000000000022
    1. Ikeda K, Kiyota N, Kuroda H, Sato DK, Nishiyama S, Takahashi T, et al. . Severe demyelination but no astrocytopathy in clinically definite neuromyelitis optica with anti-myelin-oligodendrocyte glycoprotein antibody. Mult Scler. (2015) 21:656–9. 10.1177/1352458514551455
    1. Kaneko K, Sato DK, Nakashima I, Nishiyama S, Tanaka S, Marignier R, et al. . Myelin injury without astrocytopathy in neuroinflammatory disorders with MOG antibodies. J Neurol Neurosurg Psychiatry (2016) 87:1257–9. 10.1136/jnnp-2015-312676
    1. Wang JJ, Jaunmuktane Z, Mummery C, Brandner S, Leary S, Trip SA. Inflammatory demyelination without astrocyte loss in MOG antibody-positive NMOSD. Neurology (2016) 87:229–31. 10.1212/WNL.0000000000002844
    1. Jurynczyk M, Messina S, Woodhall MR, Raza N, Everett R, Roca-Fernandez A, et al. . Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain (2017) 140:3128–38. 10.1093/brain/awx276
    1. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, et al. . MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflamm. (2016) 13:279. 10.1186/s12974-016-0717-1
    1. Weber MS, Derfuss T, Bruck W. Anti-myelin oligodendrocyte glycoprotein antibody-associated central nervous system demyelination-a novel disease entity? JAMA Neurol. (2018) 75:909–10. 10.1001/jamaneurol.2018.1055
    1. Flach AC, Litke T, Strauss J, Haberl M, Gomez CC, Reindl M, et al. . Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci USA. (2016) 113:3323–8. 10.1073/pnas.1519608113
    1. Kinzel S, Lehmann-Horn K, Torke S, Hausler D, Winkler A, Stadelmann C, et al. . Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathol. (2016) 132:43–58. 10.1007/s00401-016-1559-8
    1. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. . Structural and functional features of central nervous system lymphatic vessels. Nature (2015) 523:337–41. 10.1038/nature14432
    1. De Vos AF, Van Meurs M, Brok HP, Boven LA, Hintzen RQ, Van Der Valk P, et al. . Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol. (2002) 169:5415–23. 10.4049/jimmunol.169.10.5415
    1. Fabriek BO, Zwemmer JN, Teunissen CE, Dijkstra CD, Polman CH, Laman JD, et al. . In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology. J Neuroimmunol. (2005) 161:190–4. 10.1016/j.jneuroim.2004.12.018
    1. Weber MS, Menge T, Lehmann-Horn K, Kronsbein HC, Zettl U, Sellner J, et al. . Current treatment strategies for multiple sclerosis - efficacy versus neurological adverse effects. Curr Pharm Des. (2012) 18:209–19. 10.2174/138161212799040501
    1. Bruck W, Gold R, Lund BT, Oreja-Guevara C, Prat A, Spencer CM, et al. . Therapeutic decisions in multiple sclerosis: moving beyond efficacy. JAMA Neurol. (2013) 70:1315–24. 10.1001/jamaneurol.2013.3510
    1. Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T, et al. . CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflamm. (2012) 9:93. 10.1186/1742-2094-9-93
    1. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. . Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. (2007) 13:1173–5. 10.1038/nm1651
    1. Friese MA, Fugger L. Pathogenic CD8(+) T cells in multiple sclerosis. Ann Neurol. (2009) 66:132–41. 10.1002/ana.21744
    1. Kasper LH, Shoemaker J. Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology (2010) 74 (Suppl. 1):S2–8. 10.1212/WNL.0b013e3181c97c8f
    1. Prineas JW, Wright RG. Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Invest. (1978) 38:409–21.
    1. Martin Mdel P, Cravens PD, Winger R, Kieseier BC, Cepok S, Eagar TN, et al. . Depletion of B lymphocytes from cerebral perivascular spaces by rituximab. Arch Neurol. (2009) 66:1016–20. 10.1001/archneurol.2009.157
    1. Lassmann H. New concepts on progressive multiple sclerosis. Curr Neurol Neurosci Rep. (2007) 7:239–44. 10.1007/s11910-007-0036-0
    1. Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest. (2012) 122:1180–8. 10.1172/JCI58649
    1. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. (2004) 14:164–74. 10.1111/j.1750-3639.2004.tb00049.x
    1. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. . Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain (2007) 130:1089–104. 10.1093/brain/awm038
    1. Kramann N, Neid K, Menken L, Schlumbohm C, Stadelmann C, Fuchs E, et al. . Increased Meningeal T and plasma cell infiltration is associated with early subpial cortical demyelination in common marmosets with experimental autoimmune encephalomyelitis. Brain Pathol. (2015) 25:276–86. 10.1111/bpa.12180
    1. Lisak RP, Benjamins JA, Nedelkoska L, Barger JL, Ragheb S, Fan B, et al. . Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J Neuroimmunol. (2012) 246:85–95. 10.1016/j.jneuroim.2012.02.015
    1. Lisak RP, Nedelkoska L, Benjamins JA, Schalk D, Bealmear B, Touil H, et al. . B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol. (2017) 309:88–99. 10.1016/j.jneuroim.2017.05.004
    1. Araki M, Matsuoka T, Miyamoto K, Kusunoki S, Okamoto T, Murata M, et al. . Efficacy of the anti–IL-6 receptor antibody tocilizumab in neuromyelitis optica. A pilot study. Neurology (2014) 82:1302–6. 10.1212/WNL.0000000000000317
    1. Ringelstein M, Ayzenberg I, Harmel J, Lauenstein AS, Lensch E, Stögbauer F, et al. . Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. (2015) 72:756–63. 10.1001/jamaneurol.2015.0533
    1. Pittock SJ, Lennon VA, Mckeon A, Mandrekar J, Weinshenker BG, Lucchinetti CF, et al. . Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. (2013) 12:554–62. 10.1016/S1474-4422(13)70076-0

Source: PubMed

3
Tilaa