Neurotransmitters as food supplements: the effects of GABA on brain and behavior

Evert Boonstra, Roy de Kleijn, Lorenza S Colzato, Anneke Alkemade, Birte U Forstmann, Sander Nieuwenhuis, Evert Boonstra, Roy de Kleijn, Lorenza S Colzato, Anneke Alkemade, Birte U Forstmann, Sander Nieuwenhuis

Abstract

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.

Keywords: GABA; blood–brain barrier; cognition; enteric nervous system; food supplements.

Figures

FIGURE 1
FIGURE 1
The difference between capillaries as they are generally found in the body versus the ones in the brain and the possible ways for a substance to move across these capillaries.
FIGURE 2
FIGURE 2
GABA’s chemical structure.

References

    1. Abdou A. M., Higashiguchi S., Horie K., Kim M., Hatta H., Yokogoshi H. (2006). Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. Biofactors 26, 201–208. 10.1002/biof.5520260305
    1. Al-Sarraf H. (2002). Transport of 14C-γ-aminobutyric acid into brain, cerebrospinal fluid and choroid plexus in neonatal and adult rats. Dev. Brain Res. 139, 121–129. 10.1016/S0165-3806(02)00537-0
    1. Auteri M., Zizzo M. G., Serio R. (2015). GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol. Res. 93, 11–21. 10.1016/j.phrs.2014.12.001
    1. Barbeau A. (1973). G.A.B.A. and Huntington’s chorea. Lancet 2, 1499–1500. 10.1016/S0140-6736(73)92765-7
    1. Barrett E., Ross R. P., O’Toole P. W., Fitzgerald G. F., Stanton C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417. 10.1111/j.1365-2672.2012.05344.x
    1. Ben-Menachem E., Hamberger A., Hedner T., Hammond E. J., Uthman B. M., Slater J., et al. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 20, 221–227. 10.1016/0920-1211(94)00083-9
    1. Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108, 16050–16055. 10.1073/pnas.1102999108
    1. Brightman M. W., Reese T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677. 10.1083/jcb.40.3.648
    1. Cai K., Nanga R. P. R., Lamprou L., Schinstine C., Eliott M., Hariharan H., et al. (2012). The impact of gabapentin administration on brain GABA and glutamate concentrations: a 7T 1H-MRS study. Neuropsychopharmacology 37, 2764–2771. 10.1038/npp.2012.142
    1. Cryan J. F., O’Mahony S. M. (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Mot. 23, 187–192. 10.1111/j.1365-2982.2010.01664.x
    1. Cryan J. F., Dinan T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712. 10.1038/nrn3346
    1. Diana M., Quílez J., Rafecas M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. J. Funct. Foods 10, 407–420. 10.1016/j.jff.2014.07.004
    1. Draper A., Stephenson M. C., Jackson G. M., Pépés S., Morgan P. S., Morris P. G., et al. (2014). Increased GABA contributes to enhanced control over motor excitability in tourette syndrome. Curr. Biol. 24, 2343–2347. 10.1016/j.cub.2014.08.038
    1. Errante L. D., Williamson A., Spencer D. D., Petroff O. A. C. (2002). Gabapentin and vigabatrin increase GABA in the human neocortical slice. Epilepsy Res. 49, 201–210. 10.1016/S0920-1211(02)00034-7
    1. Fisher R., Norris J. W., Gilka L. (1974). G.A.B.A. and Huntington’s chorea. Lancet 1, 1347–1348. 10.1016/S0140-6736(74)90719-3
    1. Food and Drug Administration. (2008). Gamma-aminobutyric Acid GRAS Notice. Available at: (accessed September 26, 2015)
    1. Frey H.-H., Löscher W. (1980). Cetyl GABA: effect on convulsant thresholds in mice and acute toxicity. Neuropharmacology 19, 217–220. 10.1016/0028-3908(80)90141-0
    1. Gale K. (1989). GABA in epilepsy: the pharmacologic basis. Epilepsia 30, s1–s11. 10.1111/j.1528-1157.1989.tb05825.x
    1. Hawkins J. E., Sarett L. H. (1957). On the efficacy of asparagine, glutamine, γ-aminobutyric acid and 2-pyrrolidinone in preventing chemically induced seizures in mice. Clin. Chim. Acta 2, 481–484. 10.1016/0009-8981(57)90049-9
    1. Kakee A., Takanaga H., Terasaki T., Naito M., Tsuruo T., Sugiyama Y. (2001). Efflux of a suppressive neurotransmitter, GABA, across the blood–brain barrier. J. Neurochem. 79, 110–118. 10.1046/j.1471-4159.2001.00540.x
    1. Kanehira T., Yoshiko N., Nakamura K., Horie K., Horie N., Furugori K., et al. (2011). Relieving occupational fatigue by consumption of a beverage containing γ-amino butyric acid. J. Nutr. Sci. Vitaminol. 57, 9–15. 10.3177/jnsv.57.9
    1. Knudsen G. M., Poulsen H. E., Paulson O. B. (1988). Blood–brain barrier permeability in galactosamine-induced hepatic encephalopathy. J. Hepatol. 6, 187–192. 10.1016/S0168-8278(88)80030-8
    1. Kuriyama K., Sze P. Y. (1971). Blood–brain barrier to h3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology 10, 103–108. 10.1016/0028-3908(71)90013-X
    1. Lipinski C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249. 10.1016/S1056-8719(00)00107-6
    1. Logan A. C., Katzman M. (2005). Major depressive disorder: probiotics may be an adjuvant therapy. Med. Hypotheses 64, 533–538. 10.1016/j.mehy.2004.08.019
    1. Löscher W. (1981). Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. J. Neurochem. 36, 1521–1527. 10.1111/j.1471-4159.1981.tb00595.x
    1. Löscher W., Frey H.-H. (1982). Transport of GABA at the blood-CSF interface. J. Neurochem. 38, 1072–1079. 10.1111/j.1471-4159.1982.tb05350.x
    1. McLean M. J. (1994). Clinical pharmacokinetics of gabapentin. Neurology 44, 17–22.
    1. Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D., Nejdi A., et al. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nut. 105, 755–764. 10.1017/S0007114510004319
    1. Nakamura H., Takishima T., Kometani T., Yokogoshi H. (2009). Psychological stress-reducing effect of chocolate enriched with gamma-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A. Int. J. Food Sci. Nutr. 60, 106–113. 10.1080/09637480802558508
    1. Oh S.-H., Moon Y.-J., Oh C.-H. (2003). γ-Aminobutyric acid content in selected uncooked foods. Nutr. Food 8, 75–78. 10.3746/jfn.2003.8.1.075
    1. Pardridge W. M. (2005). The blood–brain barrier: bottleneck in brain drug development. Neurorx 2, 3–14. 10.1602/neurorx.2.1.3
    1. Pardridge W. M. (2007). Blood–brain barrier delivery. Drug Discov. Today 12, 54–61. 10.1016/j.drudis.2006.10.013
    1. Perry T. L., Hansen S., Kloster M. (1973). Huntington’s chorea—deficiency of γ-aminobutyric acid in brain. N. Engl. J. Med. 288, 337–342. 10.1056/NEJM197302152880703
    1. Petroff O. A. C. (2002). GABA and glutamate in the human brain. Neuroscientist 8, 562–573. 10.1177/1073858402238515
    1. Petroff O. A. C., Rothman D. L., Behar K. L., Mattson R. H. (1995). Initial observations on effect of vigabatrin on in vivo 1H spectroscopic measurements of γ-aminobutyric acid, glutamate, and glutamine in human brain. Epilepsia 36, 457–464. 10.1111/j.1528-1157.1995.tb00486.x
    1. Purves D., Augustine G. J., Fitzpatrick D., Hall W. C., LaMantia A.-S., McNamara J. O., et al. (eds). (2004). Neuroscience, 3rd Edn. Massachusetts, MA: Sinauer Associates.
    1. Rao A. V., Bested A. C., Beaulne T. M., Katzman M. A., Iorio C., Berardi J. M., et al. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathogens 1:6. 10.1186/1757-4749-1-6
    1. Roberts E., Lowe I. P., Guth L., Jelinek B. (1958). Distribution of γ-aminobutyric acid and other amino acids in nervous tissue of various species. J. Exp. Zool. 138, 313–328. 10.1002/jez.1401380207
    1. Roberts E., Kuriyama K. (1968). Biochemical-physiological correlations in studies of the γ-aminobutyric acid system. Brain Res. 8, 1–35. 10.1016/0006-8993(68)90170-4
    1. Shoulson I., Kartzinel R., Chase T. N. (1976). Huntington’s disease: treatment with dipropylacetic acid and gamma-aminobutyric acid. Neurology 26, 61–63. 10.1212/WNL.26.1.61
    1. Shukla A., Dikshit M., Srimal R. C. (1996). Nitric oxide-dependent blood–brain barrier permeability alteration in the rat brain. Experientia 52, 136–140. 10.1007/BF01923358
    1. Shyamaladevi N., Jayakumar A. R., Sujatha R., Paul V., Subramanian E. H. (2002). Evidence that nitric oxide production increases γ-amino butyric acid permeability of blood–brain barrier. Brain Res. Bull. 57, 231–236. 10.1016/S0361-9230(01)00755-9
    1. Steenbergen L., Sellaro R., Stock A.-K., Beste C., Colzato L. S. (2015a). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 25, 773–778. 10.1016/j.euroneuro.2015.03.015
    1. Steenbergen L., Sellaro R., van Hemert S., Bosch J. A., Colzato L. S. (2015b). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 48, 258–264. 10.1016/j.bbi.2015.04.003
    1. Steenbergen L., Sellaro R., Stock A.-K., Beste C., Colzato L. S. (2015c). γ-Aminobutyric acid (GABA) administration improves action selection processes: a randomised controlled trial. Sci. Rep. 5:12770. 10.1038/srep12770
    1. Takanaga H., Ohtsuki S., Hosoya K., Terasaki T. (2001). GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the Mouse Blood–Brain Barrier. J. Cereb. Blood Flow Metab. 21, 1232–1239. 10.1097/00004647-200110000-00012
    1. Thayer J. F., Sternberg E. M. (2009). Neural concomitants of immunity—Focus on the vagus nerve. Neuroimage 47, 908–910. 10.1016/j.neuroimage.2009.05.058
    1. Tower D. B. (1960). “The administration of gamma-aminobutyric acid to man: systemic effects and anticonvulsant action,” in Inhibition in the Nervous System and Gamma-Aminobutyric Acid, eds Roberts E., Baxter C. F., van Harreveld A., Wiersma C. A. G., Adey W. R., Killam K. F. (New York: Pergamon Press; ), 562–578.
    1. Van Gelder N. M., Elliott K. A. C. (1958). Disposition of γ-aminobutyric acid administered to mammals. J. Neurochem. 3, 139–143. 10.1111/j.1471-4159.1958.tb12620.x
    1. Van Leusden J. W. R., Sellaro R., Colzato L. S. (2015). Transcutaneous Vagal Nerve Stimulation (tVNS): a new neuro modulation tool in healthy humans? Front. Psychol. 6:102. 10.3389/fpsyg.2015.00102
    1. Verbruggen F., Logan G. D. (2008). Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 12, 418–424. 10.1016/j.tics.2008.07.005
    1. Vonck K., Raedt R., Naulaerts J., De Vogelaere F., Thiery E., Van Roost E., et al. (2014). Vagus nerve stimulation…25 years later! What do we know about the effects on cognition? Neurosci. Biobehav. Rev. 45, 63–71. 10.1016/j.neubiorev.2014.05.005
    1. Wood J. H., Hare T. A., Glaeser B. S., Ballenger J. C., Post R. M. (1979). Low cerebrospinal fluid γ-aminobutyric acid content in seizure patients. Neurology 29, 1203–1208. 10.1212/WNL.29.9_Part_1.1203
    1. Yoto A., Murao S., Motoki M., Yokoyama Y., Horie N., Takeshima K., et al. (2012). Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids 43, 1331–1337. 10.1007/s00726-011-1206-6

Source: PubMed

3
Tilaa