Current Status of Neuromodulation-Induced Cortical Prehabilitation and Considerations for Treatment Pathways in Lower-Grade Glioma Surgery

Ryan P Hamer, Tseng Tsai Yeo, Ryan P Hamer, Tseng Tsai Yeo

Abstract

The infiltrative character of supratentorial lower grade glioma makes it possible for eloquent neural pathways to remain within tumoural tissue, which renders complete surgical resection challenging. Neuromodulation-Induced Cortical Prehabilitation (NICP) is intended to reduce the likelihood of premeditated neurologic sequelae that otherwise would have resulted in extensive rehabilitation or permanent injury following surgery. This review aims to conceptualise current approaches involving Repetitive Transcranial Magnetic Stimulation (rTMS-NICP) and extraoperative Direct Cortical Stimulation (eDCS-NICP) for the purposes of inducing cortical reorganisation prior to surgery, with considerations derived from psychiatric, rehabilitative and electrophysiologic findings related to previous reports of prehabilitation. Despite the promise of reduced risk and incidence of neurologic injury in glioma surgery, the current data indicates a broad but compelling possibility of effective cortical prehabilitation relating to perisylvian cortex, though it remains an under-explored investigational tool. Preliminary findings may prove sufficient for the continued investigation of prehabilitation in small-volume lower-grade tumour or epilepsy patients. However, considering the very low number of peer-reviewed case reports, optimal stimulation parameters and duration of therapy necessary to catalyse functional reorganisation remain equivocal. The non-invasive nature and low risk profile of rTMS-NICP may permit larger sample sizes and control groups until such time that eDCS-NICP protocols can be further elucidated.

Keywords: awake brain mapping; cortical prehabilitation; direct cortical stimulation; lower grade glioma surgery; navigated transcranial magnetic stimulation; neural plasticity.

Conflict of interest statement

Hamer is a clinical consultant and distribution partner of Nexstim OYJ (Finalnd) and inomed medizintechnik gmbh (Germany), whom were not involved in the design or execution of this paper, nor has Hamer received honoraria or incentive of any description for the writing of this paper, which was written as part of his academic appointment at the University of Sydney. Yeo declares no conflict of interest.

Figures

Figure 1
Figure 1
Illustrative example of neuromodulation-induced cortical prehabilitation. (A) Placement of subdural electrode to confirm eloquent cortical topography prior to surgical debulking. (B) End of tumour debulking as distinguished by definition of electrophysiologic or anatomic boundaries, subdural electrode remains for eDCS-NICP towards the pars opercularis/pars triangularis indicated by pre-operative imaging and brain mapping during part-A. (C) rTMS-NICP setup targeting the same cortical region as a non-invasive alternative to extraoperative cortical stimulation. (D) Schematic diagram indicating positive speech related areas (red), and negative areas (green) relating to the lesion (grey oval) prior to NICP. (E) Schematic diagram indicating confirmation of functional reorganisation following NICP as measured by neuroimaging, TMS and/or DCS.

References

    1. Pascual-Leone A., Amedi A., Fregni F., Merabet L.B. The plastic human brain cortex. Annu. Rev. Neurosci. 2005;28:377–401. doi: 10.1146/annurev.neuro.27.070203.144216.
    1. Cirillo S., Caulo M., Pieri V., Falini A., Castellano A. Role of Functional Imaging Techniques to Assess Motor and Language Cortical Plasticity in Glioma Patients: A Systematic Review. Neural Plast. 2019;11:4056436. doi: 10.1155/2019/4056436.
    1. Carrera E., Tononi G. Diaschisis: Past, present, future. Pt 9Brain. 2014;137:2408–2422. doi: 10.1093/brain/awu101.
    1. Fornito A., Zalesky A., Breakspear M. The connectomics of brain disorders. Nat. Rev. Neurosci. 2015;16:159–172. doi: 10.1038/nrn3901.
    1. Herbet G., Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiol. Rev. 2020;100:1181–1228. doi: 10.1152/physrev.00033.2019.
    1. Ojemann G., Ojemann J., Lettich E., Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 1989;71:316–326. doi: 10.3171/jns.1989.71.3.0316.
    1. Tremblay P., Dick A.S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 2016;162:60–71. doi: 10.1016/j.bandl.2016.08.004.
    1. Duffau H. The error of Broca: From the traditional localizationist concept to a connectomal anatomy of human brain. J. Chem. Neuroanat. 2018;89:73–81. doi: 10.1016/j.jchemneu.2017.04.003.
    1. Hickok G., Poeppel D. Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92:67–99. doi: 10.1016/j.cognition.2003.10.011.
    1. Chang E.F., Raygor K.P., Berger M.S. Contemporary model of language organization: An overview for neurosurgeons. J. Neurosurg. 2015;122:250–261. doi: 10.3171/2014.10.JNS132647.
    1. Plaza M., Gatignol P., Leroy M., Duffau H. Speaking without Broca’s area after tumor resection. Neurocase. 2009;15:294–310. doi: 10.1080/13554790902729473.
    1. Duffau H., Capelle L., Denvil D., Sichez N., Gatignol P., Lopes M., Mitchell M.-C., Sichez J.-P., Van Effenterre R. Functional recovery after surgical resection of low grade gliomas in eloquent brain: Hypothesis of brain compensation. J. Neurol. Neurosurg. Psychiatry. 2003;74:901–907. doi: 10.1136/jnnp.74.7.901.
    1. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: Insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–486. doi: 10.1016/S1474-4422(05)70140-X.
    1. Duffau H. New concepts in surgery of WHO grade II gliomas: Functional brain mapping, connectionism and plasticity—A review. J. Neurooncol. 2006;79:77–115. doi: 10.1007/s11060-005-9109-6.
    1. Benzagmout M., Gatignol P., Duffau H. Resection of World Health Organization Grade II gliomas involving Broca’s area: Methodological and functional considerations. Neurosurgery. 2007;61:741–752. doi: 10.1227/01.NEU.0000298902.69473.77.
    1. Duffau H. What Direct Electrostimulation of the Brain Taught Us About the Human Connectome: A Three-Level Model of Neural Disruption. Front. Hum. Neurosci. 2020;14:315. doi: 10.3389/fnhum.2020.00315.
    1. Giussani C., Roux F.-E., Ojemann J., Sganzerla E.P., Pirillo D., Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66:113–120. doi: 10.1227/01.NEU.0000360392.15450.C9.
    1. Roux F.E., Boulanouar K., Ranjeva J.P., Tremoulet M., Henry P., Manelfe C., Sabatier J., Berry I. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir. 1999;141:71–79. doi: 10.1007/s007010050268.
    1. Lee M.H., Smyser C.D., Shimony J.S. Resting-state fMRI: A review of methods and clinical applications. AJNR Am. J. Neuroradiol. 2013;34:1866–1872. doi: 10.3174/ajnr.A3263.
    1. Korvenoja A., Kirveskari E., Aronen H.J., Avikainen S., Brander A., Huttunen J., Ilmoniemi R., Jääskeläinen J.E., Kovala T., Mäkelä J.P., et al. Sensorimotor cortex localization: Comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology. 2006;241:213–222. doi: 10.1148/radiol.2411050796.
    1. Schiffbauer H., Berger M.S., Ferrari P., Freudenstein D., Rowley H.A., Roberts T.P.L. Preoperative magnetic source imaging for brain tumor surgery: A quantitative comparison with intraoperative sensory and motor mapping. J. Neurosurg. 2002;97:1333–1342.
    1. Tarapore P.E., Martino J., Guggisberg A.G., Owen J., Honma S.M., Findlay A., Berger M.S., Kirsch H.E., Nagarajan S.S. Magnetoencephalographic imaging of resting-state functional connectivity predicts postsurgical neurological outcome in brain gliomas. Neurosurgery. 2012;71:1012–1022.
    1. Wagner T., Valero-Cabre A., Pascual-Leone A. Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 2007;9:527–565. doi: 10.1146/annurev.bioeng.9.061206.133100.
    1. Mills K.R., Murray N.M., Hess C.W. Magnetic and electrical transcranial brain stimulation: Physiological mechanisms and clinical applications. Neurosurgery. 1987;20:164–168.
    1. Haddad A.F., Young J.S., Berger M.S., Tarapore P.E. Preoperative Applications of Navigated Transcranial Magnetic Stimulation. Front. Neurol. 2021;11:628903. doi: 10.3389/fneur.2020.628903.
    1. Sollmann N., Krieg S.M., Säisänen L., Julkunen P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci. 2021;11:897. doi: 10.3390/brainsci11070897.
    1. Jeltema H.R., Ohlerth A.K., de Wit A., Wagemakers M., Rofes A., Bastiaanse R., Drost G. Comparing navigated transcranial magnetic stimulation mapping and “gold standard” direct cortical stimulation mapping in neurosurgery: A systematic review. Neurosurg. Rev. 2021;44:1903–1920. doi: 10.1007/s10143-020-01397-x.
    1. Krieg S., Ringel F., Meyer B. Functional guidance in intracranial tumor surgery. Perspect. Med. 2012;1:59–64. doi: 10.1016/j.permed.2012.03.014.
    1. Henderson F., Abdullah K.G., Verma R., Brem S. Tractography and the connectome in neurosurgical treatment of gliomas: The premise, the progress, and the potential. Neurosurg. Focus. 2020;48:E6. doi: 10.3171/2019.11.FOCUS19785.
    1. Krishna V., Sammartino F., Rezai A. A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment. JAMA Neurol. 2018;75:246–254. doi: 10.1001/jamaneurol.2017.3129.
    1. Smith J.S., Chang E.F., Lamborn K.R., Chang S.M., Prados M.D., Cha S., Tihan T., Vandenberg S., McDermott M.W., Berger M.S. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J. Clin. Oncol. 2008;26:1338–1345. doi: 10.1200/JCO.2007.13.9337.
    1. Keles G.E., Lundin D.A., Lamborn K.R., Chang E.F., Ojemann G., Berger M.S. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: Evaluation of morbidity and assessment of functional outcome in 294 patients. J. Neurosurg. 2004;100:369–375. doi: 10.3171/jns.2004.100.3.0369.
    1. Chaichana K.L., McGirt M.J., Niranjan A., Olivi A., Burger P.C., Quinones-Hinojosa A. Prognostic significance of contrast-enhancing low-grade gliomas in adults and a review of the literature. Neurol. Res. 2009;31:931–939. doi: 10.1179/174313209X395454.
    1. Xia L., Fang C., Chen G., Sun C. Relationship between the extent of resection and the survival of patients with low-grade gliomas: A systematic review and meta-analysis. BMC Cancer. 2018;18:48. doi: 10.1186/s12885-017-3909-x.
    1. Chaichana K.L., Jusue-Torres I., Navarro-Ramirez R., Raza S.M., Pascual-Gallego M., Ibrahim A., Hernandez-Hermann M., Gomez L., Ye X., Weingart J.D., et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16:113–122. doi: 10.1093/neuonc/not137.
    1. Keles G.E., Chang E.F., Lamborn K.R., Tihan T., Chang C.J., Chang S.M., Berger M.S. Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J. Neurosurg. 2006;105:34–40. doi: 10.3171/jns.2006.105.1.34.
    1. Lacroix M., Abi-Said D., Fourney D.R., Gokaslan Z.L., Shi W., Demonte F., Lang F.F., McCutcheon I.E., Hassenbusch S.J., Holland E., et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001;95:190–198. doi: 10.3171/jns.2001.95.2.0190.
    1. Lamborn K.R., Chang S.M., Prados M.D. Prognostic factors for survival of patients with glioblastoma: Recursive partitioning analysis. Neuro Oncol. 2004;6:227–235. doi: 10.1215/S1152851703000620.
    1. Jeremić B., Grulicić D., Samardzić M., Antunović V., Joksimović M., Djurić Lj Milicić B., Nikolić N. Uticaj obima resekcije tumora na ishod kombinovanog lecenja bolesnika s multiformnim glioblastomom [The effect of extent of tumor resection on the outcome of combined therapy in patients with glioblastoma multiforme] Srp. Arh. Celok. Lek. 1997;125:93–98.
    1. Stummer W., Reulen H.J., Meinel T., Pichlmeier U., Schumacher W., Tonn J.C., Rohde V., Oppel F., Turowski B., Woiciechowsky C., et al. Extent of resection and survival in glioblastoma multiforme: Identification of and adjustment for bias. Neurosurgery. 2008;62:564–576. doi: 10.1227/01.neu.0000317304.31579.17.
    1. Ushio Y., Kochi M., Hamada J., Kai Y., Nakamura H. Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurol. Med. Chir. 2005;45:454–460. doi: 10.2176/nmc.45.454.
    1. Duffau H. Can Non-invasive Brain Stimulation Be Considered to Facilitate Reoperation for Low-Grade Glioma Relapse by Eliciting Neuroplasticity? Front. Neurol. 2020;11:582489. doi: 10.3389/fneur.2020.582489.
    1. Obara T., Blonski M., Brzenczek C., Mézières S., Gaudeau Y., Pouget C., Gauchotte G., Verger A., Vogin G., Moureaux J.M., et al. Adult Diffuse Low-Grade Gliomas: 35-Year Experience at the Nancy France Neurooncology Unit. Front. Oncol. 2020;10:574–679. doi: 10.3389/fonc.2020.574679.
    1. Claus E.B., Walsh K.M., Wiencke J.K., Molinaro A.M., Wiemels J.L., Schildkraut J.M., Bondy M.L., Berger M., Jenkins R., Wrensch M. Survival and low-grade glioma: The emergence of genetic information. Neurosurg. Focus. 2015;38:E6. doi: 10.3171/2014.10.FOCUS12367.
    1. Gogos A.J., Young J.S., Morshed R.A., Hervey-Jumper S.L., Berger M.S. Awake glioma surgery: Technical evolution and nuances. J. Neurooncol. 2020;147:515–524. doi: 10.1007/s11060-020-03482-z.
    1. Sefcikova V., Sporrer J.K., Ekert J.O., Kirkman M.A., Samandouras G. High Interrater Variability in Intraoperative Language Testing and Interpretation in Awake Brain Mapping Among Neurosurgeons or Neuropsychologists: An Emerging Need for Standardization. World Neurosurg. 2020;141:e651–e660. doi: 10.1016/j.wneu.2020.05.250.
    1. Magill S.T., Han S.J., Li J., Berger M.S. Resection of primary motor cortex tumors: Feasibility and surgical outcomes. J. Neurosurg. 2018;129:961–972. doi: 10.3171/2017.5.JNS163045.
    1. Sanai N., Mirzadeh Z., Berger M.S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 2008;358:18–27. doi: 10.1056/NEJMoa067819.
    1. Gerritsen J.K.W., Viëtor C.L., Rizopoulos D., Schouten J.W., Klimek M., Dirven C.M.F., Vincent A.J.E. Awake craniotomy versus craniotomy under general anesthesia without surgery adjuncts for supratentorial glioblastoma in eloquent areas: A retrospective matched case-control study. Acta Neurochir. 2019;161:307–315. doi: 10.1007/s00701-018-03788-y.
    1. Bu L.H., Zhang J., Lu J.F., Wu J.S. Glioma surgery with awake language mapping versus generalized anesthesia: A systematic review. Neurosurg. Rev. 2021;44:1997–2011. doi: 10.1007/s10143-020-01418-9.
    1. Suarez-Meade P., Marenco-Hillembrand L., Prevatt C., Murguia-Fuentes R., Mohamed A., AlSaeed T., Lehrer E., Brigham T., Ruiz-Garcia H., Sabsevitz D., et al. Awake vs. asleep motor mapping for glioma resection: A systematic review and meta-analysis. Acta Neurochir. 2020;162:1709–1720. doi: 10.1007/s00701-020-04357-y.
    1. Kong N.W., Gibb W.R., Tate M.C. Neuroplasticity: Insights from Patients Harboring Gliomas. Neural Plast. 2016;2016:2365063. doi: 10.1155/2016/2365063.
    1. Duffau H., Lopes M., Arthuis F., Bitar A., Sichez J.P., Van Effenterre R., Capelle L. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: A comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J. Neurol. Neurosurg. Psychiatry. 2005;76:845–851. doi: 10.1136/jnnp.2004.048520.
    1. De Witt Hamer P.C., Robles S.G., Zwinderman A.H., Duffau H., Berger M.S. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: A meta-analysis. J. Clin. Oncol. 2012;30:2559–2565. doi: 10.1200/JCO.2011.38.4818.
    1. De Witt Hamer P.C., De Witt Hamer P.C., Klein M., Hervey-Jumper S.L., Wefel J.S., Berger M.S. Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery. 2021;88:720–732. doi: 10.1093/neuros/nyaa365.
    1. Brown T., Shah A.H., Bregy A., Shah N.H., Thambuswamy M., Barbarite E., Fuhrman T., Komotar R.J. Awake craniotomy for brain tumor resection: The rule rather than the exception? J. Neurosurg. Anesthesiol. 2013;25:240–247. doi: 10.1097/ANA.0b013e318290c230.
    1. Nakajima R., Kinoshita M., Yahata T., Nakada M. Recovery time from supplementary motor area syndrome: Relationship to postoperative day 7 paralysis and damage of the cingulum. J. Neurosurg. 2019;132:865–874. doi: 10.3171/2018.10.JNS182391.
    1. Hervey-Jumper S.L., Li J., Lau D., Molinaro A.M., Perry D.W., Meng L., Berger M.S. Awake craniotomy to maximize glioma resection: Methods and technical nuances over a 27-year period. J. Neurosurg. 2015;123:325–339. doi: 10.3171/2014.10.JNS141520.
    1. Kombos T., Süss O. Neurophysiological basis of direct cortical stimulation and applied neuroanatomy of the motor cortex: A review. Neurosurg. Focus. 2009;27:E3. doi: 10.3171/2009.8.FOCUS09141.
    1. Simon M.V., Sheth S.A., Eckhardt C.A., Kilbride R.D., Braver D., Williams Z., Curry W., Cahill D., Eskandar E.N. Phase reversal technique decreases cortical stimulation time during motor mapping. J. Clin. Neurosci. 2014;21:1011–1017. doi: 10.1016/j.jocn.2013.12.015.
    1. Kombos T., Suess O., Kern B.C., Funk T., Hoell T., Kopetsch O., Brock M. Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta Neurochir. 1999;141:1295–1301. doi: 10.1007/s007010050433.
    1. Kombos T., Suess O., Funk T., Kern B.C., Brock M. Intra-operative mapping of the motor cortex during surgery in and around the motor cortex. Acta Neurochir. 2000;142:263–268. doi: 10.1007/s007010050034.
    1. Szelényi A., Bello L., Duffau H., Fava E., Feigl G.C., Galanda M., Neuloh G., Signorelli F., Sala F., Workgroup for Intraoperative Management in Low-Grade Glioma Surgery within the European Low-Grade Glioma Network Intraoperative electrical stimulation in awake craniotomy: Methodological aspects of current practice. Neurosurg. Focus. 2010;28:E7. doi: 10.3171/2009.12.FOCUS09237.
    1. Bello L., Riva M., Fava E., Ferpozzi V., Castellano A., Raneri F., Pessina F., Bizzi A., Falini A., Cerri G. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol. 2014;16:1110–1128. doi: 10.1093/neuonc/not327.
    1. Rossi M., Sciortino T., Nibali M.C., Gay L., Viganò L., Puglisi G., Leonetti A., Howells H., Fornia L., Cerri G., et al. Clinical Pearls and Methods for Intraoperative Motor Mapping. Neurosurgery. 2021;88:457–467. doi: 10.1093/neuros/nyaa359.
    1. Bello L., Acerbi F., Giussani C., Baratta P., Taccone P., Songa V., Fava M., Stocchetti N., Papagno C., Gaini S.M. Intraoperative language localization in multilingual patients with gliomas. Neurosurgery. 2006;59:115–125. doi: 10.1227/01.NEU.0000219241.92246.FB.
    1. Bello L., Gallucci M., Fava M., Carrabba G., Giussani C., Acerbi F., Baratta P., Songa V., Conte V., Branca V., et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery. 2007;60:67–80. doi: 10.1227/.
    1. Riva M., Fava E., Gallucci M., Comi A., Casarotti A., Alfiero T., Raneri F.A., Pessina F., Bello L. Monopolar high-frequency language mapping: Can it help in the surgical management of gliomas? A comparative clinical study. J. Neurosurg. 2016;124:1479–1489. doi: 10.3171/2015.4.JNS14333.
    1. Verst S.M., de Aguiar P., Joaquim M., Vieira V.G., Sucena A., Maldaun M. Monopolar 250–500 Hz language mapping: Results of 41 patients. Clin. Neurophysiol. Pract. 2018;4:1–8. doi: 10.1016/j.cnp.2018.11.002.
    1. Pouratian N., Bookheimer S.Y. The reliability of neuroanatomy as a predictor of eloquence: A review. Neurosurg. Focus. 2010;28:E3. doi: 10.3171/2009.11.FOCUS09239.
    1. Penfield W., Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443. doi: 10.1093/brain/60.4.389.
    1. Ojemann G.A., Whitaker H.A. The bilingual brain. Arch. Neurol. 1978;35:409–412. doi: 10.1001/archneur.1978.00500310011002.
    1. Ojemann G.A. Functional mapping of cortical language areas in adults. Intraoperative approaches. Adv. Neurol. 1993;63:155–163.
    1. Berger M.S., Ojemann G.A. Intraoperative brain mapping techniques in neuro-oncology. Stereotact. Funct. Neurosurg. 1992;58:153–161. doi: 10.1159/000098989.
    1. Seidel K., Beck J., Stieglitz L., Schucht P., Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J. Neurosurg. 2013;118:287–296. doi: 10.3171/2012.10.JNS12895.
    1. Hamer R.P., Jain S., Teo C., Loh W.N., Chan H.M., Yeo T.T., Teo K. Optimizing the onco-functional balance in supratentorial brain tumour surgery: A single institution’s initial experience with intraoperative cortico-subcortical mapping and monitoring in Singapore. J. Clin. Neurosci. 2020;79:224–230. doi: 10.1016/j.jocn.2020.07.027.
    1. Szelényi A., Joksimovic B., Seifert V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J. Clin. Neurophysiol. 2007;24:39–43. doi: 10.1097/01.wnp.0000237073.70314.f7.
    1. Asimakidou E., Abut P.A., Raabe A., Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers. 2021;13:2803. doi: 10.3390/cancers13112803.
    1. Rossi M., Nibali M.C., Viganò L., Puglisi G., Howells H., Gay L., Sciortino T., Leonetti A., Riva M., Fornia L., et al. Resection of tumors within the primary motor cortex using high-frequency stimulation: Oncological and functional efficiency of this versatile approach based on clinical conditions. J. Neurosurg. 2019;9:1–13. doi: 10.3171/2019.5.JNS19453.
    1. Gogos A.J., Young J.S., Morshed R.A., Avalos L.N., Noss R.S., Villanueva-Meyer J.E., Hervey-Jumper S.L., Berger M.S. Triple motor mapping: Transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J. Neurosurg. 2020;134:1728–1737. doi: 10.3171/2020.3.JNS193434.
    1. Mandonnet E., Duffau H. An attempt to conceptualize the individual onco-functional balance: Why a standardized treatment is an illusion for diffuse low-grade glioma patients. Crit. Rev. Oncol./Hematol. 2018;122:83–91. doi: 10.1016/j.critrevonc.2017.12.008.
    1. Połczyńska M.M., Bookheimer S.Y. Factors Modifying the Amount of Neuroanatomical Overlap between Languages in Bilinguals-A Systematic Review of Neurosurgical Language Mapping Studies. Brain Sci. 2020;10:983. doi: 10.3390/brainsci10120983.
    1. Jain S., Chan H.M., Yeo T.T., Teo K. Language Mapping of Hindi and English in a Bilingual Patient During Resection of a Right Frontal Glioma. World Neurosurg. 2019;125:106–110. doi: 10.1016/j.wneu.2019.01.153.
    1. De Martino M., Talacchi A., Capasso R., Mazzotta A., Miceli G. Language Assessment in Multilingualism and Awake Neurosurgery. Front. Hum. Neurosci. 2021;15:750013. doi: 10.3389/fnhum.2021.750013.
    1. Landers M.J.F., Sitskoorn M.M., Rutten G.M., Mandonnet E., De Baene W. A systematic review of the use of subcortical intraoperative electrical stimulation mapping for monitoring of executive deficits and neglect: What is the evidence so far? Acta Neurochir. 2022;164:177–191. doi: 10.1007/s00701-021-05012-w.
    1. Samandouras G. Extended testing for cognition: Has awake brain mapping moved to the next level? Acta Neurochir. 2022;164:173–176. doi: 10.1007/s00701-021-05010-y.
    1. Erez Y., Assem M., Coelho P., Romero-Garcia R., Owen M., McDonald A., Woodberry E., Morris R.C., Price S.J., Suckling J., et al. Intraoperative mapping of executive function using electrocorticography for patients with low-grade gliomas. Acta Neurochir. 2021;163:1299–1309. doi: 10.1007/s00701-020-04646-6.
    1. Puglisi G., Sciortino T., Rossi M., Leonetti A., Fornia L., Conti Nibali M., Casarotti A., Pessina F., Riva M., Cerri G., et al. Preserving executive functions in nondominant frontal lobe glioma surgery: An intraoperative tool. J. Neurosurg. 2018;131:474–480. doi: 10.3171/2018.4.JNS18393.
    1. Wager M., Du Boisgueheneuc F., Pluchon C., Bouyer C., Stal V., Bataille B., Guillevin C.M., Gil R. Intraoperative monitoring of an aspect of executive functions: Administration of the Stroop test in 9 adult patients during awake surgery for resection of frontal glioma. Neurosurgery. 2013;72:ons169–ons180; discussion ons180–ons181. doi: 10.1227/NEU.0b013e31827bf1d6.
    1. Vallar G., Bello L., Bricolo E., Castellano A., Casarotti A., Falini A., Riva M., Fava E., Papagno C. Cerebral correlates of visuospatial neglect: A direct cerebral stimulation study. Hum. Brain Mapp. 2014;35:1334–1350. doi: 10.1002/hbm.22257.
    1. Nakada M., Nakajima R., Okita H., Nakade Y., Yuno T., Tanaka S., Kinoshita M. Awake surgery for right frontal lobe glioma can preserve visuospatial cognition and spatial working memory. J. Neurooncol. 2021;151:221–230. doi: 10.1007/s11060-020-03656-9.
    1. Herbet G., Duffau H. Contribution of the medial eye field network to the voluntary deployment of visuospatial attention. Nat. Commun. 2022;13:328. doi: 10.1038/s41467-022-28030-3.
    1. Motomura K., Chalise L., Ohka F., Aoki K., Tanahashi K., Hirano M., Nishikawa T., Wakabayashi T., Natsume A. Supratotal Resection of Diffuse Frontal Lower Grade Gliomas with Awake Brain Mapping, Preserving Motor, Language, and Neurocognitive Functions. World Neurosurg. 2018;119:30–39. doi: 10.1016/j.wneu.2018.07.193.
    1. Riva M., Casarotti A., Comi A., Pessina F., Bello L. Brain and Music: An Intraoperative Stimulation Mapping Study of a Professional Opera Singer. World Neurosurg. 2016;93:486.e13–486.e18. doi: 10.1016/j.wneu.2016.06.130.
    1. Dziedzic T.A., Bala A., Podgórska A., Piwowarska J., Marchel A. Awake intraoperative mapping to identify cortical regions related to music performance: Technical note. J. Clin. Neurosci. 2021;83:64–67. doi: 10.1016/j.jocn.2020.11.027.
    1. Delion M., Klinger E., Bernard F., Aubin G., Minassian A.T., Menei P. Immersing Patients in a Virtual Reality Environment for Brain Mapping During Awake Surgery: Safety Study. World Neurosurg. 2020;134:e937–e943. doi: 10.1016/j.wneu.2019.11.047.
    1. Sala F., Giampiccolo D., Cattaneo L. Novel Asleep Techniques for Intraoperative Assessment of Brain Connectivity. Front. Neurol. 2021;12:687030. doi: 10.3389/fneur.2021.687030.
    1. Giampiccolo D., Parmigiani S., Basaldella F., Russo S., Pigorini A., Rosanova M., Cattaneo L., Sala F. Recording cortico-cortical evoked potentials of the human arcuate fasciculus under general anaesthesia. Clin. Neurophysiol. 2021;132:1966–1973. doi: 10.1016/j.clinph.2021.03.044.
    1. Lefaucheur J.-P., André-Obadia N., Antal A., Ayache S.S., Baeken C., Benninger D., Cantello R.M., Cincotta M., De Carvalho M., De Ridder D., et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) Clin. Neurophysiol. 2014;125:2150–2206. doi: 10.1016/j.clinph.2014.05.021.
    1. Oliviero A., Carrasco-López M.C., Campolo M., Perez-Borrego Y.A., Soto-León V., Gonzalez-Rosa J.J., Higuero A.M., Strange B.A., Abad-Rodriguez J., Foffani G. Safety Study of Transcranial Static Magnetic Field Stimulation (tSMS) of the Human Cortex. Brain Stimul. 2015;8:481–485. doi: 10.1016/j.brs.2014.12.002.
    1. Tarkiainen A., Liljeström M., Seppä M., Salmelin R. The 3D topography of MEG source localization accuracy: Effects of conductor model and noise. Clin. Neurophysiol. 2003;114:1977–1992. doi: 10.1016/S1388-2457(03)00195-0.
    1. He W., Fong P.Y., Leung T.W.H., Huang Y.Z. Protocols of non-invasive brain stimulation for neuroplasticity induction. Neurosci. Lett. 2020;719:133437. doi: 10.1016/j.neulet.2018.02.045.
    1. Kim H.K., Blumberger D.M., Downar J., Daskalakis Z.J. Systematic review of biological markers of therapeutic repetitive transcranial magnetic stimulation in neurological and psychiatric disorders. Clin. Neurophysiol. 2021;132:429–448. doi: 10.1016/j.clinph.2020.11.025.
    1. Picht T., Schulz J., Hanna M., Schmidt S., Suess O., Vajkoczy P. Assessment of the influence of navigated transcranial magnetic stimulation on surgical planning for tumors in or near the motor cortex. Neurosurgery. 2012;70:1248–1256. doi: 10.1227/NEU.0b013e318243881e.
    1. Frey D., Schilt S., Strack V., Zdunczyk A., Rösler J., Niraula B., Vajkoczy P., Picht T. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro Oncol. 2014;16:1365–1372. doi: 10.1093/neuonc/nou110.
    1. Sollmann N., Ille S., Hauck T., Maurer S., Negwer C., Zimmer C., Ringel F., Meyer B., Krieg S.M. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients. BMC Cancer. 2015;15:261. doi: 10.1186/s12885-015-1299-5.
    1. Raffa G., Conti A., Scibilia A., Cardali S.M., Esposito F., Angileri F.F., La Torre D., Sindorio C., Abbritti R.V., Germanò A., et al. The Impact of Diffusion Tensor Imaging Fiber Tracking of the Corticospinal Tract Based on Navigated Transcranial Magnetic Stimulation on Surgery of Motor-Eloquent Brain Lesions. Neurosurgery. 2018;83:768–782. doi: 10.1093/neuros/nyx554.
    1. Raffa G., Picht T., Angileri F.F., Youssef M., Conti A., Esposito F., Cardali S.M., Vajkoczy P., Germanò A. Surgery of malignant motor-eloquent gliomas guided by sodium-fluorescein and navigated transcranial magnetic stimulation: A novel technique to increase the maximal safe resection. J. Neurosurg. Sci. 2019;63:670–678. doi: 10.23736/S0390-5616.19.04710-6.
    1. Krieg S.M., Sollmann N., Obermueller T., Sabih J., Bulubas L., Negwer C., Moser T., Droese D., Boeckh-Behrens T., Ringel F., et al. Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation. BMC Cancer. 2015;15:231. doi: 10.1186/s12885-015-1258-1.
    1. Krieg S.M., Sabih J., Bulubasova L., Obermueller T., Negwer C., Janssen I., Shiban E., Meyer B., Ringel F. Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro Oncol. 2014;16:1274–1282. doi: 10.1093/neuonc/nou007.
    1. Tarapore P.E., Tate M.C., Findlay A.M., Honma S.M., Mizuiri D., Berger M.S., Nagarajan S.S. Preoperative multimodal motor mapping: A comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J. Neurosurg. 2012;117:354–362. doi: 10.3171/2012.5.JNS112124.
    1. Sollmann N., Negwer C., Tussis L., Hauck T., Ille S., Maurer S., Giglhuber K., Bauer J.S., Ringel F., Meyer B., et al. Interhemispheric connectivity revealed by diffusion tensor imaging fiber tracking derived from navigated transcranial magnetic stimulation maps as a sign of language function at risk in patients with brain tumors. J. Neurosurg. 2017;126:222–233. doi: 10.3171/2016.1.JNS152053.
    1. Sollmann N., Zhang H., Fratini A., Wildschuetz N., Ille S., Schröder A., Zimmer C., Meyer B., Krieg S.M. Risk Assessment by Presurgical Tractography Using Navigated TMS Maps in Patients with Highly Motor- or Language-Eloquent Brain Tumors. Cancers. 2020;12:1264. doi: 10.3390/cancers12051264.
    1. Raffa G., Scibilia A., Conti A., Ricciardo G., Rizzo V., Morelli A., Angileri F.F., Cardali S.M., Germanò A. The role of navigated transcranial magnetic stimulation for surgery of motor-eloquent brain tumors: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2019;180:7–17. doi: 10.1016/j.clineuro.2019.03.003.
    1. Seidel K., Häni L., Lutz K., Zbinden C., Redmann A., Consuegra A., Raabe A., Schucht P. Postoperative navigated transcranial magnetic stimulation to predict motor recovery after surgery of tumors in motor eloquent areas. Clin. Neurophysiol. 2019;130:952–959. doi: 10.1016/j.clinph.2019.03.015.
    1. Rosenstock T., Picht T., Schneider H., Vajkoczy P., Thomale U.W. Pediatric navigated transcranial magnetic stimulation motor and language mapping combined with diffusion tensor imaging tractography: Clinical experience. J. Neurosurg. Pediatr. 2020;24:583–593. doi: 10.3171/2020.4.PEDS20174.
    1. Rosenstock T., Tuncer M.S., Münch M.R., Vajkoczy P., Picht T., Faust K. Preoperative nTMS and Intraoperative Neurophysiology—A Comparative Analysis in Patients with Motor-Eloquent Glioma. Front. Oncol. 2021;11:676626. doi: 10.3389/fonc.2021.676626.
    1. Lavrador J.P., Gioti I., Hoppe S., Jung J., Patel S., Gullan R., Ashkan K., Bhangoo R., Vergani F. Altered Motor Excitability in Patients with Diffuse Gliomas Involving Motor Eloquent Areas: The Impact of Tumor Grading. Neurosurgery. 2020;88:183–192. doi: 10.1093/neuros/nyaa354.
    1. Ille S., Sollmann N., Butenschoen V.M., Meyer B., Ringel F., Krieg S.M. Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery. Acta Neurochir. 2016;158:2265–2275. doi: 10.1007/s00701-016-2968-0.
    1. Maurer S., Giglhuber K., Sollmann N., Kelm A., Ille S., Hauck T., Tanigawa N., Ringel F., Boeckh-Behrens T., Meyer B., et al. Non-invasive Mapping of Face Processing by Navigated Transcranial Magnetic Stimulation. Front. Hum. Neurosci. 2017;11:4. doi: 10.3389/fnhum.2017.00004.
    1. Raffa G., Quattropani M.C., Marzano G., Curcio A., Rizzo V., Sebestyén G., Tamás V., Büki A., Germanò A. Mapping and Preserving the Visuospatial Network by repetitive nTMS and DTI Tractography in Patients with Right Parietal Lobe Tumors. Front. Oncol. 2021;11:677172. doi: 10.3389/fonc.2021.677172.
    1. Giglhuber K., Maurer S., Zimmer C., Meyer B., Krieg S.M. Mapping visuospatial attention: The greyscales task in combination with repetitive navigated transcranial magnetic stimulation. BMC Neurosci. 2018;19:40. doi: 10.1186/s12868-018-0440-1.
    1. Salatino A., Chillemi G., Gontero F., Poncini M., Pyasik M., Berti A., Ricci R. Transcranial Magnetic Stimulation of Posterior Parietal Cortex Modulates Line-Length Estimation but Not Illusory Depth Perception. Front. Psychol. 2019;10:1169. doi: 10.3389/fpsyg.2019.01169.
    1. Bodart O., Amico E., Gómez F., Casali A.G., Wannez S., Heine L., Thibaut A., Annen J., Boly M., Casarotto S., et al. Global structural integrity and effective connectivity in patients with disorders of consciousness. Brain Stimul. 2018;11:358–365. doi: 10.1016/j.brs.2017.11.006.
    1. Baro V., Caliri S., Sartori L., Facchini S., Guarrera B., Zangrossi P., Anglani M., Denaro L., D’Avella D., Ferreri F., et al. Preoperative Repetitive Navigated TMS and Functional White Matter Tractography in a Bilingual Patient with a Brain Tumor in Wernike Area. Brain Sci. 2021;11:557. doi: 10.3390/brainsci11050557.
    1. Krieg S.M., Sollmann N., Hauck T., Ille S., Foerschler A., Meyer B., Ringel F. Functional language shift to the right hemisphere in patients with language-eloquent brain tumors. PLoS ONE. 2013;8:e75403. doi: 10.1371/journal.pone.0075403.
    1. Cargnelutti E., Ius T., Skrap M., Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. Neuroimage Clin. 2020;28:102435. doi: 10.1016/j.nicl.2020.102435.
    1. Lang S., Gan L.S., McLennan C., Kirton A., Monchi O., Kelly J.J.P. Preoperative Transcranial Direct Current Stimulation in Glioma Patients: A Proof of Concept Pilot Study. Front. Neurol. 2020;11:593950. doi: 10.3389/fneur.2020.593950.
    1. Hoogendam J.M., Ramakers G.M., Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010;3:95–118. doi: 10.1016/j.brs.2009.10.005.
    1. Fitzgerald P.B., George M.S., Pridmore S. The evidence is in: Repetitive transcranial magnetic stimulation is an effective, safe and well-tolerated treatment for patients with major depressive disorder. Aust. N. Z. J. Psychiatry. 2021:48674211043047. doi: 10.1177/00048674211043047.
    1. Nguyen T.D., Hieronymus F., Lorentzen R., McGirr A., Østergaard S.D. The efficacy of repetitive transcranial magnetic stimulation (rTMS) for bipolar depression: A systematic review and meta-analysis. J. Affect. Disord. 2021;279:250–255. doi: 10.1016/j.jad.2020.10.013.
    1. Cirillo P., Gold A.K., Nardi A.E., Ornelas A.C., Nierenberg A.A., Camprodon J., Kinrys G. Transcranial magnetic stimulation in anxiety and trauma-related disorders: A systematic review and meta-analysis. Brain Behav. 2019;9:e01284. doi: 10.1002/brb3.1284.
    1. Nardone R., Versace V., Sebastianelli L., Brigo F., Christova M., Scarano G.I., Saltuari L., Trinka E., Hauer L., Sellner J. Transcranial magnetic stimulation in subjects with phantom pain and non-painful phantom sensations: A systematic review. Brain Res. Bull. 2019;148:1–9. doi: 10.1016/j.brainresbull.2019.03.001.
    1. Dong C., Chen C., Wang T., Gao C., Wang Y., Guan X., Dong X. Low-Frequency Repetitive Transcranial Magnetic Stimulation for the Treatment of Chronic Tinnitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biomed. Res. Int. 2020;2020:3141278. doi: 10.1155/2020/3141278.
    1. Liang Z., Yang H., Cheng G., Huang L., Zhang T., Jia H. Repetitive transcranial magnetic stimulation on chronic tinnitus: A systematic review and meta-analysis. BMC Psychiatry. 2020;20:547. doi: 10.1186/s12888-020-02947-9.
    1. Yang C.C., Khalifa N., Völlm B. The effects of repetitive transcranial magnetic stimulation on empathy: A systematic review and meta-analysis. Psychol. Med. 2018;48:737–750. doi: 10.1017/S003329171700232X.
    1. Sun N., He Y., Wang Z., Zou W., Liu X. The effect of repetitive transcranial magnetic stimulation for insomnia: A systematic review and meta-analysis. Sleep Med. 2021;77:226–237. doi: 10.1016/j.sleep.2020.05.020.
    1. Nardone R., Versace V., Sebastianelli L., Brigo F., Golaszewski S., Christova M., Saltuari L., Trinka E. Transcranial magnetic stimulation and bladder function: A systematic review. Clin. Neurophysiol. 2019;130:2032–2037. doi: 10.1016/j.clinph.2019.08.020.
    1. Zhang J.J.Q., Fong K.N.K., Ouyang R.G., Siu A.M.H., Kranz G.S. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: A systematic review and meta-analysis. Addiction. 2019;114:2137–2149. doi: 10.1111/add.14753.
    1. Taib S., Ory-Magne F., Brefel-Courbon C., Moreau Y., Thalamas C., Arbus C., Simonetta-Moreau M. Repetitive transcranial magnetic stimulation for functional tremor: A randomized, double-blind, controlled study. Mov. Disord. 2019;34:1210–1219. doi: 10.1002/mds.27727.
    1. Nardone R., Brigo F., Höller Y., Sebastianelli L., Versace V., Saltuari L., Lochner P., Trinka E. Transcranial magnetic stimulation studies in complex regional pain syndrome type I: A review. Acta Neurol. Scand. 2018;137:158–164. doi: 10.1111/ane.12852.
    1. Attia M., McCarthy D., Abdelghani M. Repetitive Transcranial Magnetic Stimulation for Treating Chronic Neuropathic Pain: A Systematic Review. Curr. Pain Headache Rep. 2021;25:48. doi: 10.1007/s11916-021-00960-5.
    1. Jiang X., Yan W., Wan R., Lin Y., Zhu X., Song G., Zheng K., Wang Y., Wang X. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021;132:130–141. doi: 10.1016/j.neubiorev.2021.11.037.
    1. Naro A., Milardi D., Russo M., Terranova C., Rizzo V., Cacciola A., Marino S., Calabro R.S., Quartarone A. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain. Front. Hum. Neurosci. 2016;10:376. doi: 10.3389/fnhum.2016.00376.
    1. Salazar A.P.S., Vaz P.G., Marchese R.R., Stein C., Pinto C., Pagnussat A.S. Noninvasive Brain Stimulation Improves Hemispatial Neglect After Stroke: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2018;99:355–366. doi: 10.1016/j.apmr.2017.07.009.
    1. Cooper Y.A., Pianka S.T., Alotaibi N.M., Babayan D., Salavati B., Weil A.G., Ibrahim G.M., Wang A.C., Fallah A. Repetitive transcranial magnetic stimulation for the treatment of drug-resistant epilepsy: A systematic review and individual participant data meta-analysis of real-world evidence. Epilepsia Open. 2017;3:55–65. doi: 10.1002/epi4.12092.
    1. Liang K., Li H., Bu X., Li X., Cao L., Liu J., Gao Y., Li B., Qiu C., Bao W., et al. Efficacy and tolerability of repetitive transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder in adults: A systematic review and network meta-analysis. Transl. Psychiatry. 2021;11:332. doi: 10.1038/s41398-021-01453-0.
    1. Dong X., Yan L., Huang L., Guan X., Dong C., Tao H., Wang T., Qin X., Wan Q. Repetitive transcranial magnetic stimulation for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2018;13:e0205704. doi: 10.1371/journal.pone.0205704.
    1. Prikryl R. Repetitive transcranial magnetic stimulation and treatment of negative symptoms of schizophrenia. Neuro Endocrinol. Lett. 2011;32:121–126. doi: 10.1111/j.1600-0447.2007.01104.x.
    1. Zhang Y., Liang W., Yang S., Dai P., Shen L., Wang C. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis. Neural Regen. Res. 2013;8:2666–2676. doi: 10.3969/j.issn.1673-5374.2013.28.009.
    1. Hsu C.W., Wang L.J., Lin P.Y. Efficacy of repetitive transcranial magnetic stimulation for Tourette syndrome: A systematic review and meta-analysis. Brain Stimul. 2018;11:1110–1118. doi: 10.1016/j.brs.2018.06.002.
    1. Chou Y.H., Hickey P.T., Sundman M., Song A.W., Chen N.K. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: A systematic review and meta-analysis. JAMA Neurol. 2015;72:432–440. doi: 10.1001/jamaneurol.2014.4380.
    1. Lepping P., Schönfeldt-Lecuona C., Sambhi R.S., Lanka S.V., Lane S., Whittington R., Leucht S., Poole R. A systematic review of the clinical relevance of repetitive transcranial magnetic stimulation. Acta Psychiatr. Scand. 2014;130:326–341. doi: 10.1111/acps.12276.
    1. Fitzgerald P.B., Daskalakis Z.J. A practical guide to the use of repetitive transcranial magnetic stimulation in the treatment of depression. Brain Stimul. 2012;5:287–296. doi: 10.1016/j.brs.2011.03.006.
    1. Machii K., Cohen D., Ramos-Estebanez C., Pascual-Leone A. Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin. Neurophysiol. 2006;117:455–471. doi: 10.1016/j.clinph.2005.10.014.
    1. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A., Safety of TMS Consensus Group Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009;120:2008–2039. doi: 10.1016/j.clinph.2009.08.016.
    1. Loo C.K., McFarquhar T.F., Mitchell P.B. A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int. J. Neuropsychopharmacol. 2008;11:131–147. doi: 10.1017/S1461145707007717.
    1. Pascual-Leone A., Gates J.R., Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology. 1991;41:697–702. doi: 10.1212/WNL.41.5.697.
    1. Hömberg V., Netz J. Generalised seizures induced by transcranial magnetic stimulation of motor cortex. Lancet. 1989;2:1223. doi: 10.1016/S0140-6736(89)91835-7.
    1. Dhuna A., Gates J., Pascual-Leone A. Transcranial magnetic stimulation in patients with epilepsy. Neurology. 1991;41:1067–1071. doi: 10.1212/WNL.41.7.1067.
    1. Schrader L.M., Stern J.M., Koski L., Nuwer M.R., Engel J., Jr. Seizure incidence during single- and paired-pulse transcranial magnetic stimulation (TMS) in individuals with epilepsy. Clin. Neurophysiol. 2004;115:2728–2737. doi: 10.1016/j.clinph.2004.06.018.
    1. Tarapore P.E., Picht T., Bulubas L., Shin Y., Kulchytska N., Meyer B., Berger M.S., Nagarajan S.S., Krieg S.M. Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin. Neurophysiol. 2016;127:1895–1900. doi: 10.1016/j.clinph.2015.11.042.
    1. Theodore W.H. Transcranial Magnetic Stimulation in Epilepsy. Epilepsy Curr. 2003;3:191–197. doi: 10.1046/j.1535-7597.2003.03607.x.
    1. Tergau F., Neumann D., Rosenow F., Nitsche M.A., Paulus W., Steinhoff B. Can epilepsies be improved by repetitive transcranial magnetic stimulation?—Interim analysis of a controlled study. Suppl. Clin. Neurophysiol. 2003;56:400–405. doi: 10.1016/s1567-424x(09)70244-2.
    1. Fregni F., Otachi P.T., Do Valle A., Boggio P.S., Thut G., Rigonatti S.P., Pascual-Leone A., Valente K.D. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann. Neurol. 2006;60:447–455. doi: 10.1002/ana.20950.
    1. Cantello R., Rossi S., Varrasi C., Ulivelli M., Civardi C., Bartalini S., Vatti G., Cincotta M., Borgheresi A., Zaccara G., et al. Slow repetitive TMS for drug-resistant epilepsy: Clinical and EEG findings of a placebo-controlled trial. Epilepsia. 2007;48:366–374. doi: 10.1111/j.1528-1167.2006.00938.x.
    1. Joo E.Y., Han S.J., Chung S.H., Cho J.W., Seo D.W., Hong S.B. Antiepileptic effects of low-frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin. Neurophysiol. 2007;118:702–708. doi: 10.1016/j.clinph.2006.11.008.
    1. Santiago-Rodríguez E., Cárdenas-Morales L., Harmony T., Fernández-Bouzas A., Porras-Kattz E., Hernández A. Repetitive transcranial magnetic stimulation decreases the number of seizures in patients with focal neocortical epilepsy. Seizure. 2008;17:677–683. doi: 10.1016/j.seizure.2008.04.005.
    1. Cirillo C., Brihmat N., Castel-Lacanal E., Le Friec A., Barbieux-Guillot M., Raposo N., Pariente J., Viguier A., Simonetta-Moreau M., Albucher J.F., et al. Post-stroke remodeling processes in animal models and humans. J. Cereb. Blood Flow Metab. 2020;40:3–22. doi: 10.1177/0271678X19882788.
    1. Yuan X., Yang Y., Cao N., Jiang C. Promotion of Poststroke Motor-Function Recovery with Repetitive Transcranial Magnetic Stimulation by Regulating the Interhemispheric Imbalance. Brain Sci. 2020;10:648. doi: 10.3390/brainsci10090648.
    1. Niimi M., Hashimoto K., Kakuda W., Miyano S., Momosaki R., Ishima T., Abo M. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke. PLoS ONE. 2016;11:e0152241. doi: 10.1371/journal.pone.0152241.
    1. Dionísio A., Duarte I.C., Patrício M., Castelo-Branco M. The Use of Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Systematic Review. J. Stroke Cerebrovasc. Dis. 2018;27:1–31. doi: 10.1016/j.jstrokecerebrovasdis.2017.09.008.
    1. van Lieshout E.C.C., van der Worp H.B., Visser-Meily J.M.A., Dijkhuizen R.M. Timing of Repetitive Transcranial Magnetic Stimulation Onset for Upper Limb Function After Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2019;10:1269. doi: 10.3389/fneur.2019.01269.
    1. Yao L., Zhao H., Shen C., Liu F., Qiu L., Fu L. Low-Frequency Repetitive Transcranial Magnetic Stimulation in Patients with Poststroke Aphasia: Systematic Review and Meta-Analysis of Its Effect Upon Communication. J. Speech Lang. Hear. Res. 2020;63:3801–3815. doi: 10.1044/2020_JSLHR-19-00077.
    1. Takeuchi N., Tada T., Toshima M., Matsuo Y., Ikoma K. Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. J. Rehabil. Med. 2009;41:1049–1054. doi: 10.2340/16501977-0454.
    1. Barwood C.H., Murdoch B.E., Whelan B.M., Lloyd D., Riek S., O’ Sullivan J.D., Coulthard A., Wong A. Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. Eur. J. Neurol. 2011;18:935–943. doi: 10.1111/j.1468-1331.2010.03284.x.
    1. Takeuchi N., Izumi S. Noninvasive brain stimulation for motor recovery after stroke: Mechanisms and future views. Stroke Res. Treat. 2012;2012:584727. doi: 10.1155/2012/584727.
    1. Kakuda W., Abo M., Sasanuma J., Shimizu M., Okamoto T., Kimura C., Kakita K., Hara H. Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: A 6-year Experience of More Than 1700 Japanese Patients. Transl. Stroke Res. 2016;7:172–179. doi: 10.1007/s12975-016-0456-8.
    1. Caglayan A.B., Beker M., Caglayan B., Yalcin E., Caglayan A., Yulug B., Hanoglu L., Kutlu S., Doeppner T.R., Hermann D.M., et al. Acute and Post-acute Neuromodulation Induces Stroke Recovery by Promoting Survival Signaling, Neurogenesis, and Pyramidal Tract Plasticity. Front. Cell Neurosci. 2019;13:144. doi: 10.3389/fncel.2019.00144.
    1. Ille S., Kelm A., Schroeder A., Albers L.E., Negwer C., Butenschoen V.M., Sollmann N., Picht T., Vajkoczy P., Meyer B., et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients—A randomized, double-blinded trial. Brain Stimul. 2021;14:780–787. doi: 10.1016/j.brs.2021.04.026.
    1. Ridding M.C., Rothwell J.C. Is there a future for therapeutic use of transcranial magnetic stimulation? Nature reviews. Neuroscience. 2007;8:559–567. doi: 10.1038/nrn2169.
    1. Duffau H. Dynamic Interplay between Lower-Grade Glioma Instability and Brain Metaplasticity: Proposal of an Original Model to Guide the Therapeutic Strategy. Cancers. 2021;13:4759. doi: 10.3390/cancers13194759.
    1. Barcia J.A., Sanz A., González-Hidalgo M., de Las Heras C., Alonso-Lera P., Díaz P., Pascual-Leone A., Oliviero A., Ortiz T. rTMS stimulation to induce plastic changes at the language motor area in a patient with a left recidivant brain tumor affecting Broca’s area. Neurocase. 2012;18:132–138. doi: 10.1080/13554794.2011.568500.
    1. Rivera-Rivera P.A., Rios-Lago M., Sanchez-Casarrubios S., Salazar O., Yus M., González-Hidalgo M., Sanz A., Avecillas-Chasin J., Alvarez-Linera J., Pascual-Leone A., et al. Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas. J. Neurosurg. 2017;126:1323–1333. doi: 10.3171/2016.2.JNS152485.
    1. Barcia J.A., Sanz A., Balugo P., Alonso-Lera P., Brin J.R., Yus M., Gonzalez-Hidalgo M., Acedo V.M., Oliviero A. High-frequency cortical subdural stimulation enhanced plasticity in surgery of a tumor in Broca’s area. Neuroreport. 2012;23:304–309. doi: 10.1097/WNR.0b013e3283513307.
    1. Serrano-Castro P.J., Ros-López B., Fernández-Sánchez V.E., García-Casares N., Muñoz-Becerra L., Cabezudo-Garcia P., Aguilar-Castillo M.J., Vidal-Denis M., Cruz-Andreotti E., Postigo-Pozo M.J., et al. Neuroplasticity and Epilepsy Surgery in Brain Eloquent Areas: Case Report. Front. Neurol. 2020;11:698. doi: 10.3389/fneur.2020.00698.
    1. Dell’osso B., Camuri G., Castellano F., Vecchi V., Benedetti M., Bortolussi S., Altamura A.C. Meta-Review of Metanalytic Studies with Repetitive Transcranial Magnetic Stimulation (rTMS) for the Treatment of Major Depression. Clin. Pract. Epidemiol. Ment. Health. 2011;7:167–177. doi: 10.2174/1745017901107010167.
    1. Zhang L., Xing G., Shuai S., Guo Z., Chen H., McClure M.A., Chen X., Mu Q. Low-Frequency Repetitive Transcranial Magnetic Stimulation for Stroke-Induced Upper Limb Motor Deficit: A Meta-Analysis. Neural. Plast. 2017:2758097. doi: 10.1155/2017/2758097.
    1. Andoh J., Artiges E., Pallier C., Rivière D., Mangin J.F., Paillère-Martinot M.L., Martinot J.L. Priming frequencies of transcranial magnetic stimulation over Wernicke’s area modulate word detection. Cereb. Cortex. 2008;18:210–216. doi: 10.1093/cercor/bhm047.
    1. Klomjai W., Katz R., Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS) Ann. Phys. Rehabil. Med. 2015;58:208–213. doi: 10.1016/j.rehab.2015.05.005.
    1. Magown P., Andrade R.A., Soroceanu A., Kiss Z.H.T. Deep brain stimulation parameters for dystonia: A systematic review. Parkinsonism Relat. Disord. 2018;54:9–16. doi: 10.1016/j.parkreldis.2018.04.017.
    1. Carron R., Chaillet A., Filipchuk A., Pasillas-Lépine W., Hammond C. Closing the loop of deep brain stimulation. Front. Syst. Neurosci. 2013;7:112. doi: 10.3389/fnsys.2013.00112.
    1. Jakobs M., Fomenko A., Lozano A.M., Kiening K.L. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol. Med. 2019;11:e9575. doi: 10.15252/emmm.201809575.
    1. Abalkhail T.M., MacDonald D.B., AlThubaiti I., AlOtaibi F.A., Stigsby B., Mokeem A.A., AlHamoud I.A., Hassounah M.I., Baz S.M., AlSemari A., et al. Intraoperative direct cortical stimulation motor evoked potentials: Stimulus parameter recommendations based on rheobase and chronaxie. Clin. Neurophysiol. 2017;128:2300–2308. doi: 10.1016/j.clinph.2017.09.005.
    1. Tarapore P., Berger M. Outlook on the potential of nTMS in neurosurgery. In: Krieg S., editor. Navigated Transcranial Magnetic Stimulation in Neurosurgery. 1st ed. Springer; Cham, Switzerland: 2017. pp. 287–299.
    1. Rösler J., Niraula B., Strack V., Zdunczyk A., Schilt S., Savolainen P., Lioumis P., Mäkelä J., Vajkoczy P., Frey D., et al. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: Evidence of tumor-induced plasticity. Clin. Neurophysiol. 2014;125:526–536. doi: 10.1016/j.clinph.2013.08.015.
    1. Conway N., Wildschuetz N., Moser T., Bulubas L., Sollmann N., Tanigawa N., Meyer B., Krieg S.M. Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma. J. Neurosurg. 2017;127:981–991. doi: 10.3171/2016.9.JNS161595.
    1. Zhang H., Ille S., Sogerer L., Schwendner M., Schröder A., Meyer B., Wiestler B., Krieg S.M. Elucidating the structural-functional connectome of language in glioma-induced aphasia using nTMS and DTI. Hum. Brain Mapp. 2021 doi: 10.1002/hbm.25757. advance online publication.

Source: PubMed

3
Tilaa