Neuroplasticity and Epilepsy Surgery in Brain Eloquent Areas: Case Report

Pedro Jesus Serrano-Castro, Bienvenido Ros-López, Victoria Eugenia Fernández-Sánchez, Natalia García-Casares, Luis Muñoz-Becerra, Pablo Cabezudo-Garcia, Maria José Aguilar-Castillo, Maria Vidal-Denis, Esperanza Cruz-Andreotti, Maria Jose Postigo-Pozo, Guillermo Estivill-Torrús, Guillermo Ibañez-Botella, Pedro Jesus Serrano-Castro, Bienvenido Ros-López, Victoria Eugenia Fernández-Sánchez, Natalia García-Casares, Luis Muñoz-Becerra, Pablo Cabezudo-Garcia, Maria José Aguilar-Castillo, Maria Vidal-Denis, Esperanza Cruz-Andreotti, Maria Jose Postigo-Pozo, Guillermo Estivill-Torrús, Guillermo Ibañez-Botella

Abstract

Introduction: Neuronal plasticity includes changes in any component of the central nervous system in response to intrinsic or extrinsic stimuli. Brain functions that depend on the epileptogenic cortex pose a challenge in epilepsy surgery because many patients are excluded from pre-surgical evaluation for fear of the possible sequelae. Some of these patients may be rescued by enhancing neuronal plasticity with brain neuromodulation techniques. Case Report: We describe a 6-year-old child with refractory focal motor seizures symptomatic to a neuroepithelial dysembryoblastic tumor in the left temporo-parietal region. He underwent limited resection of the lesion in order to avoid sequelae in his language function. A functional study at age of 17 years revealed an overlap of Wernicke's area with the tumor and areas of incipient language reorganization in the contralateral hemisphere. An invasive neuromodulation procedure was designed to enhance neuroplasticity. After craniotomy, he underwent language training and simultaneous electrical inhibition of language using an electrode grid placed over the lesion. The intensity of the language inhibitory stimulus was increased every day to force the use of accessory language areas in the right hemisphere by neuroplasticity. Results: The language of the patient improved for six consecutive days until he was able to speak and understand while undergoing maximum electrical inhibition. The tumor was resected using a cortical mapping guide. Discussion: Application of direct cortical stimulation techniques and language pre-habilitation before epilepsy surgery can be useful to rescue patients excluded from resective surgery, especially young patients with long-term lesions.

Keywords: Boston test; eloquent area surgery; epilepsy surgery; language functional MRI; language prehabilitation; neuropshycological measures.

Copyright © 2020 Serrano-Castro, Ros-López, Fernández-Sánchez, García-Casares, Muñoz-Becerra, Cabezudo-Garcia, Aguilar-Castillo, Vidal-Denis, Cruz-Andreotti, Postigo-Pozo, Estivill-Torrús and Ibañez-Botella.

Figures

Figure 1
Figure 1
Surgical image during CSM, indicating the sensitive and motor language eloquent areas identified.
Figure 2
Figure 2
Detail of the position of the external stimulator during step 2.
Figure 3
Figure 3
Presurgical fMRI, story passive listening paradigm (A–D): axial brain planes show, in red color, the activation of left temporoparietal areas corresponding to Wernicke's, associative language, and the auditory areas within and surrounding the lesion. Greater activation is shown in the right temporoparietal hemisphere (homologous areas), probably due to neuroplasticity.
Figure 4
Figure 4
Postsurgical fMRI, story passive listening paradigm (A–D): axial brain planes show, in red color, a decrease activation after surgery of the left temporoparietal areas corresponding to Wernicke's, associative language, and the auditory areas. Greater activation is shown in the right temporoparietal hemisphere (homologous areas), probably due to neuroplasticity.

References

    1. Serrano-Castro PJ, Garcia-Torrecillas JM. Cajal's first steps in scientific research. Neuroscience. (2012) 217:1–5. 10.1016/j.neuroscience.2012.05.008
    1. Cramer SC, Sur M, Dobkin BH, O'Brien C, Sanger TD, Trojanowski JQ, et al. . Harnessing neuroplasticity for clinical applications. Brain. (2011) 134:1591–609. 10.1093/brain/aws017
    1. He W, Fong PY, Leung TWH, Huang YZ. Protocols of non-invasive brain stimulation for neuroplasticity induction. Neurosci Lett. (2020) 719:133437. 10.1016/j.neulet.2018.02.045
    1. D'Agata F, Peila E, Cicerale A, Caglio MM, Caroppo P, Vighetti S, et al. . Cognitive and neurophysiological effects of non-invasive brain stimulation in stroke patients after motor rehabilitation. Front Behav Neurosci. (2016) 10:135. 10.3389/fnbeh.2016.00135
    1. Crinion J, Price CJ. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. Brain. (2005) 128:2858–71. 10.1093/brain/awh659
    1. Sampaio-Baptista C, Sanders ZB, Johansen-Berg H. Structural plasticity in adulthood with motor learning and stroke rehabilitation. Annu Rev Neurosci. (2018) 41:25–40. 10.1146/annurev-neuro-080317-062015
    1. Chou N, Serafini S, Muh CR. Cortical language areas and plasticity in pediatric patients with epilepsy: a review. Pediatr Neurol. (2018) 78:3–12. 10.1016/j.pediatrneurol.2017.10.001
    1. Serafini S, Komisarow JM, Gallentine W, Mikati MA, Bonner MJ, Kranz PG, et al. . Reorganization and stability for motor and language areas using cortical stimulation: case example and review of the literature. Brain Sci. (2013) 3:15971614. 10.3390/brainsci3041597
    1. Zheng J, Liu L, Xue X, Li H, Wang S, Cao Y, et al. . Cortical electrical stimulation promotes neuronal plasticity in the peri-ischemic cortex and contralesional anterior horn of cervical spinal cord in a rat model of focal cerebral ischemia. Brain Res. (2013) 1504:25–34. 10.1016/j.brainres.2013.01.015
    1. Cecatto RB, Maximino JR, Chadi G. Motor recovery and cortical plasticity after functional electrical stimulation in a rat model of focal stroke. Am J Phys Med Rehabil. (2014) 93:791–800. 10.1097/PHM.0000000000000104
    1. Adkins DL. Cortical stimulation-induced structural plasticity and functional recovery after brain damage. In: Kobeissy FH. editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Chapter 43. Frontiers in Neuroengineering. Boca Raton, FL: CRC Press/Taylor & Francis; (2015). p. 1–38.
    1. Rutten GJ, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CW. FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage. (2002) 17:447–60. 10.1006/nimg.2002.1196
    1. Deng X, Xu L, Zhang Y, Wang B, Wang S, Zhao Y, et al. . Difference of language cortex reorganization between cerebral arteriovenous malformations, cavernous malformations, and gliomas: a functional MRI study. Neurosurg Rev. (2016) 39:241–9. 10.1007/s10143-015-0682-7
    1. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C-S, Dykeman J, et al. . Prevalence and incidence of epilepsy. A systematic review and metaanalysis of international studies. Neurology. (2017) 88:296–303. 10.1212/WNL.0000000000003509
    1. Brodie MJ. Diagnosing and predicting refractory epilepsy. Acta Neurol Scand Suppl. (2005) 181:36–9. 10.1111/j.1600-0404.2005.00507.x
    1. Maesawa S, Nakatsubo D, Fujii M, Iijima K, Kato S, Ishizaki T, et al. . Application of awake surgery for epilepsy in clinical practice. Neurol Med Chir. (2018) 58:442–52. 10.2176/nmc.oa.2018-0122
    1. Kay J, Lesser R, Coltheart M. PALPA: Psycholinguistic Assessments of Language Processing in Aphasia. Hove: Lawrence Erlbaum Associates; (1992).
    1. Peña-Casanova J. Normalidad, semiología y patología neuropsicológicas. Programa integrado de exploración neuropsicológica. “Test Barcelona.” Barcelona: Masson; (1991).
    1. Kaplan E, Goodglass H, Weintrab S. The Boston naming test: Experimental edition (1978). 2nd ed Boston: Kapan & Goodglass; Philadelphia: Lea & Febiger; (1978).
    1. World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. (2013) 310:2191–4. 10.1001/jama.2013.281053
    1. Rivera-Rivera P, Rios-lago M, Sanchez-Casarrubios S, Salazar O, Yus M, Sanz A, et al. . Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas. J Neurosurg. (2017) 126:1323–33. 10.3171/2016.2.JNS152485
    1. Bonnetblanc F, Desmurget M, Duffau H. Low grade gliomas and cerebral plasticity: fundamental and clinical implications. Med Sci. (2006) 22:389–94. 10.1051/medsci/2006224389
    1. Kornfeld S, Delgado Rodríguez JA, Everts R, Kaelin-Lang A, Wiest R, Weisstanner C, et al. . Cortical reorganisation of cerebral networks after childhood stroke: impact on outcome. BMC Neurol. (2015) 15:90. 10.1186/s12883-015-0309-1
    1. Mikellidou K, Arrighi R, Aghakhanyan G, Tinelli F, Frijia F, Crespi S, et al. . Plasticity of the human visual brain after an early cortical lesion. Neuropsychologia. (2019) 128:166–77. 10.1016/j.neuropsychologia.2017.10.033
    1. Aşkin A, Tosun A, Demirdal ÜS. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: a randomized controlled trial. Somatosens Mot Res. (2017) 34:102–7. 10.1080/08990220.2017.1316254
    1. Paquette C, Thiel A. Rehabilitation interventions for chronic motor deficits with repetitive transcranial magnetic stimulation. J Neurosurg Sci. (2012) 56:299–306.
    1. Ribeiro H, Sesterhenn RB, Souza A, Souza AC, Alves M, Machado JC, et al. . Preoperative transcranial direct current stimulation: exploration of a novel strategy to enhance neuroplasticity before surgery to control postoperative pain. A randomized sham-controlled study. PLoS ONE. (2017) 12:e0187013. 10.1371/journal.pone.0187013.eCollection.2017
    1. Hadoush H, Banihani SA, Khalil H, Al-Qaisi Y, Al-Sharman A, Al-Jarrah M. Dopamine, BDNF and motor function postbilateral anodal transcranial direct current stimulation in Parkinson's disease. Neurodegener Dis Manag. (2018) 8:171–9. 10.2217/nmt-2017-0048
    1. Brunoni AR, Padberg F, Vieira ELM, Teixeira AL, Carvalho AF, Lotufo PA, et al. . Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression. Prog Neuropsychopharmacol Biol Psychiatry. (2018) 86:211–7. 10.1016/j.pnpbp.2018.06.003
    1. Yu TH, Wu YJ, Chien ME, Hsu KS. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor. Neuropharmacology. (2019) 144:358–67. 10.1016/j.neuropharm.2018.11.012
    1. Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential role of miRNAs as theranostic biomarkers of epilepsy. Mol Ther Nucleic Acids. (2018) 13:275–90. 10.1016/j.omtn.2018.09.008
    1. Costard LS, Neubert V, Venø MT, Su J, Kjems J, Connolly NMC, et al. . Electrical stimulation of the ventral hippocampal commissure delays experimental epilepsy and is associated with altered microRNA expression. Brain Stimul. (2019) 12:1390–401. 10.1016/j.brs.2019.06.009

Source: PubMed

3
Tilaa