The frequency of reduction loss after arthroscopic fixation of acute acromioclavicular dislocations using a double-button device, and its effect on clinical and radiological results

Engin Çarkçı, Ayşe Esin Polat, Tahsin Gürpınar, Engin Çarkçı, Ayşe Esin Polat, Tahsin Gürpınar

Abstract

Background: The aim of this study was to investigate the effect of reduction loss of more than 3 mm on clinical and radiological results after at least 2 years of follow-up after arthroscopic fixation of acute acromioclavicular joint dislocations using a double-button device.

Methods: Thirty-six patients who had acute (< 3 weeks old), type III or V acromioclavicular (AC) joint dislocations underwent arthroscopic fixation of the AC joint using a double-button device. Clinical and radiological evaluations were performed at preoperative, postoperative first day, 3 months and last follow-up. When the coracoclavicular (CC) distances of patients at the last follow-up were compared to the early postop CC distances, those with a difference of 3 mm or less were grouped as group A and those with a difference of more than 3 mm were grouped as group B.

Results: There was no statistically significant difference between the groups in terms of age, gender, follow-up time, time from injury to surgery, return to work, and distribution of Rockwood classification. Pre-operative CC distance was reduced from 18.7 ± 3.5 to 8.5 ± 0.6 in the early postoperative period. Anatomic reduction was achieved in all patients compared with the unaffected side (CC distance 8.6 ± 0.7). However, the CC distance increased to 9.9 ± 1.5 at the third-month follow-up and increased to 11 ± 2.7 at the last follow-up. There were no significant Constant score differences between the groups in the preoperative and last follow-up periods (p > 0.05). At the last follow-up, the mean Acromioclavicular Joint Instability (ACJI) score of group A was 84.4 ± 8, whereas it was 68.3 ± 8.3 for group B, and the difference was statistically significant (p < 0.01). Furthermore, the subjective evaluation and aesthetic subjective satisfaction values of group B were lower than group A (p < 0.01).

Conclusions: Reduction loss of more than 3 mm was observed in 25% of patients after arthroscopic fixation of acute acromioclavicular dislocations using a double-button device. Although this loss did not create a statistically significant difference in Constant scores, AC joint-specific tests such as ACJI, subjective evaluation, and aesthetic subjective satisfaction values were significantly impaired.

Keywords: Acromioclavicular joint; Arthroscopy; Coracoclavicular distance; Dislocation; Endobutton.

Conflict of interest statement

The authors declare that they have competing interest.

References

    1. Chillemi C, Franceschini V, Dei Giudici L, Alibardi A, Salate Santone F, Ramos Alday LJ, Osimani M. Epidemiology of isolated acromioclavicular joint dislocation. Emerg Med Int. 2013;2013:171609. doi: 10.1155/2013/171609.
    1. Metzlaff S, Rosslenbroich S, Forkel PH, Schliemann B, Arshad H, et al. Surgical treatment of acute acromioclavicular joint dislocations: hook plate versus minimally invasive reconstruction. Knee Surg Sports Traumatol Arthrosc. 2016;24:1972–1978. doi: 10.1007/s00167-014-3294-9.
    1. Cetinkaya E, Arıkan Y, Beng K, Mutlu H, Yalçınkaya M, Üzümcügil O. Bosworth and modified Phemister techniques revisited. A comparison of intraarticular vs extraarticular fixation methods in the treatment of acute Rockwood type III acromioclavicular dislocations. Acta Orthop Traumatol Turc. 2017;51:455–458. doi: 10.1016/j.aott.2017.09.002.
    1. Beitzel K, Cote MP, Apostolakos J, Solovyova O, Judson CH, et al. Current concepts in the treatment of acromioclavicular joint dislocations. Arthroscopy. 2013;28:387–397. doi: 10.1016/j.arthro.2012.11.023.
    1. Spoliti M, De Cupis M, Via AG, Oliva F. All arthroscopic stabilization of acute acromioclavicular joint dislocation with fiberwire and endobutton system. Muscles Ligaments Tendons J. 2015;4:398–403. doi: 10.32098/mltj.04.2014.01.
    1. Chaudhary D, Jain V, Joshi D, Jain JK, Goyal A, Mehta N. Arthroscopic fixation for acute acromioclavicular joint disruption using the TightRope device. J Orthop Surg. 2015;23:309–314. doi: 10.1177/230949901502300310.
    1. Hann C, Kraus N, Minkus M, Maziak N, Scheibel M. Combined arthroscopically assisted coraco- and acromioclavicular stabilization of acute high-grade acromioclavicular joint separations. Knee Surg Sports Traumatol Arthrosc. 2018;26:212–220. doi: 10.1007/s00167-017-4643-2.
    1. Milewski MD, Tompkins M, Giugale JM, Carson EW, Miller MD, Diduch DR. Complications related to anatomic reconstruction of the coracoclavicular ligaments. Am J Sports Med. 2012;40:1628–1634. doi: 10.1177/0363546512445273.
    1. Banffy MB, Uquillas C, Neumann JA, ElAttrache NS. Biomechanical evaluation of a single- versus double-tunnel coracoclavicular ligament reconstruction with acromioclavicular stabilization for acromioclavicular joint injuries. Am J Sports Med. 2018;46:1070–1076. doi: 10.1177/0363546517752673.
    1. Choi S, Lee TJ, Kim MK, Park JE, Kang H. Midterm results of coracoclavicular stabilization with double augmentation for acute acromioclavicular dislocation. Springerplus. 2016;5:1858. doi: 10.1186/s40064-016-3527-0.
    1. Choi NH, Lim SM, Lee SY, Lim TK. Loss of reduction and complication of coracoclavicular ligament reconstruction with autogenous tendon graft in acute acromioclavicular dislocations. J Shoulder Elb Surg. 2017;26:692–698. doi: 10.1016/j.jse.2016.09.014.
    1. Scheibel M, Dröschel S, Gerhardt C, Kraus N. Arthroscopically assisted stabilization of acute high-grade acromioclavicular joint separations. Am J Sports Med. 2011;39:1507–1516. doi: 10.1177/0363546511399379.
    1. Beitzel K, Obopilwe E, Chowaniec DM, Niver GE, Nowak MD, et al. Biomechanical comparison of arthroscopic repairs for acromioclavicular joint instability: suture button systems without biological augmentation. Am J Sports Med. 2011;39:2218–2225. doi: 10.1177/0363546511416784.
    1. Arirachakaran A, Boonard M, Piyapittayanun P, Kanchanatawan W, et al. Post-operative outcomes and complications of suspensory loop fixation device versus hook plate in acute unstable acromioclavicular joint dislocation: a systematic review and meta-analysis. J Orthop Traumatol. 2017;18:293–304. doi: 10.1007/s10195-017-0451-1.
    1. Darabos N, Vlahovic I, Gusic N, Darabos A, Bakota B, Miklic D. Is AC TightRope fixation better than Bosworth screw fixation for minimally invasive operative treatment of Rockwood III AC joint injury? Injury. 2015;46:S113–S118. doi: 10.1016/j.injury.2015.10.060.
    1. Nüchtern JV, Sellenschloh K, Bishop N, Jauch S, Briem D, et al. Biomechanical evaluation of 3 stabilization methods on acromioclavicular joint dislocations. Am J Sports Med. 2013;41:1387–1394. doi: 10.1177/0363546513484892.
    1. Lädermann A, Gueorguiev B, Stimec B, Fasel J, Rothstock S, Hoffmeyer P. Acromioclavicular joint reconstruction: a comparative biomechanical study of three techniques. J Shoulder Elb Surg. 2013;22:171–178. doi: 10.1016/j.jse.2012.01.020.
    1. Saier T, Venjakob AJ, Minzlaff P, Föhr P, Lindell F, Imhoff AB, et al. Value of additional acromioclavicular cerclage for horizontal stability in complete acromioclavicular separation: a biomechanical study. Knee Surg Sports Traumatol Arthrosc. 2015;23:1498–1505. doi: 10.1007/s00167-014-2895-7.
    1. Weiser L, Nüchtern JV, Sellenschloh K, Püschel K, Morlock MM, et al. Acromioclavicular joint dislocations: coracoclavicular reconstruction with and without additional direct acromioclavicular repair. Knee Surg Sports Traumatol Arthrosc. 2017;25:2025–2031. doi: 10.1007/s00167-015-3920-1.
    1. Gerhardt DC, VanDerWerf JD, Rylander LS, McCarty EC. Postoperative coracoid fracture after transcoracoid acromioclavicular joint reconstruction. J Shoulder Elb Surg. 2011;20:e6–10. doi: 10.1016/j.jse.2011.01.017.
    1. Rylander LS, Baldini T, Mitchell JJ, Messina M, Justl Ellis IA, McCarty EC. Coracoclavicular ligament reconstruction: coracoid tunnel diameter correlates with failure risk. Orthopedics. 2014;37:e531–e535. doi: 10.3928/01477447-20140528-52.
    1. Ferreira JV, Chowaniec D, Obopilwe E, Nowak MD, Arciero RA, Mazzocca AD. Biomechanical evaluation of effect of coracoid tunnel placement on load to failure of fixation during repair of acromioclavicular joint dislocations. Arthroscopy. 2012;28:1230–1236. doi: 10.1016/j.arthro.2012.02.004.
    1. Wang G, Xie R, Mao T, Xing S. Treatment of AC dislocation by reconstructing CC and AC ligaments with allogenic tendons compared with hook plates. J Orthop Surg Res. 2018;13:175. doi: 10.1186/s13018-018-0879-x.
    1. Lee YB, Kim J, Lee HW, Kim BS, Yoon WY, Yoo YS. Arthroscopically assisted coracoclavicular fixation using a single flip button device technique: what are the main factors affecting the maintenance of reduction? Biomed Res Int. 2017;2017:4859262.
    1. Thangaraju S, Cepni S, Magosch P, Tauber M, Habermeyer P, Martetschlager F. Arthroscopically assisted acromioclavicular joint stabilization leads to significant clavicular tunnel widening in the early post-operative period. Knee Surg Sports Traumatol Arthrosc. 2019;Epub ahead of print. doi:10.1007/s00167-019-05662-5.
    1. Zhang LF, Yin B, Hou S, Han B, Huang DF. Arthroscopic fixation of acute acromioclavicular joint disruption with TightRope™: outcome and complications after minimum 2 (2-5) years follow-up. J Orthop Surg. 2017;25:2309499016684493.
    1. Murena L, Vulcano E, Ratti C, Cecconello L, Rolla PR, Surace MF. Arthroscopic treatment of acute acromioclavicular joint dislocation with double flip button. Knee Surg Sports Traumatol Arthrosc. 2009;17:1511–1515. doi: 10.1007/s00167-009-0838-5.
    1. DeCarli A, Lanzetti RM, Ciompi A, Lupariello D, Rota P, Ferretti A. Acromioclavicular third degree dislocation: surgical treatment in acute cases. J Orthop Surg Res. 2015;10:13. doi: 10.1186/s13018-014-0150-z.

Source: PubMed

3
Tilaa