3D Printing is a Transformative Technology in Congenital Heart Disease

Shafkat Anwar, Gautam K Singh, Jacob Miller, Monica Sharma, Peter Manning, Joseph J Billadello, Pirooz Eghtesady, Pamela K Woodard, Shafkat Anwar, Gautam K Singh, Jacob Miller, Monica Sharma, Peter Manning, Joseph J Billadello, Pirooz Eghtesady, Pamela K Woodard

Abstract

Survival in congenital heart disease has steadily improved since 1938, when Dr. Robert Gross successfully ligated for the first time a patent ductus arteriosus in a 7-year-old child. To continue the gains made over the past 80 years, transformative changes with broad impact are needed in management of congenital heart disease. Three-dimensional printing is an emerging technology that is fundamentally affecting patient care, research, trainee education, and interactions among medical teams, patients, and caregivers. This paper first reviews key clinical cases where the technology has affected patient care. It then discusses 3-dimensional printing in trainee education. Thereafter, the role of this technology in communication with multidisciplinary teams, patients, and caregivers is described. Finally, the paper reviews translational technologies on the horizon that promise to take this nascent field even further.

Keywords: 3D printing; 3D, three-dimensional; ACHD, adults with congenital heart disease; APC, aortopulmonary collaterals; ASD, atrial septal defect; CHD, congenital heart disease; CT, computed tomography; DORV, double outlet right ventricle; MAPCAs, multiple aortopulmonary collaterals; MRI, magnetic resonance imaging; OR, operating room; VSD, ventricular septal defect; cardiac imaging; cardiothoracic surgery; congenital heart disease; simulation.

Figures

Graphical abstract
Graphical abstract
Central Illustration
Central Illustration
Applications of 3D Printing in Congenital Heart Disease
Figure 1
Figure 1
Application of 3D Printing in Medicine Most of these applications pertain to cardiology, except for wearable devices, for which the authors did not find any cardiac-specific published reports.
Figure 2
Figure 2
3D Printing Technologies ABS = acrylonitrile butadiene styrene; CJP = color jet printing; Co = cobalt; Cr = chromium; DLP = direct light processing; FDM = fused deposition modeling; FFF = fused filament fabrication; HIPS = high impact polystyrene; Ni = nickel; PLA = polylactic acid; PVA = polyvinyl alcohol; SLA = stereolithography apparatus; SLM = selective laser melting; SLS = selective laser sintering; Ti = titanium; TPE = thermoplastic elastomer; TPU = thermoplastic urethane.
Figure 3
Figure 3
Blood Pool Cardiac 3D Model Source images on the left show the segmented blood pool signal. The model is shown on the right.
Figure 4
Figure 4
Hollow Cardiac 3D Model Showing Intracardiac Anatomy
Figure 5
Figure 5
Models for Surgical Planning (A) Flexible hollow model printed intact with corresponding rigid multicolor model. (B) The “surgeon’s view” through a right atriotomy. IVC = inferior vena cava; RA = right atrium.
Figure 6
Figure 6
3D Model of Double-Outlet RV Showing Relationships Among Ventricles, VSD, and Outflows The dashed line indicates the potential ventricular septal defect (VSD) baffle pathway to achieve a 2-ventricle repair. Ao = aorta; LA = left atrium; LV = left ventricle; RV = right ventricle; SVC = superior vena cava; other abbreviations as in Figure 5.
Figure 7
Figure 7
Simulated Surgery for Complex Total Cavopulmonary Connection Planning Using Flexible, Intact-Heart Model See Supplemental Video 1. LPA = left pulmonary artery; RPA = right pulmonary artery; RSVC = right superior vena cava; other abbreviations as in Figures 5 and 6.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/6059001/bin/grv1.jpg
Supplemental Video 1
Figure 8
Figure 8
Staged Repair of Tetralogy of Fallot, Pulmonary Atresia, and MAPCAs (A) Pre-operative anatomy. (B) Unifocalization of right-sided major aortopulmonary collateral arteries (MAPCAs) and small right pulmonary artery (PA)–to–right modified Blalock-Taussig-Thomas shunt. (C) Use of 3D model in the operating room for procedural guidance. (D) Unifocalization of left-sided major aortopulmonary collateral arteries–to–left modified Blalock-Taussig-Thomas shunt. (E) Right ventricular (RV)–to–pulmonary artery conduit placement (green) to unifocalized major aortopulmonary collateral arteries and takedown of bilateral modified Blalock-Taussig-Thomas shunts. APC = aortopulmonary collateral; LSCA = left subclavian artery; PTFE = polytetrafluoroethylene; SVC = superior vena cava.
Figure 9
Figure 9
Heterotaxy, Unbalanced Atrioventricular Canal, Ventricular Inversion, Modified Fontan (A) 3D model showing a left ventricle (LV)–to–left superior vena cava (LSVC) conduit and left-sided Glenn procedure that complicates transplantation of a normal donor heart. (B) Intracardiac anatomy. (C) Intraoperative findings: explanted heart and a left ventricle–to–left superior vena cava conduit, showing accuracy of the 3D model. ASD = atrial septal defect; other abbreviations as in Figures 6 and 7.
Figure 10
Figure 10
Airway Abnormalities in Congenital Heart Disease (A) Vascular ring with posterior compression of trachea by a circumflex transverse arch coursing behind the aorta. (B) Severe branch pulmonary artery dilation in tetralogy of Fallot with absent pulmonary valve with compression and malacia of bilateral mainstem bronchi. Abbreviations as in Figure 7.
Figure 11
Figure 11
Bioresorbable Airway Splint Manufactured From Polycaprolactone With a Bellowed Design to Promote Expansion and Growth Over Time
Figure 12
Figure 12
3D Printed Model in a Case of TOF With Borderline Large PA Measurements Image on the left shows a stent within main pulmonary artery (MPA). Image on the right is an angiogram taken after successful transcatheter implantation of pulmonary valve. PA = pulmonary artery; TOF = tetralogy of Fallot.
Figure 13
Figure 13
3D Models of Adults With Congenital Heart Disease (A) A 31-year-old patient with dextrocardia, a double-outlet right ventricle (DORV), and a Fontan procedure. (B) A 19-year-old patient with a bicuspid aortic valve (not shown) and a severely dilated aortic root and ascending aorta. (C) A 40-year-old patient with a double-outlet right ventricle, 2 VSDs, and classic Glenn and modified Mustard procedures (conduit from inferior vena cava [IVC] to left atrium [LA], in green). (D) A 45-year-old patient with a left dominant unbalanced atrioventricular canal, a double-outlet right ventricle, and right ventricular outflow tract obstruction. Abbreviations as in Figures 5, 6, 7, and 8.
Figure 14
Figure 14
Patient and Model Doppler Comparisons Doppler profile of a patient’s echocardiogram on the left, compared with the Doppler image from the 3D printed model on the right. Arrows point towards the aortic valve from the patient's echocardiogram (left) and model (right).
Figure 15
Figure 15
Simulated Arterial Switch Operation From a Hands-on Surgical Training Course for Cardiothoracic Surgeons Reproduced with permission from Yoo et al. . See Supplemental Video 2. LCA = left coronary artery; other abbreviations as in Figures 5 and 6.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/6059001/bin/grv2.jpg
Supplemental Video 2

References

    1. Manyika J, Chui M, Bughin J, Dobbs R, Bisson P. Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy. McKinsey Global Institute, 2013. Available at: . Accessed November 2, 2017.
    1. Tack P., Victor J., Gemmel P., Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15:115.
    1. Byrne N., Velasco Forte M., Tandon A., Valverde I., Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovascular Disease. 2016;5 2048004016645467.
    1. Vukicevic M., Mosadegh B., Min J.K., Little S.H. Cardiac 3D printing and its future directions. J Am Coll Cardiol Img. 2017;10:171–184.
    1. Lloyd-Jones D., Adams R., Carnethon M. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:e21–e181.
    1. Botto L.D., Correa A., Erickson J.D. Racial and temporal variations in the prevalence of heart defects. Pediatrics. 2001;107 e32–2.
    1. Warnes C.A., Liberthson R., Danielson G.K. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol. 2001;37:1170–1175.
    1. Mahle W.T., Spray T.L., Wernovsky G., Gaynor J.W., Clark B.J. Survival after reconstructive surgery for hypoplastic left heart syndrome. Circulation. 2000;102 Suppl 3:III136–III141.
    1. Erikssen G., Liestøl K., Seem E. Achievements in congenital heart defect surgery: a prospective, 40-year study of 7038 patients. Circulation. 2015;131:337–346.
    1. Boneva R.S., Botto L.D., Moore C.A., Yang Q., Correa A., Erickson J.D. Mortality associated with congenital heart defects in the United States. Circulation. 2001;103:2376–2381.
    1. Moons P., Bovijn L., Budts W., Belmans A., Gewillig M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation. 2010;122:2264–2272.
    1. Binder T.M., Moertl D., Mundigler G. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: in vitro and in vivo validation. J Am Coll Cardiol. 2000;35:230–237.
    1. Pentecost J.O., Sahn D.J., Thornburg B.L., Gharib M., Baptista A., Thornburg K.L. Graphical and stereolithographic models of the developing human heart lumen. Comput Med Imaging Graph. 2001;25:459–463.
    1. Ngan E.M., Rebeyka I.M., Ross D.B. The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg. 2006;132:264–269.
    1. Noecker A.M., Chen J.-F., Zhou Q. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 2006;52:349–353.
    1. Markert M., Weber S., Lueth T.C. A beating heart model 3D printed from specific patient data. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4472–4475.
    1. VanKoevering K.K., Hollister S.J., Green G.E. Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngol Head Neck Surg. 2017;143:178–183.
    1. Anwar S., Singh G.K., Varughese J. 3D printing in complex congenital heart disease: across a spectrum of age, pathology, and imaging techniques. J Am Coll Cardiol Img. 2017;10:953–956.
    1. Farooqi K.M., Uppu S.C., Nguyen K. Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol. 2015;37:90–98.
    1. Farooqi K.M., Saeed O., Zaidi A. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. J Am Coll Cardiol HF. 2016;4:301–311.
    1. Ryan J.R., Moe T.G., Richardson R., Frakes D.H., Nigro J.J., Pophal S. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. J Am Coll Cardiol Img. 2015;8:103–104.
    1. Jacobs C.A., Lin A.Y. A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific craniomaxillofacial surgery. Plast Reconstr Surg. 2017;139:1211–1220.
    1. Zweifel D.F., Simon C., Hoarau R., Pasche P., Broome M. Are virtual planning and guided surgery for head and neck reconstruction economically viable? J Oral Maxillofac Surg. 2015;73:170–175.
    1. Farooqi K.M., editor. Rapid Prototyping in Cardiac Disease. Springer International Publishing; Cham, Switzerland: 2017.
    1. Meier L.M., Meineri M., Hiansen J.Q., Horlick E.M. Structural and congenital heart disease interventions: the role of three-dimensional printing. Neth Heart J. 2017;25:65–75.
    1. Giannopoulos A.A., Mitsouras D., Yoo S.-J., Liu P.P., Chatzizisis Y.S., Rybicki F.J. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13:701–718.
    1. Mitsouras D., Liacouras P.C. Springer International Publishing; Cham, Switzerland: 2017. 3D Printing Technologies, Vol. 3.
    1. Borrello J., Backeris P. Rapid prototyping technologies. In: Farooqi K.M., editor. Rapid Prototyping in Cardiac Disease. Springer International Publishing; Cham, Switzerland: 2017. pp. 41–49.
    1. Chaowu Y., Hua L., Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model. Circulation. 2016;133:e608–e610.
    1. Bhatla P., Tretter J.T., Ludomirsky A. Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: does it alter management decisions? Pediatr Cardiol. 2017;38:103–114.
    1. Garekar S., Bharati A., Chokhandre M. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg. 2016;7:344–350.
    1. Farooqi K.M., Nielsen J.C., Uppu S.C. Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning. Circ Cardiovasc Imaging. 2015;8 e003043–3.
    1. Deferm S., Meyns B., Vlasselaers D., Budts W. 3D-printing in congenital cardiology: from flatland to spaceland. J Clin Imaging Sci. 2016;6 8–5.
    1. Hadeed K., Dulac Y., Acar P. Three-dimensional printing of a complex CHD to plan surgical repair. Cardiol Young. 2016;26:1432–1434.
    1. Schmauss D., Haeberle S., Hagl C., Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg. 2015;47:1044–1052.
    1. Yoo S.-J., Thabit O., Kim E.K. 3D printing in medicine of congenital heart diseases. 3D Printing Med. 2016;2:1–12.
    1. Warnes C.A., Williams R.G., Bashore T.M. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease) J Am Coll Cardiol. 2008;52:e143–e263.
    1. Hoffman J., Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–1900.
    1. Kirklin J.W., Blackstone E.H., Tchervenkov C.I., Castaneda A.R. Clinical outcomes after the arterial switch operation for transposition: patient, support, procedural, and institutional risk factors. Congenital Heart Surgeons Society. Circulation. 1992;86:1501–1515.
    1. Brown K.L., Ridout D.A., Goldman A.P., Hoskote A., Penny D.J. Risk factors for long intensive care unit stay after cardiopulmonary bypass in children. Crit Care Med. 2003;31:28–33.
    1. Gentles T.L., Mayer J.E., Jr., Gauvreau K. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg. 1997;114:376–391.
    1. Gaynor J.W., Mahle W.T., Cohen M.I. Risk factors for mortality after the Norwood procedure. Eur J Cardiothorac Surg. 2002;22:82–89.
    1. Barach P., Johnson J.K., Ahmad A. A prospective observational study of human factors, adverse events, and patient outcomes in surgery for pediatric cardiac disease. J Thorac Cardiovasc Surg. 2008;136:1422–1428.
    1. O’Brien S.M., Clarke D.R., Jacobs J.P., Jacobs M.L. An empirically based tool for analyzing mortality associated with congenital heart surgery. J Thorac Cardiovasc Surg. 2009;138:1139–1153.
    1. Saeed O., Farooqi K.M., Jorde U.P. Assessment of ventricular assist device placement and function. In: Farooqi K.M., editor. Rapid Prototyping in Cardiac Disease. Springer International Publishing; Cham, Switzerland: 2017. pp. 133–141.
    1. Sodian R., Weber S., Markert M. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg. 2008;136:1098–1099.
    1. Smith M.L., McGuinness J., O’Reilly M.K., Nolke L., Murray J.G., Jones J.F.X. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Ir J Med Sci. 2017;186:753–756.
    1. Morrison R.J., Hollister S.J., Niedner M.F. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7 285ra64–4.
    1. Zopf D.A., Hollister S.J., Nelson M.E., Ohye R.G., Green G.E. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368:2043–2045.
    1. Schievano S., Migliavacca F., Coats L. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology. 2007;242:490–497.
    1. Biglino G., Capelli C., Taylor A.M., Schievano S. 3D printing cardiovascular anatomy: a single-centre experience. In: Shishkovsky I.V., editor. New Trends in 3D Printing. InTechOpen; London, United Kingdom: 2016. pp. 1–20.
    1. Valverde I., Gomez G., Coserria J.F. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2015;85:1006–1012.
    1. Fan Y., Kwok K.W., Zhang Y., Cheung G. Three-dimensional printing for planning occlusion procedure for a double-lobed left atrial appendage. Circ Cardiovasc Interv. 2016;9
    1. O’Neill B., Wang D.D., Pantelic M. Transcatheter caval valve implantation using multimodality imaging. J Am Coll Cardiol Img. 2015;8:221–225.
    1. Olivieri L., Krieger A., Chen M.Y., Kim P., Kanter J.P. 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int J Cardiol. 2014;172:e297–e298.
    1. Vukicevic M., Puperi D.S., Jane Grande-Allen K., Little S.H. 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng. 2017;45:508–519.
    1. Little S.H., Vukicevic M., Avenatti E., Ramchandani M., Barker C.M. 3D printed modeling for patient-specific mitral valve intervention: repair with a clip and a plug. J Am Coll Cardiol Intv. 2016;9:973–975.
    1. Maragiannis D., Jackson M.S., Igo S.R. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging. 2015;8
    1. Grant E.K., Olivieri L.J. The role of 3-D heart models in planning and executing interventional procedures. Can J Cardiol. 2017;33:1074–1081.
    1. Green A. Outcomes of congenital heart disease: a review. Pediatr Nurs. 2004;30:280–284.
    1. Dearani J.A., Connolly H.M., Martinez R., Fontanet H., Webb G.D. Caring for adults with congenital cardiac disease: successes and challenges for 2007 and beyond. Cardiol Young. 2007;17(Suppl 2):87–96.
    1. Warnes C.A., Bhatt A.B., Daniels C.J., Gillam L.D., Stout K.K. COCATS 4 Task Force 14: training in the care of adult patients with congenital heart disease. J Am Coll Cardiol. 2015;65:1887–1898.
    1. Williams R.G., Pearson G.D., Barst R.J. Report of the National Heart, Lung, and Blood Institute Working Group on research in adult congenital heart disease. J Am Coll Cardiol. 2006;47:701–707.
    1. Khairy P., Ionescu-Ittu R., Mackie A.S., Abrahamowicz M., Pilote L., Marelli A.J. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56:1149–1157.
    1. Giamberti A., Chessa M., Abella R. Morbidity and mortality risk factors in adults with congenital heart disease undergoing cardiac reoperations. Ann Thorac Surg. 2009;88:1284–1289.
    1. Holst K.A., Dearani J.A., Burkhart H.M. Risk factors and early outcomes of multiple reoperations in adults with congenital heart disease. Ann Thorac Surg. 2011;92:122–130.
    1. Holst K.A., Dearani J.A., Burkhart H.M. Reoperative multivalve surgery in adult congenital heart disease. Ann Thorac Surg. 2013;95:1383–1389.
    1. Anwar S., Singh G.K., Petrucci O., Eghtesady P., Woodard P.K., Billadello J.J. Adult congenital heart disease. In: Farooqi K.M., editor. Rapid Prototyping in Cardiac Disease. Springer International Publishing; Cham, Switzerland: 2017. pp. 99–109.
    1. Riesenkampff E., Rietdorf U., Wolf I. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg. 2009;138:571–580.
    1. Hermsen J.L., Burke T.M., Seslar S.P. Scan, plan, print, practice, perform: Development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery. J Thorac Cardiovasc Surg. 2017;153:132–140.
    1. Olivieri L.J., Krieger A., Loke Y.-H., Nath D.S., Kim P.C.W., Sable C.A. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr. 2015;28:392–397.
    1. Yoo S.-J., Spray T., Austin E.H., Yun T.-J., Van Arsdell G.S. Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg. 2017;153:1530–1540.
    1. Rehder R., Abd-El-Barr M., Hooten K., Weinstock P., Madsen J.R., Cohen A.R. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32:43–54.
    1. Randazzo M., Pisapia J.M., Singh N., Thawani J.P. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(Suppl 33):S801–S809.
    1. Biglino G., Capelli C., Wray J. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open. 2015;5 e007165–5.
    1. Javan R., Herrin D., Tangestanipoor A. Understanding spatially complex segmental and branch anatomy using 3D printing: liver, lung, prostate, coronary arteries, and circle of Willis. Acad Radiol. 2016;23:1183–1189.
    1. Conti A., Pontoriero A., Iatì G. 3D-printing of arteriovenous malformations for radiosurgical treatment: pushing anatomy understanding to real boundaries. Cureus. 2016;8
    1. Costello J.P., Olivieri L.J., Su L. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis. 2015;10:185–190.
    1. Rodriguez-Paz J.M., Kennedy M., Salas E. Beyond “see one, do one, teach one”: toward a different training paradigm. Postgrad Med J. 2009;85:244–249.
    1. Kotsis S.V., Chung K.C. Application of the “see one, do one, teach one” concept in surgical training. Plast Reconstr Surg. 2013;131:1194–1201.
    1. Wilasrusmee C., Suvikrom J., Suthakorn J. Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees. Int J Angiol. 2008;17:129–133.
    1. Giroud J.M., Jacobs J.P., Fricker F.J., Spicer D. Web based “global virtual museum of congenital cardiac pathology.”. Prog Pediatr Cardiol. 2012;33:91–97.
    1. Jonas R.A. Training fellows in paediatric cardiac surgery. Cardiol Young. 2016;26:1474–1483.
    1. Bramlet M, Dori Y, Olivieri LJ. NIH 3D Print Exchange. Bethesda, MD: National Institutes of Health. Available at: . Accessed June 28, 2017.
    1. Bucher K. New frontiers of medical illustration. JAMA. 2016;316:2340–2341.
    1. Fleming M., Smith S., Slaunwhite J. Investigating interpersonal competencies of cardiac surgery teams. Can J Surg. 2006;49:22–30.
    1. Sutcliffe K.M., Lewton E., Rosenthal M.M. Communication failures: an insidious contributor to medical mishaps. Acad Med. 2004;79:186–194.
    1. Kappetein A.P., Windecker S. The heart team in acute cardiac care. In: Tubaro M., Vranckx P., editors. The ESC Textbook of Intensive and Acute Cardiovascular Care. 2nd ed. Oxford University Press; Oxford, United Kingdom: 2015. pp. 87–90.
    1. Hu A., Wilson T., Ladak H., Haase P., Fung K. Three-dimensional educational computer model of the larynx: voicing a new direction. Arch Otolaryngol Head Neck Surg. 2009;135:677–681.
    1. Bernhard J.-C., Isotani S., Matsugasumi T. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016;34:337–345.
    1. Mashari A., Montealegre-Gallegos M., Knio Z. Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data. Echo Res Pract. 2017;3:R57–R64.
    1. Kapur K.K., Garg N. Echocardiography derived three- dimensional printing of normal and abnormal mitral annuli. Ann Card Anaesth. 2014;17:283–284.
    1. Mahmood F., Owais K., Taylor C. Three-dimensional printing of mitral valve using echocardiographic data. J Am Coll Cardiol Img. 2015;8:227–229.
    1. Witschey W.R.T., Pouch A.M., McGarvey J.R. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg. 2014;98:691–694.
    1. Muraru D., Veronesi F., Maddalozzo A. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur Heart J Cardiovasc Imaging. 2017;18:802–808.
    1. Samuel B.P., Pinto C., Pietila T., Vettukattil J.J. Ultrasound-derived three-dimensional printing in congenital heart disease. J Digit Imaging. 2014;28:459–461.
    1. Poterucha J.T., Foley T.A., Taggart N.W. Percutaneous pulmonary valve implantation in a native outflow tract. J Am Coll Cardiol Intv. 2014;7:e151–e152.
    1. Gosnell J., Pietila T., Samuel B.P., Kurup H.K.N., Haw M.P., Vettukattil J.J. Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging. 2016;29:665–669.
    1. Moore T., Madriago E.J., Renteria E.S. Co-registration of 3D echo and MR data to create physical models of congenital heart malformations. J Cardiovasc Magn Resonan. 2015;17:P198.
    1. Wang K., Wu C., Qian Z., Zhang C., Ben Wang, Vannan M.A. Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Additive Manufacturing. 2016;12:31–37.
    1. Wang K., Zhao Y., Chang Y.-H. Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater Des. 2016;90:704–712.
    1. Whitlock M.C., Hundley W.G. Noninvasive imaging of flow and vascular function in disease of the aorta. J Am Coll Cardiol Img. 2015;8:1094–1106.
    1. Taylor C.A., Figueroa C.A. Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng. 2009;11:109–134.
    1. Santos dos J., Werner H., de Azevedo B.A., Lanziotti L. 3D-printed models applied in medical research studies. In: Shishkovsky I.V., editor. New Trends in 3D Printing. InTechOpen; London, United Kingdom: 2016.
    1. Sodian R., Schmauss D., Schmitz C. 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg. 2009;88:974–978.
    1. Ripley B., Kelil T., Cheezum M.K. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2016;10:28–36.
    1. Vukicevic M., Maragiannis D., Jackson M., Little S.H. Functional evaluation of a patient-specific 3D printed model of aortic regurgitation (abstr) Circulation. 2015;132(Suppl 3):A18647.
    1. Kung E.O., Les A.S., Figueroa C.A. In vitro validation of finite element analysis of blood flow in deformable models. Ann Biomed Eng. 2011;39:1947–1960.
    1. Kolli K.K., Min J.K., Ha S., Soohoo H., Xiong G. Effect of varying hemodynamic and vascular conditions on fractional flow reserve: an in vitro study. J Am Heart Assoc. 2016;5 e003634–14.
    1. Kiraly L., Tofeig M., Jha N.K., Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg. 2016;22:238–240.
    1. Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. 2017;45:195–209.
    1. Markstedt K., Mantas A., Tournier I., Martínez Ávila H., Hägg D., Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16:1489–1496.
    1. Lee W., Debasitis J.C., Lee V.K. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30:1587–1595.
    1. Michael S., Sorg H., Peck C.-T. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8
    1. Shah F.A., Snis A., Matic A., Thomsen P., Palmquist A. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater. 2016;30:357–367.
    1. Mannoor M.S., Jiang Z., James T., Kong Y.L. 3D printed bionic ears. Nano Lett. 2013;13:2634–2639.
    1. Duan B., Hockaday L.A., Kang K.H., Butcher J.T. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255–1264.
    1. Fukunishi T., Best C.A., Sugiura T. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg. 2017;153:924–932.
    1. Jana S., Lerman A. Bioprinting a cardiac valve. Biotechnol Adv. 2015;33:1503–1521.
    1. Lee J.M., Sing S.L., Tan E., Yeong W.Y. Bioprinting in cardiovascular tissue engineering: a review. Int J Bioprinting. 2016;2:27–36.
    1. Tabriz A.G., Hermida M.A., Leslie N.R., Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 2015;7 045012.

Source: PubMed

3
Tilaa