Punicic Acid and Its Role in the Prevention of Neurological Disorders: A Review

Claudia M Guerra-Vázquez, Mariana Martínez-Ávila, Daniel Guajardo-Flores, Marilena Antunes-Ricardo, Claudia M Guerra-Vázquez, Mariana Martínez-Ávila, Daniel Guajardo-Flores, Marilena Antunes-Ricardo

Abstract

Millions of people worldwide are affected by neurodegenerative diseases (NDs). NDs are characterized by progressive damage and death of nerve cells accompanied by high levels of inflammatory biomarkers and oxidative stress conditions. Punicic acid, the main bioactive component of pomegranate (Punica granatum) seed oil, is an omega-5 isomer of conjugated α-linoleic acid that has shown strong anti-oxidative and anti-inflammatory effects that contributes towards its positive effect against a wide arrange of diseases. Punicic acid decreases oxidative damage and inflammation by increasing the expression of peroxisome proliferator-activated receptors. In addition, it can reduce beta-amyloid deposits formation and tau hyperphosphorylation by increasing the expression of GLUT4 protein and the inhibition of calpain hyperactivation. Microencapsulated pomegranate, with high levels of punicic acid, increases antioxidant PON1 activity in HDL. Likewise, encapsulated pomegranate formulations with high levels of punicic acid have shown an increase in the antioxidant PON1 activity in HDL. Because of the limited brain permeability of punicic acid, diverse delivery formulations have been developed to enhance the biological activity of punicic acid in the brain, diminishing neurological disorders symptoms. Punicic acid is an important nutraceutical compound in the prevention and treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease.

Keywords: Alzheimer’s disease; Huntington’s disease; Parkinson’s disease; antioxidant; blood–brain barrier; conjugated linoleic acid; neurodegeneration.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Classification of the pathways involved in neurodegenerative diseases (NDs).
Figure 2
Figure 2
Schematic representation of shared physiopathological hallmarks in neurodegenerative diseases (NDs): (1) Mitochondrial dysfunction due to oxidative stress, aging, or because of genetic or environmental factors damage, resulting in the excessive production of ROS, which can activate p53 and the Bax (apoptotic regulator) translocation that allows the release of cytochrome C (Cyt C) leading the (Cas 9) and caspase 3 (Cas3) activation, resulting in DNA damage and cell death or (2) Apoptosis. Likewise, excessive ROS production also leads to oxidative stress and (3) Lipid Peroxidation, which can lead to protein aggregates such as α-synuclein as well as misfolded amyloid β peptide, the latter becoming an amyloid β (Aβ) plaque affecting neuron signaling induced by (4) Cholinergic Insufficiency. In turn, accumulation of Aβ plaque induces (5) Microglia Activation with the concomitant release of (6) Inflammatory Cytokines and produces neuroinflammation. On the other hand, (7) Dysregulation of Ca2+ because of neuronal membrane depolarization could induce synaptic deficits and promote the accumulation of Aβ plaques, and (8) Neurofibrillary Tangles through calpain activation. In addition, sustained calcium inflow results in over-activation of neuronal nitric oxide synthase (nNOS), with the increase in nitric oxide synthesis leading to oxidative stress/nitrosative stress and generalized brain inflammation. Moreover, ROS accumulation induces (9) kinases activation (glycogen synthase kinase-3β, GSK-3β) and induces tau hyperphosphorylation, promoting the accumulation of Aβ plaques. Accumulation of Aβ oligomers causes removal of insulin receptors (IRS) from the cell surface, inducing a (10) Neuronal Insulin Resistance and inhibiting the activation of glucose transporter type 4 (GLUT 4). Dysfunctional insulin signaling brings mammalian target of rapamycin (mTOR) pathway down and results in (11) Autophagy failure to accumulate Aβ plaques. Finally, the synthesized cholesterol binds apolipoprotein E (APOE) to form APOE–cholesterol (APOE–CH) particles. APOE–CH particles are internalized into neurons, and the free cholesterol is metabolized to 24-hydroxycholesterol (24-OHC), which subsequently passes through the blood–brain barrier (BBB) and enters into plasma, while plasma (12) 27 hydroxylcholesterol (27-OHC) flows into the brain, increasing the level of α-synuclein and eventually forms Lewy bodies (LBs). Back lines indicate stimulation, while red lines indicate inhibition.
Figure 3
Figure 3
Structure of punicic acid and related isomers α-linolenic acid and linoleic acid. Chemical structures drawn in ChemDraw.
Figure 4
Figure 4
Punicic acid (PuA) biosynthesis and storage in triacylglycerol (TAG). Phosphatidylcholine (PC), Oleic acid (OA), Linoleic acid (LA), position sn2 Punicic Acid (PuA), Punicic Acid Phosphatidylcholine (Sn2-PuA PC), Fatty Acid Desaturase (FAD) 2 and FADXs, acyl-Coenzyme A (CoA), Acyl-CoA synthetase (ACS), Triacylglycerol (TAG) Phospholipid:diacylglycerol Acyltransferase (PDAT), Lysophosphatidylcholine Acyltransferase (LPCAT), n-glycerol-3-phosphate acyltransferase (GPAT), diacylglycerol acyltransferase (DGAT), sn-glycerol-3-phosphate (G3P), sn1,2-diacylglycerol (DAG), CDP-choline:1,2-diacyl-sn-glycerol cholinephosphotransferase (CPT), phosphatidylcholine: diacylglycerol cholinephosphotransferase (PDCT), phospholipase C (PLC).
Figure 5
Figure 5
Proposed punicic acid metabolism. Punicic acid is transformed into conjugated linoleic acid (CLA cis-9, trans-11) and then either β-oxidized into Conjugated Diane (CD) 16:2 or metabolized by Δ6-desaturase to become CD 18:3 to be further processed into CD 20:3 and CD 20:4. Chemical structures drawn in ChemDraw.
Figure 6
Figure 6
Schematic representation of biological effects of punicic acid (PuA) in neurological diseases (NDs). Punicic acid (PuA) acts as (1) an agonist of PPARs inhibiting the activation of nuclear factor kappa B (NF-κB) and the release of inflammatory cytokines such as TNF-alpha, and therefore, reducing neuroinflammation and tau hyperphosphorylation and conducting less Aβ formation and aggregation. (2) PuA inhibits activation of calpain and cyclin-dependent kinase 5 (cdk5), limiting the hyperphosphorylation of tau protein and conducting to less Aβ formation and aggregation. (3) PuA increases GLUT4 protein expression regulating the glucose brain metabolism, reducing insulin resistance, and reducing the hyperphosphorylation of tau proteins. (4) PuA increased the anti-oxidative properties of the PON1 complex reducing ROS generation limiting mitochondrial dysfunction and neuronal apoptosis. Lipids peroxidation. Moreover, PuA induces changes in high-density lipoproteins (HDL) lipid composition and functionality reducing the formation of oxysterols such as 27-hydroxycholesterol (27-OHC) and increasing oxidative resistance with less Aβ plaque formation. ROS: reactive oxygen species; PON1: paraoxonase 1; PPARs: peroxisome proliferator-activated receptors; HDL: high-density lipoprotein; GLUT4: insulin-sensitive glucose transporter; CH: cholesterol; BBB: blood–brain barrier; ApoE: apolipoprotein E; Glu: glucose, PuA: punicic acid. Green lines indicate stimulation, while red lines indicate inhibition.

References

    1. Wyss-Coray T. Ageing, Neurodegeneration and Brain Rejuvenation. Nature. 2016;539:180–186. doi: 10.1038/nature20411.
    1. Checkoway H., Lundin J.I., Kelada S.N. Neurodegenerative Diseases. IARC Sci. Publ. 2011;163:407–419.
    1. Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C.P. The Global Prevalence of Dementia: A Systematic Review and Metaanalysis. Alzheimers Dement. 2013;9:63. doi: 10.1016/j.jalz.2012.11.007.
    1. Akbar M., Song B.-J., Essa M.M., Khan M. Pomegranate: An Ideal Fruit for Human Health. Int. J. Nutr. Pharm. Neurol. Dis. 2015;5:141. doi: 10.4103/2231-0738.167506.
    1. Viuda-Martos M., Fernández-López J., Pérez-Álvarez J.A. Pomegranate and Its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010;9:635–654. doi: 10.1111/j.1541-4337.2010.00131.x.
    1. Jalal H., Pal M.A., Hamdani H., Rovida M., Khan N.N. Antioxidant Activity of Pomegranate Peel and Seed Powder Extracts. J. Pharmacogn. Phytochem. 2018;7:992–997.
    1. Kýralan M., Gölükcü M., Tokgöz H. Oil and Conjugated Linolenic Acid Contents of Seeds from Important Pomegranate Cultivars (Punica Granatum L.) Grown in Turkey. J. Am. Oil Chem. Soc. 2009;86:985–990. doi: 10.1007/s11746-009-1436-x.
    1. Peng Y. Comparative Analysis of the Biological Components of Pomegranate Seed from Different Cultivars. Int. J. Food Prop. 2019;22:784–794. doi: 10.1080/10942912.2019.1609028.
    1. Kaseke T., Opara U.L., Fawole O.A. Effects of Enzymatic Pretreatment of Seeds on the Physicochemical Properties, Bioactive Compounds, and Antioxidant Activity of Pomegranate Seed Oil. Molecules. 2021;26:4575. doi: 10.3390/molecules26154575.
    1. Shaban N.Z., Talaat I.M., Elrashidy F.H., Hegazy A.Y., Sultan A.S. Therapeutic Role of Punica Granatum (Pomegranate) Seed Oil Extract on Bone Turnover and Resorption Induced in Ovariectomized Rats. J. Nutr. Health Aging. 2017;21:1299–1306. doi: 10.1007/s12603-017-0884-5.
    1. Mandal A., Bhatia D., Bishayee A. Anti-Inflammatory Mechanism Involved in Pomegranate-Mediated Prevention of Breast Cancer: The Role of NF-ΚB and Nrf2 Signaling Pathways. Nutrients. 2017;9:436. doi: 10.3390/nu9050436.
    1. Zamora-López K., Noriega L.G., Estanes-Hernández A., Escalona-Nández I., Tobón-Cornejo S., Tovar A.R., Barbero-Becerra V., Pérez-Monter C. Punica Granatum L.-Derived Omega-5 Nanoemulsion Improves Hepatic Steatosis in Mice Fed a High Fat Diet by Increasing Fatty Acid Utilization in Hepatocytes. Sci. Rep. 2020;10:15229. doi: 10.1038/s41598-020-71878-y.
    1. Mohamed S.S., Fayed A.-H.M. Anti-Obesity Synergistic Effect of Pomegranate Seed Oil (PSO) and Arabic Gum (AG) in Albino Rats. Int. J. Vet. Sci. 2020;9:84–89.
    1. Aruna P., Venkataramanamma D., Singh A.K., Singh R.P. Health Benefits of Punicic Acid: A Review: Health Benefits of Punicic Acid. Compr. Rev. Food Sci. Food Saf. 2016;15:16–27. doi: 10.1111/1541-4337.12171.
    1. Bedel H.A., Turgut N.T., Kurtoglu A.U., Usta C. Effects of Nutraceutical Punicic Acid. Pharm. Sci. 2017;79:328–334. doi: 10.4172/pharmaceutical-sciences.1000234.
    1. Gutierrez Alvarez A., Yachelevich N., Kohn B., Brar P.C. Genotype—Phenotype Correlation in an Adolescent Girl with Pathogenic PPARy Genetic Variation That Caused Severe Hypertriglyceridemia and Early Onset Type 2 Diabetes. Ann. Pediatr. Endocrinol. Metab. 2021;26:284–289. doi: 10.6065/apem.2142056.028.
    1. Dhar Dubey K.K., Sharma G., Kumar A. Conjugated Linolenic Acids: Implication in Cancer. J. Agric. Food Chem. 2019;67:6091–6101. doi: 10.1021/acs.jafc.9b01379.
    1. Bougarne N., Weyers B., Desmet S.J., Deckers J., Ray D.W., Staels B., De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018;39:760–802. doi: 10.1210/er.2018-00064.
    1. Holic R., Xu Y., Caldo K.M.P., Singer S.D., Field C.J., Weselake R.J., Chen G. Bioactivity and Biotechnological Production of Punicic Acid. Appl. Microbiol. Biotechnol. 2018;102:3537–3549. doi: 10.1007/s00253-018-8883-y.
    1. Ramanan V.K., Saykin A.J. Pathways to Neurodegeneration: Mechanistic Insights from GWAS in Alzheimer’s Disease, Parkinson’s Disease, and Related Disorders. Am. J. Neurodegener. Dis. 2013;2:145–175.
    1. Fan J., Dawson T.M., Dawson V.L. Cell Death Mechanisms of Neurodegeneration. In: Beart P., Robinson M., Rattray M., Maragakis N.J., editors. Neurodegenerative Diseases. Volume 15. Springer International Publishing; Cham, Switzerland: 2017. pp. 403–425. Advances in Neurobiology.
    1. Plaza-Zabala A., Sierra-Torre V., Sierra A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int. J. Mol. Sci. 2017;18:598. doi: 10.3390/ijms18030598.
    1. Wu Y., Chen M., Jiang J. Mitochondrial Dysfunction in Neurodegenerative Diseases and Drug Targets via Apoptotic Signaling. Mitochondrion. 2019;49:35–45. doi: 10.1016/j.mito.2019.07.003.
    1. Fritsch L.E., Moore M.E., Sarraf S.A., Pickrell A.M. Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. J. Mol. Biol. 2020;432:2510–2524. doi: 10.1016/j.jmb.2019.10.015.
    1. Ilic K., Mlinac-Jerkovic K., Jovanov-Milosevic N., Simic G., Habek N., Bogdanovic N., Kalanj-Bognar S. Hippocampal Expression of Cell-Adhesion Glycoprotein Neuroplastin Is Altered in Alzheimer’s Disease. J. Cell Mol. Med. 2019;23:1602–1607. doi: 10.1111/jcmm.13998.
    1. Tehran D.A., Kuijpers M., Haucke V. Presynaptic Endocytic Factors in Autophagy and Neurodegeneration. Curr. Opin. Neurobiol. 2018;48:153–159. doi: 10.1016/j.conb.2017.12.018.
    1. O’Carroll A., Coyle J., Gambin Y. Prions and Prion-like Assemblies in Neurodegeneration and Immunity: The Emergence of Universal Mechanisms across Health and Disease. Semin. Cell Dev. Biol. 2020;99:115–130. doi: 10.1016/j.semcdb.2019.11.012.
    1. Nichols M.R., St-Pierre M., Wendeln A., Makoni N.J., Gouwens L.K., Garrad E.C., Sohrabi M., Neher J.J., Tremblay M., Combs C.K. Inflammatory Mechanisms in Neurodegeneration. J. Neurochem. 2019;149:562–581. doi: 10.1111/jnc.14674.
    1. Castellanos D.B., Martín-Jiménez C.A., Rojas-Rodríguez F., Barreto G.E., González J. Brain Lipidomics as a Rising Field in Neurodegenerative Contexts: Perspectives with Machine Learning Approaches. Front. Neuroendocrinol. 2021;61:100899. doi: 10.1016/j.yfrne.2021.100899.
    1. Sweeney M.D., Kisler K., Montagne A., Toga A.W., Zlokovic B.V. The Role of Brain Vasculature in Neurodegenerative Disorders. Nat. Neurosci. 2018;21:1318–1331. doi: 10.1038/s41593-018-0234-x.
    1. Pluvinage J.V., Wyss-Coray T. Systemic Factors as Mediators of Brain Homeostasis, Ageing and Neurodegeneration. Nat. Rev. Neurosci. 2020;21:93–102. doi: 10.1038/s41583-019-0255-9.
    1. Hwang J.-Y., Aromolaran K.A., Zukin R.S. The Emerging Field of Epigenetics in Neurodegeneration and Neuroprotection. Nat. Rev. Neurosci. 2017;18:347–361. doi: 10.1038/nrn.2017.46.
    1. Sampaio T., Savall A., Gutierrez M.Z., Pinton S. Neurotrophic Factors in Alzheimer’s and Parkinson’s Diseases: Implications for Pathogenesis and Therapy. Neural Regen. Res. 2017;12:549. doi: 10.4103/1673-5374.205084.
    1. Ding X., Liu X., Wang F., Wang F., Geng X. Role of Senescence and Neuroprotective Effects of Telomerase in Neurodegenerative Diseases. Rejuvenation Res. 2020;23:150–158. doi: 10.1089/rej.2018.2115.
    1. Ross C.A., Truant R. A Unifying Mechanism in Neurodegeneration. Nature. 2017;541:34–35. doi: 10.1038/nature21107.
    1. Angelova P.R., Abramov A.Y. Role of Mitochondrial ROS in the Brain: From Physiology to Neurodegeneration. FEBS Lett. 2018;592:692–702. doi: 10.1002/1873-3468.12964.
    1. Tewari D., Sah A.N., Bawari S., Nabavi S.F., Dehpour A.R., Shirooie S., Braidy N., Fiebich B.L., Vacca R.A., Nabavi S.M. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr. Neuropharmacol. 2020;19:114–126. doi: 10.2174/1570159X18666200429001549.
    1. Magalhães C.A., Ferreira C.N., Loures C.M.G., Fraga V.G., Chaves A.C., Oliveira A.C.R., de Souza L.C., de P. F. Resende E., Carmona K.C., Guimarães H.C., et al. Leptin, HsCRP, TNF-α and IL-6 Levels from Normal Aging to Dementia: Relationship with Cognitive and Functional Status. J. Clin. Neurosci. 2018;56:150–155. doi: 10.1016/j.jocn.2018.08.027.
    1. Paouri E., Tzara O., Kartalou G.-I., Zenelak S., Georgopoulos S. Peripheral Tumor Necrosis Factor-Alpha (TNF-α) Modulates Amyloid Pathology by Regulating Blood-Derived Immune Cells and Glial Response in the Brain of AD/TNF Transgenic Mice. J. Neurosci. 2017;37:5155–5171. doi: 10.1523/JNEUROSCI.2484-16.2017.
    1. Wakabayashi T., Yamaguchi K., Matsui K., Sano T., Kubota T., Hashimoto T., Mano A., Yamada K., Matsuo Y., Kubota N., et al. Differential Effects of Diet- and Genetically-Induced Brain Insulin Resistance on Amyloid Pathology in a Mouse Model of Alzheimer’s Disease. Mol. Neurodegener. 2019;14:15. doi: 10.1186/s13024-019-0315-7.
    1. Folch J., Olloquequi J., Ettcheto M., Busquets O., Sánchez-López E., Cano A., Espinosa-Jiménez T., García M.L., Beas-Zarate C., Casadesús G., et al. The Involvement of Peripheral and Brain Insulin Resistance in Late Onset Alzheimer’s Dementia. Front. Aging Neurosci. 2019;11:236. doi: 10.3389/fnagi.2019.00236.
    1. Corsaro A., Thellung S., Villa V., Nizzari M., Florio T. Role of Prion Protein Aggregation in Neurotoxicity. Int. J. Mol. Sci. 2012;13:8648–8669. doi: 10.3390/ijms13078648.
    1. Binyamin O., Nitzan K., Frid K., Ungar Y., Rosenmann H., Gabizon R. Brain Targeting of 9c,11t-Conjugated Linoleic Acid, a Natural Calpain Inhibitor, Preserves Memory and Reduces Aβ and P25 Accumulation in 5XFAD Mice. Sci. Rep. 2019;9:18437. doi: 10.1038/s41598-019-54971-9.
    1. Uddin M.S., Stachowiak A., Mamun A.A., Tzvetkov N.T., Takeda S., Atanasov A.G., Bergantin L.B., Abdel-Daim M.M., Stankiewicz A.M. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications. Front. Aging Neurosci. 2018;10:04. doi: 10.3389/fnagi.2018.00004.
    1. Shafei M.A., Harris M., Conway M.E. Divergent Metabolic Regulation of Autophagy and MTORC1—Early Events in Alzheimer’s Disease? Front. Aging Neurosci. 2017;9:173. doi: 10.3389/fnagi.2017.00173.
    1. Spinelli M., Fusco S., Grassi C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front. Neurosci. 2019;13:788. doi: 10.3389/fnins.2019.00788.
    1. Marsillach J., Adorni M.P., Zimetti F., Papotti B., Zuliani G., Cervellati C. HDL Proteome and Alzheimer’s Disease: Evidence of a Link. Antioxidants. 2020;9:1224. doi: 10.3390/antiox9121224.
    1. Zimetti F., Adorni M.P., Marsillach J., Marchi C., Trentini A., Valacchi G., Cervellati C. Connection between the Altered HDL Antioxidant and Anti-Inflammatory Properties and the Risk to Develop Alzheimer’s Disease: A Narrative Review. Oxidative Med. Cell. Longev. 2021;2021:1–13. doi: 10.1155/2021/6695796.
    1. Balakrishnan J., Kannan S., Govindasamy A. Structured form of DHA Prevents Neurodegenerative Disorders: A Better Insight into the Pathophysiology and the Mechanism of DHA Transport to the Brain. Nutr. Res. 2021;85:119–134. doi: 10.1016/j.nutres.2020.12.003.
    1. Hammouda S., Ghzaiel I., Khamlaoui W., Hammami S., Mhenni S.Y., Samet S., Hammami M., Zarrouk A. Genetic Variants in FADS1 and ELOVL2 Increase Level of Arachidonic Acid and the Risk of Alzheimer’s Disease in the Tunisian Population. Prostaglandins Leukot. Essent. Fat. Acids. 2020;160:102159. doi: 10.1016/j.plefa.2020.102159.
    1. Xu Y., Mietkiewska E., Shah S., Weselake R.J., Chen G. Punicic Acid Production in Brassica Napus. Metab. Eng. 2020;62:20–29. doi: 10.1016/j.ymben.2020.08.011.
    1. HMDB: The Human Metabolome Database Metabocard for Punicic Acid (HMDB0030963) [(accessed on 1 January 2021)]. Available online: .
    1. National Center for Biotechnology Information PubChem Compound Summary for CID 5281126, Punicic Acid. [(accessed on 1 January 2022)]; Available online: .
    1. Shabbir M.A., Khan M.R., Saeed M., Pasha I., Khalil A.A., Siraj N. Punicic Acid: A Striking Health Substance to Combat Metabolic Syndromes in Humans. Lipids Health Dis. 2017;16:99. doi: 10.1186/s12944-017-0489-3.
    1. Cao Y., Wang L., He M., Zhang Y., Wang H. Nanodispersions of Monoglycerides of Punicic Acid: A Potential Nutrient Precursor with Higher Oxidative Stability and Cytotoxicity. RSC Adv. 2014;4:43392–43398. doi: 10.1039/C4RA06293K.
    1. Adu-Frimpong M., Omari-Siaw E., Mukhtar Y.M., Xu X., Yu J. Formulation of Pomegranate Seed Oil: A Promising Approach of Improving Stability and Health-Promoting Properties. Eur. J. Lipid Sci. Technol. 2018;120:1800177. doi: 10.1002/ejlt.201800177.
    1. Cortez-Trejo M.C., Wall-Medrano A., Gaytán-Martínez M., Mendoza S. Microencapsulation of Pomegranate Seed Oil Using a Succinylated Taro Starch: Characterization and Bioaccessibility Study. Food Biosci. 2021;41:100929. doi: 10.1016/j.fbio.2021.100929.
    1. Comunian T.A., Grassmann Roschel G., da Silva Anthero A.G., de Castro I.A., Dupas Hubinger M. Influence of Heated, Unheated Whey Protein Isolate and Its Combination with Modified Starch on Improvement of Encapsulated Pomegranate Seed Oil Oxidative Stability. Food Chem. 2020;326:126995. doi: 10.1016/j.foodchem.2020.126995.
    1. Mizrahi M., Friedman-Levi Y., Larush L., Frid K., Binyamin O., Dori D., Fainstein N., Ovadia H., Ben-Hur T., Magdassi S., et al. Pomegranate Seed Oil Nanoemulsions for the Prevention and Treatment of Neurodegenerative Diseases: The Case of Genetic CJD. Nanomed. Nanotechnol. Biol. Med. 2014;10:1353–1363. doi: 10.1016/j.nano.2014.03.015.
    1. Ferrari Cervi V., Parcianello Saccol C., Henrique Marcondes Sari M., Cristóvão Martins C., Saldanha da Rosa L., Dias Ilha B., Zovico Soares F., Luchese C., Antunes Wilhelm E., Cruz L. Pullulan Film Incorporated with Nanocapsules Improves Pomegranate Seed Oil Anti-Inflammatory and Antioxidant Effects in the Treatment of Atopic Dermatitis in Mice. Int. J. Pharm. 2021;609:121144. doi: 10.1016/j.ijpharm.2021.121144.
    1. Adu-Frimpong M., Firempong C.K., Omari-Siaw E., Wang Q., Mukhtar Y.M., Deng W., Yu Q., Xu X., Yu J. Preparation, Optimization, and Pharmacokinetic Study of Nanoliposomes Loaded with Triacylglycerol-bound Punicic Acid for Increased Antihepatotoxic Activity. Drug Dev. Res. 2019;80:230–245. doi: 10.1002/ddr.21485.
    1. Soleimanian Y., Goli S.A.H., Varshosaz J., Sahafi S.M. Formulation and Characterization of Novel Nanostructured Lipid Carriers Made from Beeswax, Propolis Wax and Pomegranate Seed Oil. Food Chem. 2018;244:83–92. doi: 10.1016/j.foodchem.2017.10.010.
    1. Talkar S.S., Kharkar P.B., Patravale V.B. Docetaxel Loaded Pomegranate Seed Oil Based Nanostructured Lipid Carriers: A Potential Alternative to Current Formulation. AAPS PharmSciTech. 2020;21:295. doi: 10.1208/s12249-020-01839-1.
    1. Mirsafaei R., Varshosaz J., Mirsattari S.N. Folate-Targeted Polyacrylamide/Punicic Acid Nanomicelles for Flutamide Delivery in Prostate Cancer: Characterization, In Vitro Biological Evaluation, and Its DFT Study. Recent Pat. Nanotechnol. 2020;14:360–374. doi: 10.2174/1872210514666200513092614.
    1. Fayaz G., Goli S.A.H., Kadivar M., Valoppi F., Barba L., Balducci C., Conte L., Calligaris S., Nicoli M.C. Pomegranate Seed Oil Organogels Structured by Propolis Wax, Beeswax, and Their Mixture. Eur. J. Lipid Sci. Technol. 2017;119:1700032. doi: 10.1002/ejlt.201700032.
    1. Modaresi J., Fathi Nasri M.H., Rashidi L., Dayani O., Kebreab E. Short Communication: Effects of Supplementation with Pomegranate Seed Pulp on Concentrations of Conjugated Linoleic Acid and Punicic Acid in Goat Milk. J. Dairy Sci. 2011;94:4075–4080. doi: 10.3168/jds.2010-4069.
    1. Pamisetty A., Kumar K.A., Indrani D., Singh R.P. Rheological, Physico-Sensory and Antioxidant Properties of Punicic Acid Rich Wheat Bread. J. Food Sci. Technol. 2020;57:253–262. doi: 10.1007/s13197-019-04055-3.
    1. Van Nieuwenhove C.P., Moyano A., Castro-Gómez P., Fontecha J., Sáez G., Zárate G., Pizarro P.L. Comparative Study of Pomegranate and Jacaranda Seeds as Functional Components for the Conjugated Linolenic Acid Enrichment of Yogurt. LWT. 2019;111:401–407. doi: 10.1016/j.lwt.2019.05.045.
    1. Chojnacka A., Gładkowski W., Gliszczyńska A., Niezgoda N., Kiełbowicz G., Wawrzeńczyk C. Synthesis of Structured Phosphatidylcholine Containing Punicic Acid by the Lipase-Catalyzed Transesterification with Pomegranate Seed Oil. Catal. Commun. 2016;75:60–64. doi: 10.1016/j.catcom.2015.11.019.
    1. Calvano C.D., Losito I., Cataldi T. Editorial to the Special Issue “Lipidomics and Neurodegenerative Diseases”. Int. J. Mol. Sci. 2021;22:1270. doi: 10.3390/ijms22031270.
    1. Pereira de Melo I.L., de Oliveira e Silva A.M., Yoshime L.T., Gasparotto Sattler J.A., Teixeira de Carvalho E.B., Mancini-Filho J. Punicic Acid Was Metabolised and Incorporated in the Form of Conjugated Linoleic Acid in Different Rat Tissues. Int. J. Food Sci. Nutr. 2019;70:421–431. doi: 10.1080/09637486.2018.1519528.
    1. Yuan G., Sinclair A.J., Xu C., Li D. Incorporation and Metabolism of Punicic Acid in Healthy Young Humans. Mol. Nutr. Food Res. 2009;53:1336–1342. doi: 10.1002/mnfr.200800520.
    1. Tsuzuki T., Kawakami Y., Abe R., Nakagawa K., Koba K., Imamura J., Iwata T., Ikeda I., Miyazawa T. Conjugated Linolenic Acid Is Slowly Absorbed in Rat Intestine, but Quickly Converted to Conjugated Linoleic Acid. J. Nutr. 2006;136:2153–2159. doi: 10.1093/jn/136.8.2153.
    1. Yuan G.-F., Yuan J.-Q., Li D. Punicic Acid from Trichosanthes Kirilowii Seed Oil Is Rapidly Metabolized to Conjugated Linoleic Acid in Rats. J. Med. Food. 2009;12:416–422. doi: 10.1089/jmf.2007.0541.
    1. Mele M.C., Cannelli G., Carta G., Cordeddu L., Melis M.P., Murru E., Stanton C., Banni S. Metabolism of C9,T11-Conjugated Linoleic Acid (CLA) in Humans. Prostaglandins Leukot. Essent. Fat. Acids. 2013;89:115–119. doi: 10.1016/j.plefa.2013.05.005.
    1. Fa M., Diana A., Carta G., Cordeddu L., Melis M., Murru E., Sogos V., Banni S. Incorporation and Metabolism of C9,T11 and T10,C12 Conjugated Linoleic Acid (CLA) Isomers in Rat Brain. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2005;1736:61–66. doi: 10.1016/j.bbalip.2005.06.010.
    1. Queiroz M.P., da S. Lima M., Barbosa M.Q., de Melo M.F.F.T., de M. S. Bertozzo C.C., de Oliveira M.E.G., Bessa R.J.B., Alves S.P.A., Souza M.I.A., Queiroga R., et al. Effect of Conjugated Linoleic Acid on Memory and Reflex Maturation in Rats Treated During Early Life. Front. Neurosci. 2019;13:370. doi: 10.3389/fnins.2019.00370.
    1. Murru E., Carta G., Manca C., Sogos V., Pistis M., Melis M., Banni S. Conjugated Linoleic Acid and Brain Metabolism: A Possible Anti-Neuroinflammatory Role Mediated by PPARα Activation. Front. Pharmacol. 2021;11:587140. doi: 10.3389/fphar.2020.587140.
    1. Wang H., Eckel R.H. What Are Lipoproteins Doing in the Brain? Trends Endocrinol. Metab. 2014;25:8–14. doi: 10.1016/j.tem.2013.10.003.
    1. Bazinet R.P., Layé S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat. Rev. Neurosci. 2014;15:771–785. doi: 10.1038/nrn3820.
    1. Ringseis R., Wen G., Saal D., Eder K. Conjugated Linoleic Acid Isomers Reduce Cholesterol Accumulation in Acetylated LDL-Induced Mouse RAW264.7 Macrophage-Derived Foam Cells. Lipids. 2008;43:913–923. doi: 10.1007/s11745-008-3226-x.
    1. Zhang W., Chen R., Yang T., Xu N., Chen J., Gao Y., Stetler R.A. Fatty Acid Transporting Proteins: Roles in Brain Development, Aging, and Stroke. Prostaglandins Leukot. Essent. Fat. Acids. 2018;136:35–45. doi: 10.1016/j.plefa.2017.04.004.
    1. Anusree S.S., Sindhu G., Preetha Rani M.R., Raghu K.G. Insulin Resistance in 3T3-L1 Adipocytes by TNF-α Is Improved by Punicic Acid through Upregulation of Insulin Signalling Pathway and Endocrine Function, and Downregulation of Proinflammatory Cytokines. Biochimie. 2018;146:79–86. doi: 10.1016/j.biochi.2017.11.014.
    1. Hontecillas R., O’Shea M., Einerhand A., Diguardo M., Bassaganya-Riera J. Activation of PPAR γ and α by Punicic Acid Ameliorates Glucose Tolerance and Suppresses Obesity-Related Inflammation. J. Am. Coll. Nutr. 2009;28:184–195. doi: 10.1080/07315724.2009.10719770.
    1. Khajebishak Y., Payahoo L., Alivand M., Hamishehkar H., Mobasseri M., Ebrahimzadeh V., Alipour M., Alipour B. Effect of Pomegranate Seed Oil Supplementation on the GLUT-4 Gene Expression and Glycemic Control in Obese People with Type 2 Diabetes: A Randomized Controlled Clinical Trial. J. Cell Physiol. 2019;234:19621–19628. doi: 10.1002/jcp.28561.
    1. Dorantes-Morales A., Estrada-Luna D., Bautista-Pérez R., Betanzos-Cabrera G., Luna-Luna M., Flores-Castillo C., Vargas-Alarcón G., Fragoso J.M., Pérez-Méndez Ó., Carreón-Torres E. Microencapsulated Pomegranate Modifies the Composition and Function of High-Density Lipoproteins (HDL) in New Zealand Rabbits. Molecules. 2020;25:3297. doi: 10.3390/molecules25143297.
    1. Estrada-Luna D., Carreón-Torres E., Bautista-Pérez R., Betanzos-Cabrera G., Dorantes-Morales A., Luna-Luna M., Vargas-Barrón J., Mejía A.M., Fragoso J.M., Carvajal-Aguilera K., et al. Microencapsulated Pomegranate Reverts High-Density Lipoprotein (HDL)-Induced Endothelial Dysfunction and Reduces Postprandial Triglyceridemia in Women with Acute Coronary Syndrome. Nutrients. 2019;11:1710. doi: 10.3390/nu11081710.
    1. Frid K., Binyamin O., Usman A., Gabizon R. Delay of GCJD Aggravation in Sick TgMHu2ME199K Mice by Combining NPC Transplantation and Nano-PSO Administration. Neurobiol. Aging. 2020;95:231–239. doi: 10.1016/j.neurobiolaging.2020.07.030.
    1. Strosznajder A.K., Wójtowicz S., Jeżyna M.J., Sun G.Y., Strosznajder J.B. Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. Neuromol. Med. 2021;23:86–98. doi: 10.1007/s12017-020-08629-9.
    1. Jamwal S., Blackburn J.K., Elsworth J.D. PPARγ/PGC1α Signaling as a Potential Therapeutic Target for Mitochondrial Biogenesis in Neurodegenerative Disorders. Pharmacol. Ther. 2021;219:107705. doi: 10.1016/j.pharmthera.2020.107705.
    1. Wójtowicz S., Strosznajder A.K., Jeżyna M., Strosznajder J.B. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem. Res. 2020;45:972–988. doi: 10.1007/s11064-020-02993-5.
    1. Ahmad F., Das D., Kommaddi R.P., Diwakar L., Gowaikar R., Rupanagudi K.V., Bennett D.A., Ravindranath V. Isoform-Specific Hyperactivation of Calpain-2 Occurs Presymptomatically at the Synapse in Alzheimer’s Disease Mice and Correlates with Memory Deficits in Human Subjects. Sci. Rep. 2018;8:13119. doi: 10.1038/s41598-018-31073-6.
    1. Chen H.-H., Liu P., Auger P., Lee S.-H., Adolfsson O., Rey-Bellet L., Lafrance-Vanasse J., Friedman B.A., Pihlgren M., Muhs A., et al. Calpain-Mediated Tau Fragmentation Is Altered in Alzheimer’s Disease Progression. Sci. Rep. 2018;8:16725. doi: 10.1038/s41598-018-35130-y.
    1. Weber J.J., Haas E., Maringer Y., Hauser S., Casadei N.L.P., Chishti A.H., Riess O., Hübener-Schmid J. Calpain-1 Ablation Partially Rescues Disease-Associated Hallmarks in Models of Machado-Joseph Disease. Hum. Mol. Genet. 2020;29:892–906. doi: 10.1093/hmg/ddaa010.
    1. Paul A., Radhakrishnan M. Pomegranate Seed Oil in Food Industry: Extraction, Characterization, and Applications. Trends Food Sci. Technol. 2020;105:273–283. doi: 10.1016/j.tifs.2020.09.014.
    1. Lee E., Eom J.-E., Kim H.-L., Baek K.H., Jun K.-Y., Kim H.-J., Lee M., Mook-Jung I., Kwon Y. Effect of Conjugated Linoleic Acid, μ-Calpain Inhibitor, on Pathogenesis of Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2013;1831:709–718. doi: 10.1016/j.bbalip.2012.12.003.
    1. Szablewski L. Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2021;22:8142. doi: 10.3390/ijms22158142.
    1. Głuchowska K., Pliszka M., Szablewski L. Expression of Glucose Transporters in Human Neurodegenerative Diseases. Biochem. Biophys. Res. Commun. 2021;540:8–15. doi: 10.1016/j.bbrc.2020.12.067.
    1. Gil-Iturbe E., Solas M., Cuadrado-Tejedo M., García-Osta A., Escoté X., Ramírez M.J., Lostao M.P. GLUT12 Expression in Brain of Mouse Models of Alzheimer’s Disease. Mol. Neurobiol. 2020;57:798–805. doi: 10.1007/s12035-019-01743-1.
    1. Wang T., Wang J., Hu X., Huang X., Chen G.-X. Current Understanding of Glucose Transporter 4 Expression and Functional Mechanisms. World J. Biol. Chem. 2020;11:76–98. doi: 10.4331/wjbc.v11.i3.76.
    1. Salazar J.G., Marsillach J., Reverte I., Mackness B., Mackness M., Joven J., Camps J., Colomina M.T. Paraoxonase-1 and -3 Protein Expression in the Brain of the Tg2576 Mouse Model of Alzheimer’s Disease. Antioxidants. 2021;10:339. doi: 10.3390/antiox10030339.
    1. Su N.-D., Liu X.-W., Kim M.R., Jeong T.-S., Sok D.-E. Protective Action of CLA against Oxidative Inactivation of Paraoxonase 1, an Antioxidant Enzyme. Lipids. 2003;38:615–622. doi: 10.1007/s11745-003-1106-9.
    1. Morris G., Puri B.K., Bortolasci C.C., Carvalho A., Berk M., Walder K., Moreira E.G., Maes M. The Role of High-Density Lipoprotein Cholesterol, Apolipoprotein A and Paraoxonase-1 in the Pathophysiology of Neuroprogressive Disorders. Neurosci. Biobehav. Rev. 2021;125:244–263. doi: 10.1016/j.neubiorev.2021.02.037.
    1. Mota A., Hemati-Dinarvand M., Akbar Taheraghdam A., Reza Nejabati H., Ahmadi R., Ghasemnejad T., Hasanpour M., Valilo M. Association of Paraoxonse1 (PON1) Genotypes with the Activity of PON1 in Patients with Parkinson’s Disease. Acta Neurol. Taiwan. 2019;28:66–74.

Source: PubMed

3
Tilaa