Passive and post-exercise cold-water immersion augments PGC-1α and VEGF expression in human skeletal muscle

C H Joo, R Allan, B Drust, G L Close, T S Jeong, J D Bartlett, C Mawhinney, J Louhelainen, J P Morton, Warren Gregson, C H Joo, R Allan, B Drust, G L Close, T S Jeong, J D Bartlett, C Mawhinney, J Louhelainen, J P Morton, Warren Gregson

Abstract

Purpose: We tested the hypothesis that both post-exercise and passive cold water immersion (CWI) increases PGC-1α and VEGF mRNA expression in human skeletal muscle.

Method: Study 1 Nine males completed an intermittent running protocol (8 × 3-min bouts at 90 % [Formula: see text], interspersed with 3-min active recovery (1.5-min at 25 % and 1.5-min at 50 % [Formula: see text]) before undergoing CWI (10 min at 8 °C) or seated rest (CONT) in a counterbalanced, randomised manner. Study 2 Ten males underwent an identical CWI protocol under passive conditions.

Results: Study 1 PGC-1α mRNA increased in CONT (~3.4-fold; P < 0.001) and CWI (~5.9-fold; P < 0.001) at 3 h post-exercise with a greater increase observed in CWI (P < 0.001). VEGFtotal mRNA increased after CWI only (~2.4-fold) compared with CONT (~1.1-fold) at 3 h post-exercise (P < 0.01). Study 2 Following CWI, PGC-1α mRNA expression was significantly increased ~1.3-fold (P = 0.001) and 1.4-fold (P = 0.0004) at 3 and 6 h, respectively. Similarly, VEGF165 mRNA was significantly increased in CWI ~1.9-fold (P = 0.03) and 2.2-fold (P = 0.009) at 3 and 6 h post-immersion.

Conclusions: Data confirm post-exercise CWI augments the acute exercise-induced expression of PGC-1α mRNA in human skeletal muscle compared to exercise per se. Additionally CWI per se mediates the activation of PGC-1α and VEGF mRNA expression in human skeletal muscle. Cold water may therefore enhance the adaptive response to acute exercise.

Keywords: CWI; PGC-1α; VEGF.

Conflict of interest statement

Conflicts of Interest: None declared. Funding No funding is declared.

Figures

Fig. 1
Fig. 1
Changes in muscle temperature (Tm) (3 cm), thigh temperature and rectal temperature post-exercise (Study 1; a) and Passive CWI (Study 2; b). a *Significant difference from pre-immersion (P < 0.05). +Significant difference between conditions (P < 0.05). b *P < 0.05 significantly different from pre-immersion
Fig. 2
Fig. 2
PGC-1α, VEGFtotal, VEGF165 mRNA responses to post-exercise (Study 1, a) and passive CWI (Study 2, b). a *Significant difference from pre-exercise (P < 0.05). +Significant difference between conditions (P < 0.05). b *P < 0.05, **P < 0.01 significantly different from pre-immersion
Fig. 3
Fig. 3
Catecholamine responses pre- and post-passive CWI. **P < 0.01; significantly different from pre-immersion
Fig. 4
Fig. 4
Representative Western Blots for PGC-1α and VEGF after post-exercise CWI (Study 1; a, b) and passive CWI (Study 2; c, d)

References

    1. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB. 2002;16:1879–1886. doi: 10.1096/fj.02-0367com.
    1. Bae KA, An NY, Kwon YW, Kim C, Yoon CS, Park SC, Kim CK. Muscle fibre size and capillarity in Korean diving women. Acta Physiol Scand. 2003;179:167–172. doi: 10.1046/j.1365-201X.2003.01185.x.
    1. Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran A, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP. Matched work high-intensity interval and continuous running induce similar increases in PGC-1alpha mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112:1135–1143. doi: 10.1152/japplphysiol.01040.2011.
    1. Bartlett JD, Louhelainen J, Iqbal Z, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450–R458. doi: 10.1152/ajpregu.00498.2012.
    1. Cannon B, Houstek J, Nedergaard J. Brown adipose tissue. More than an effector of thermogenesis? Ann N Y Acad Sci. 1998;856:171–187. doi: 10.1111/j.1749-6632.1998.tb08325.x.
    1. Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Déniaz O, Zorzano A, Gobelet C, Kralli A, Russell AP. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol. 2005;567:349–358. doi: 10.1113/jphysiol.2005.092031.
    1. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA. 2009;106(50):21401–21406. doi: 10.1073/pnas.0909131106.
    1. Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, McCaffrey N, Moyna NM, Zierath JR, O’Gorman DJ. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;588(10):1779–1790. doi: 10.1113/jphysiol.2010.188011.
    1. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4):884–890. doi: 10.3945/ajcn.110.001917.
    1. Gavin TP, Robinson CB, Yeager RC, England JA, Nifong LW, Hickner RC. Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol. 2004;96(1):19–24. doi: 10.1152/japplphysiol.00748.2003.
    1. Gregson W, Allan R, Holden S, Phibbs P, Doran D, Campbell I, Waldron S, Joo CH, Morton JP. Postexercise cold-water immersion does not attenuate muscle glycogen resynthesis. Med Sci Sports Exerc. 2013;45(6):1174–1181. doi: 10.1249/MSS.0b013e3182814462.
    1. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27(7):728–735. doi: 10.1210/er.2006-0037.
    1. Hensel H, Boman KK. Afferent impulses in cutaneous sensory nerves in human subjects. J Neurophysiol. 1960;23:564–578.
    1. Hoier B, Hellsten Y. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21(4):301–314. doi: 10.1111/micc.12117.
    1. Ihsan M, Watson G, Choo HC, Lewandowski P, Papazzo A, Cameron-Smith D, Abbiss CR. Postexercise muscle cooling enhances gene expression of PGC-1α. Med Sci Sports Exerc. 2014;46(10):1900–1907. doi: 10.1249/MSS.0000000000000308.
    1. Ihsan M, Markworth JF, Watson G, Choo CH, Govus A, Pham T, Hickey AJ, Cameron-Smith D, Abbiss CR. Regular post-exercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2015
    1. Ji LL, Kang C. Role of PGC-1α in sarcopenia: etiology and potential intervention—a mini review. Gerentology. 2015;61(2):139–148. doi: 10.1159/000365947.
    1. Joo CH. Development of a non-damaging high-intensity intermittent running protocol. J Exerc Rehabil. 2015;11(2):112–118. doi: 10.12965/jer.15195.
    1. Kim JC, Yi HK, Hwang PH, Yoon JS, Kim HJ, Kawano F, Ohira Y, Kim CK. Effects of cold-water immersion on VEGF mRNA and protein expression in heart and skeletal muscles of rats. Acta Physiol Scand. 2005;183(4):389–397. doi: 10.1111/j.1365-201X.2005.01415.x.
    1. Kregel KC, Seals DR, Callister R. Sympathetic nervous system activity during skin cooling in humans: relationship to stimulus intensity and pain sensation. J Physiol. 1992;454:359–371. doi: 10.1113/jphysiol.1992.sp019268.
    1. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801. doi: 10.1038/nature00904.
    1. Lira VA, Benton CR, Yan Z, Bonen A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab. 2010;299(2):E145–E161.
    1. Mawhinney C, Jones H, Joo CH, Low DA, Green DJ, Gregson W. Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Med Sci Sports Exerc. 2013;45(12):2277–2285. doi: 10.1249/MSS.0b013e31829d8e2e.
    1. Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology. 2007;148(7):3441–3448. doi: 10.1210/en.2006-1646.
    1. Morton JP, Croft L, Bartlett JD, Maclaren DP, Reilly T, Evans L, McArdle A, Drust B. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:1513–1521. doi: 10.1152/japplphysiol.00003.2009.
    1. Oliveira RL, Ueno M, de Souza CT, Pereira-da-Silva M, Gaspareti AL, Bezzera RM, Alberici LC, Vercesi AE, Saad MJ, Velloso LA. Cold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway. Am J Physiol Endocrinol Metab. 2004;287(4):E686–E695. doi: 10.1152/ajpendo.00103.2004.
    1. Peaston RT, Graham KS, Chambers E, Van Der Molen JC, Ball S. Performance of plasma free metanephrines measured by liquid chromatography-tandem mass spectrometry in the diagnosis of pheochromocytoma. Clin Chim Acta. 2010;411:546–552. doi: 10.1016/j.cca.2010.01.012.
    1. Perry CG, Lally J, Gp Holloway, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588(23):4795–4810. doi: 10.1113/jphysiol.2010.199448.
    1. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-y coactivator 1a (PGC-1a): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78–90. doi: 10.1210/er.2002-0012.
    1. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–839. doi: 10.1016/S0092-8674(00)81410-5.
    1. Seals DR. Sympathetic activation during the cold pressor test: influence of stimulus area. Clin Physiol. 1990;10:123–129. doi: 10.1111/j.1475-097X.1990.tb00246.x.
    1. Sillau AH, Aquin L, Lechner AJ, Bui MV, Banchero N. Increased capillary supply in skeletal muscle of guinea pigs acclimated to cold. Respir Physiol. 1980;42:233–245. doi: 10.1016/0034-5687(80)90117-6.
    1. Slivka DR, Dumke CL, Tucker TJ, Cuddy JS, Ruby B. Human mRNA response to exercise and temperature. Int J of Sports Med. 2012;33(2):94–100. doi: 10.1055/s-0031-1287799.
    1. Slivka D, Heesch M, Dumke C, Cuddy J, Hailes W, Ruby B. Effects of post-exercise recovery in a cold environment on muscle glycogen, PGC-1α, and downstream transcription factors. Cryobiology. 2013;66(3):250–255. doi: 10.1016/j.cryobiol.2013.02.005.
    1. Sramek P, Simeckova M, Jansky L, Savlikova J, Vybiral S. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000;81:436–442. doi: 10.1007/s004210050065.
    1. Stancic A, Buzadzic B, Korac A, Otasevic V, Jankovic A, Vucetic M, Markelic M, Velickovic K, Golic I, Korac B. Regulatory role of PGC-1α/PPAR signaling in skeletal muscle metabolic recruitment during cold acclimation. J Exp Biol. 2013;216:4233–4241. doi: 10.1242/jeb.089334.
    1. Suzuki J, Gao M, Yahata T, Kuroshima A, Koyama T. Capillary geometry in the soleus muscle of rats cold-acclimatized for 68 generations. Acta Physiol Scand. 1997;160(3):243–250. doi: 10.1046/j.1365-201X.1997.00136.x.
    1. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X.

Source: PubMed

3
Tilaa