Immediate effects of tDCS on the μ-opioid system of a chronic pain patient

Marcos Fabio DosSantos, Tiffany M Love, Ilkka Kristian Martikainen, Thiago Dias Nascimento, Felipe Fregni, Chelsea Cummiford, Misty Dawn Deboer, Jon-Kar Zubieta, Alexandre F M Dasilva, Marcos Fabio DosSantos, Tiffany M Love, Ilkka Kristian Martikainen, Thiago Dias Nascimento, Felipe Fregni, Chelsea Cummiford, Misty Dawn Deboer, Jon-Kar Zubieta, Alexandre F M Dasilva

Abstract

We developed a unique protocol where transcranial direct current stimulation (tDCS) of the motor cortex is performed during positron emission tomography (PET) scan using a μ-opioid receptor (μOR) selective radiotracer, [(11)C]carfentanil. This is one of the most important central neuromechanisms associated with pain perception and regulation. We measured μOR non-displaceable binding potential (μOR BP(ND)) in a trigeminal neuropathic pain patient (TNP) without creating artifacts, or posing risks to the patient (e.g., monitoring of resistance). The active session directly improved in 36.2% the threshold for experimental cold pain in the trigeminal allodynic area, mandibular branch, but not the TNP patient's clinical pain. Interestingly, the single active tDCS application considerably decreased μORBP(ND) levels in (sub)cortical pain-matrix structures compared to sham tDCS, especially in the posterior thalamus. Suggesting that the μ-opioidergic effects of a single tDCS session are subclinical at immediate level, and repetitive sessions are necessary to revert ingrained neuroplastic changes related to the chronic pain. To our knowledge, we provide data for the first time in vivo that there is possibly an instant increase of endogenous μ-opioid release during acute motor cortex neuromodulation with tDCS.

Keywords: PET; neuroplasticity; opioid receptors; post-herpetic neuralgia; tDCS; trigeminal neuropathic pain.

Figures

Figure 1
Figure 1
Decrease in μ-opioid receptor binding associated with transcranial direct current stimulation. Upper panel: μOR BPND during the baseline PET. Lower panel: μOR BPND during active tDCS. ACC, anterior cingulate cortex; NAc, nucleus accumbens; Ins, insula.
Figure 2
Figure 2
(A) Decreased thalamic μ-opioid receptor availability during active tDCS, represented in the coronal plane. (B) Bar chart illustrating the μ-opioid receptor binding potential in the right and left thalamus during the late phase of the first and second PET scans.

References

    1. Antal A., Paulus W. (2011). A case of refractory orofacial pain treated by transcranial direct current stimulation applied over hand motor area in combination with NMDA agonist drug intake. Brain Stimul. 4, 117–12110.1016/j.brs.2010.09.003
    1. Bachmann C. G., Muschinsky S., Nitsche M. A., Rolke R., Magerl W., Treede R. D., et al. (2010). Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts. Clin. Neurophysiol. 121, 2083–208910.1016/j.clinph.2010.05.005
    1. Dannals R. F., Ravert H. T., Frost J. J., Wilson A. A., Burns H. D., Wagner H. N. (1985). Radiosynthesis of an opiate receptor binding radiotracer: [11C]carfentanil. Int. J. Appl. Radiat. Isot. 36, 303–30610.1016/0020-708X(85)90089-4
    1. DaSilva A. F., Mendonca M. E., Zaghi S., Lopes M., DosSantos M. F., Spierings E. L., et al. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache 52, 1283–129510.1111/j.1526-4610.2012.02196.x
    1. DaSilva A. F., Volz M. S., Bikson M., Fregni F. (2011). Electrode positioning and montage in transcranial direct current stimulation. J. Vis. Exp. 51, e2744
    1. DosSantos M. F., Martikainen I. K., Nascimento T. D., Love T. M., Deboer M. D., Maslowski E. C., et al. (2012). Reduced basal ganglia mu-opioid receptor availability in trigeminal neuropathic pain: a pilot study. Mol. Pain 8, 74.10.1186/1744-8069-8-74
    1. Fregni F., Gimenes R., Valle A., Ferreira M., Rocha R., Natalle L., et al. (2006). A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 54, 3988–399810.1002/art.22195
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–85010.1016/j.clinph.2005.12.003
    1. Harris R. E., Clauw D. J., Scott D. J., McLean S. A., Gracely R. H., Zubieta J. K. (2007). Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–1000610.1523/JNEUROSCI.2849-07.2007
    1. Jewett D. M. (2001). A simple synthesis of [11C]carfentanil using an extraction disk instead of HPLC. Nucl. Med. Biol. 28, 733–73410.1016/S0969-8051(01)00226-8
    1. Jones A. K., Cunningham V. J., Ha-Kawa S., Fujiwara T., Luthra S. K., Silva S., et al. (1994). Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br. J. Rheumatol. 33, 909–91610.1093/rheumatology/33.10.992
    1. Jones A. K., Kitchen N. D., Watabe H., Cunningham V. J., Jones T., Luthra S. K., et al. (1999). Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J. Cereb. Blood Flow Metab. 19, 803–808
    1. Lefaucheur J. P. (2006). New insights into the therapeutic potential of non-invasive transcranial cortical stimulation in chronic neuropathic pain. Pain 122, 11–1310.1016/j.pain.2006.02.024
    1. Lefaucheur J. P., Drouot X., Menard-Lefaucheur I., Zerah F., Bendib B., Cesaro P., et al. (2004). Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain. J. Neurol. Neurosurg. Psychiatr. 75, 612–61610.1136/jnnp.2003.019208
    1. Lefaucheur J. P., Hatem S., Nineb A., Ménard-Lefaucheur I., Wendling S., Keravel Y., et al. (2006). Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain. Neurology 67, 1998–200410.1212/01.wnl.0000242731.10074.3c
    1. Lima M. C., Fregni F. (2008). Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology 70, 2329–233710.1212/01.wnl.0000314649.38527.93
    1. Logan J., Fowler J. S., Volkow N. D., Wang G. J., Ding Y. S., Alexoff D. L. (1996). Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 16, 834–840
    1. Maarrawi J., Peyron R., Mertens P., Costes N., Magnin M., Sindou M., et al. (2007a). Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127, 183–19410.1016/j.pain.2006.10.013
    1. Maarrawi J., Peyron R., Mertens P., Costes N., Magnin M., Sindou M., et al. (2007b). Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69, 827–83410.1212/01.wnl.0000269783.86997.37
    1. Merskey H., Bogduk N. (1994). Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. Seattle: IASP Press
    1. Minoshima S., Koeppe R. A., Mintun M. A., Berger K. L., Taylor S. F., Frey K. A., et al. (1993). Automated detection of the intercommissural line for stereotactic localization of functional brain images. J. Nucl. Med. 34, 322–329
    1. Nitsche M., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(Pt 3), 633–63910.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–22310.1016/j.brs.2008.06.004
    1. Nitsche M. A., Liebetanz D., Antal A., Lang N., Tergau F., Paulus W. (2003). Modulation of cortical excitability by weak direct current stimulation – technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 56, 255–27610.1016/S1567-424X(09)70230-2
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–190110.1212/WNL.57.10.1899
    1. Polania R., Paulus W., Nitsche M. A. (2011). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum. Brain. Mapp. 33, 2499–250810.1002/hbm.21380
    1. Riberto M., Marcon F., Alfieri K., Monteiro de Benedetto Pacheco K., Dini Leite H., Nemoto Kaihami H., et al. (2011). Efficacy of transcranial direct current stimulation coupled with a multidisciplinary rehabilitation program for the treatment of fibromyalgia. Open Rheumatol. J. 5, 45–5010.2174/1874312901105010045
    1. Sora I., Takahashi N., Funada M., Ujike H., Revay R. S., Donovan D. M., et al. (1997). Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc. Natl. Acad. Sci. U.S.A. 94, 1544–154910.1073/pnas.94.4.1544
    1. Taylor J. J., Borckardt J. J., George M. S. (2012). Endogenous opioids mediate left dorsolateral prefrontal cortex rTMS-induced analgesia. Pain 153, 1219–122510.1016/j.pain.2012.03.023
    1. Willoch F., Schindler F., Wester H. J., Empl M., Straube A., Schwaiger M., et al. (2004). Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108, 213–22010.1016/j.pain.2003.08.014
    1. Willoch F., Tolle T. R., Wester H. J., Munz F., Petzold A., Schwaiger M., et al. (1999). Central pain after pontine infarction is associated with changes in opioid receptor binding: a PET study with 11C-diprenorphine. AJNR Am. J. Neuroradiol. 20, 686–690
    1. World Medical Association. (2012). Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. Available at: (accessed October, 16, 2012).
    1. Yarnitsky D., Sprecher E. (1994). Thermal testing: normative data and repeatability for various test algorithms. J. Neurol. Sci. 125, 39–4510.1016/0022-510X(94)90033-7
    1. Zubieta J. K., Smith Y. R., Bueller J. A., Xu Y., Kilbourn M. R., Jewett D. M., et al. (2001). Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293, 311–31510.1126/science.1060952

Source: PubMed

3
Tilaa