Therapeutic Potential and Immunomodulatory Role of Coenzyme Q10 and Its Analogues in Systemic Autoimmune Diseases

Chary López-Pedrera, José Manuel Villalba, Alejandra Mª Patiño-Trives, Maria Luque-Tévar, Nuria Barbarroja, Mª Ángeles Aguirre, Alejandro Escudero-Contreras, Carlos Pérez-Sánchez, Chary López-Pedrera, José Manuel Villalba, Alejandra Mª Patiño-Trives, Maria Luque-Tévar, Nuria Barbarroja, Mª Ángeles Aguirre, Alejandro Escudero-Contreras, Carlos Pérez-Sánchez

Abstract

Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.

Keywords: autoimmune disorders; cardiovascular disease; coenzyme Q10; inflammation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pathogenic role of oxidative stress and mitochondrial dysfunction in Systemic Autoimmune Diseases. Enhanced oxidative status and mitochondrial dysfunction are hallmarks of Systemic Autoimmune Diseases. These processes promote the alteration of key physiological functions such as the ability to repair vascular tissue, the control of apoptosis and the development of NETosis. The impaired functions are directly associated with tissue and organ damage in the long term. The dysregulation of the immune system leads to the loss of tolerance which drives autoantibody production, inflammation and the consequent increase of the disease activity. Furthermore, the chronic establishment of an altered oxidative status can trigger the development of cardiovascular comorbidities such as atherosclerosis and endothelial dysfunction. ROS, Reactive oxygen species.
Figure 2
Figure 2
Clinical trial: Ubiquinol supplementation in antiphospholipid (APS) Patients. A randomized, crossover, placebo-controlled trial was carried out in 36 APS patients to analyze the beneficial effects of supplementation with Ubiquinol (200 mg/day) for one month. Changes in several parameters related to inflammation, oxidative stress, mitochondrial function, atherosclerosis, and NETosis, along with regulatory microRNAs, were assessed. The results demonstrated the high potential of Ubiquinol to modulate markers associated with thrombosis and cardiovascular disease in APS patients, highlighting its role as a safe adjunct to standard therapies in this autoimmune disorder.
Figure 3
Figure 3
Beneficial effects of CoQ10 in Systemic Autoimmune Diseases. The therapeutic potential of CoQ10 in Systemic Autoimmune Diseases has been widely investigated. Thus, numerous studies comprising in vitro analysis, preclinical murine models and randomized controlled clinical trials have demonstrated the capacity of CoQ10 to improve the main clinical features of each disease, through both immunomodulatory and antioxidant effects. DAS28, Disease Activity Score using 28 joint counts; EDSS, Expanded disability status scale; FSS, Fatigue severity scale; BDI, Beck’s depression inventory; VAS, Visual analogue scale for pain.

References

    1. Ernster L., Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta. 1995;1271:195–204. doi: 10.1016/0925-4439(95)00028-3.
    1. Bentinger M., Tekle M., Dallner G. Coenzyme Q—Biosynthesis and functions. Biochem. Biophys. Res. Commun. 2010;396:74–79. doi: 10.1016/j.bbrc.2010.02.147.
    1. Parrado-Fernández C., López-Lluch G., Rodríguez-Bies E., Santa-Cruz S., Navas P., Ramsey J.J., Villalba J.M. Calorie restriction modifies ubiquinone and COQ transcript levels in mouse tissues. Free Radic. Biol. Med. 2011;50:1728–1736. doi: 10.1016/j.freeradbiomed.2011.03.024.
    1. Bhagavan H.N., Chopra R.K. Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic. Res. 2006;40:445–453. doi: 10.1080/10715760600617843.
    1. Turrens J.F., Alexandre A., Lehninger A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 1985;237:408–414. doi: 10.1016/0003-9861(85)90293-0.
    1. Crane F.L. The evolution of coenzyme Q. BioFactors. 2008;32:5–11. doi: 10.1002/biof.5520320102.
    1. Stefely J.A., Pagliarini D.J. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem. Sci. 2017;42:824–843. doi: 10.1016/j.tibs.2017.06.008.
    1. Navas P., Villalba J.M., de Cabo R. The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion. 2007;7:S34–S40. doi: 10.1016/j.mito.2007.02.010.
    1. Navas P., Villalba J.M. Regulation of ceramide signaling by plasma membrane coenzyme Q reductases. Methods Enzymol. 2004;378:200–206.
    1. Clarke C.F., Rowat A.C., Gober J.W. Osmotic stress: Is CoQ a membrane stabilizer? Nat. Chem. Biol. 2014;10:242–243. doi: 10.1038/nchembio.1478.
    1. Zaki N.M. Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Deliv. 2016;23:1868–1881. doi: 10.3109/10717544.2014.993747.
    1. Villalba J.M., Parrado C., Santos-Gonzalez M., Alcain F.J. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin. Investig. Drugs. 2010;19:535–554. doi: 10.1517/13543781003727495.
    1. DiMauro S., Quinzii C.M., Hirano M. Mutations in coenzyme Q10 biosynthetic genes. J. Clin. Investig. 2007;117:587–589. doi: 10.1172/JCI31423.
    1. Quinzii C.M., DiMauro S., Hirano M. Human coenzyme Q10 deficiency. Neurochem. Res. 2007;32:723–727. doi: 10.1007/s11064-006-9190-z.
    1. Hidaka T., Fujii K., Funahashi I., Fukutomi N., Hosoe K. Safety assessment of coenzyme Q10 (CoQ10) BioFactors. 2008;32:199–208. doi: 10.1002/biof.5520320124.
    1. Kitano M., Mizuhashi F., Kubo H., Kishida H., Fujii K., Kitahara M., Hosoe K. Evaluation of the mutagenic and genotoxic potential of ubiquinol. Int. J. Toxicol. 2007;26:533–544. doi: 10.1080/10915810701707460.
    1. Sumien N., Heinrich K.R., Shetty R.A., Sohal R.S., Forster M.J. Prolonged intake of coenzyme Q10 impairs cognitive functions in mice. J. Nutr. 2009;139:1926–1932. doi: 10.3945/jn.109.110437.
    1. Boitier E., Degoul F., Desguerre I., Charpentier C., François D., Ponsot G., Diry M., Rustin P., Marsac C. A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency. J. Neurol. Sci. 1998;156:41–46. doi: 10.1016/S0022-510X(98)00006-9.
    1. Kalén A., Appelkvist E.L., Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24:579–584. doi: 10.1007/BF02535072.
    1. Littarru G.P., Langsjoen P. Coenzyme Q10 and statins: Biochemical and clinical implications. Mitochondrion. 2007;7:S168–S174. doi: 10.1016/j.mito.2007.03.002.
    1. Bhagavan H.N., Chopra R.K. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7:S78–S88. doi: 10.1016/j.mito.2007.03.003.
    1. Pravst I., Aguilera J.C.R., Rodriguez A.B.C., Jazbar J., Locatelli I., Hristov H., Žmitek K. Comparative Bioavailability of Different Coenzyme Q10 Formulations in Healthy Elderly Individuals. Nutrients. 2020;12:784. doi: 10.3390/nu12030784.
    1. Miles M.V. The uptake and distribution of coenzyme Q10. Mitochondrion. 2007;7:S72–S77. doi: 10.1016/j.mito.2007.02.012.
    1. Hathcock J.N., Shao A. Risk assessment for coenzyme Q10 (Ubiquinone) Regul. Toxicol. Pharmacol. RTP. 2006;45:282–288. doi: 10.1016/j.yrtph.2006.05.006.
    1. Ikematsu H., Nakamura K., Harashima S., Fujii K., Fukutomi N. Safety assessment of coenzyme Q10 (Kaneka Q10) in healthy subjects: A double-blind, randomized, placebo-controlled trial. Regul. Toxicol. Pharmacol. RTP. 2006;44:212–218. doi: 10.1016/j.yrtph.2005.12.002.
    1. Liu Z.X., Artmann C. Relative bioavailability comparison of different coenzyme Q10 formulations with a novel delivery system. Altern. Ther. Health Med. 2009;15:42–46.
    1. Shults C.W., Oakes D., Kieburtz K., Beal M.F., Haas R., Plumb S., Juncos J.L., Nutt J., Shoulson I., Carter J., et al. Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline. Arch. Neurol. 2002;59:1541–1550. doi: 10.1001/archneur.59.10.1541.
    1. Yamada Y., Nakamura K., Abe J., Hyodo M., Haga S., Ozaki M., Harashima H. Mitochondrial delivery of Coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. J. Control. Release. 2015;213:86–95. doi: 10.1016/j.jconrel.2015.06.037.
    1. Pravst I., Zmitek K., Zmitek J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010;50:269–280. doi: 10.1080/10408390902773037.
    1. Martucci A., Reurean-Pintilei D., Manole A. Bioavailability and Sustained Plasma Concentrations of CoQ10 in Healthy Volunteers by a Novel Oral Timed-Release Preparation. Nutrients. 2019;11:527. doi: 10.3390/nu11030527.
    1. Pastor-Maldonado C.J., Suárez-Rivero J.M., Povea-Cabello S., Álvarez-Córdoba M., Villalón-García I., Munuera-Cabeza M., Suárez-Carrillo A., Talaverón-Rey M., Sánchez-Alcázar J.A. Coenzyme Q(10): Novel Formulations and Medical Trends. Int. J. Mol. Sci. 2020;21:8432. doi: 10.3390/ijms21228432.
    1. Hosoe K., Kitano M., Kishida H., Kubo H., Fujii K., Kitahara M. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul. Toxicol. Pharmacol. RTP. 2007;47:19–28. doi: 10.1016/j.yrtph.2006.07.001.
    1. Villalba J.M., Burón M.I., González-Reyes J.A., del Río L.F., Durán-Prado M., Alcaín F.J. Coenzyme Q10. Nova Science Publishers; Hauppauge, NY, USA: 2015. Antioxidant and Therapeutic Potential of Coenzyme Q-Related Compounds; pp. 21–48.
    1. Kuksal N., Chalker J., Mailloux R.J. Progress in understanding the molecular oxygen paradox—Function of mitochondrial reactive oxygen species in cell signaling. Biol. Chem. 2017;398:1209–1227. doi: 10.1515/hsz-2017-0160.
    1. Nauseef W.M. Assembly of the phagocyte NADPH oxidase. Histochem. Cell Biol. 2004;122:277–291. doi: 10.1007/s00418-004-0679-8.
    1. Ridgley L.A., Anderson A.E., Pratt A.G. What are the dominant cytokines in early rheumatoid arthritis? Curr. Opin. Rheumatol. 2018;30:207–214. doi: 10.1097/BOR.0000000000000470.
    1. Veselinovic M., Barudzic N., Vuletic M., Zivkovic V., Tomic-Lucic A., Djuric D., Jakovljevic V. Oxidative stress in rheumatoid arthritis patients: Relationship to diseases activity. Mol. Cell. Biochem. 2014;391:225–232. doi: 10.1007/s11010-014-2006-6.
    1. Quiñonez-Flores C.M., González-Chávez S.A., Del Río Nájera D., Pacheco-Tena C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. Biomed. Res. Int. 2016;2016:6097417. doi: 10.1155/2016/6097417.
    1. Da Fonseca L.J.S., Nunes-Souza V., Goulart M.O.F., Rabelo L.A. Oxidative stress in rheumatoid arthritis: What the future might hold regarding novel biomarkers and add-on therapies. Oxidative Med. Cell. Longev. 2019;2019:7536805. doi: 10.1155/2019/7536805.
    1. Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001.
    1. Sukkar S.G., Rossi E. Oxidative stress and nutritional prevention in autoimmune rheumatic diseases. Autoimmun. Rev. 2004;3:199–206. doi: 10.1016/j.autrev.2003.09.002.
    1. Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011;435:297–312. doi: 10.1042/BJ20110162.
    1. Hafner R.P., Brown G.C., Brand M.D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the ’top-down’ approach of metabolic control theory. Eur. J. Biochem. 1990;188:313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x.
    1. Sivandzade F., Bhalerao A., Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc. 2019;9:e3128. doi: 10.21769/BioProtoc.3128.
    1. Tilokani L., Nagashima S., Paupe V., Prudent J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 2018;62:341–360.
    1. Yu R., Lendahl U., Nistér M., Zhao J. Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front. Endocrinol. 2020;11:374. doi: 10.3389/fendo.2020.00374.
    1. Popov L.D. Mitochondrial biogenesis: An update. J. Cell Mol. Med. 2020;24:4892–4899. doi: 10.1111/jcmm.15194.
    1. Ku I.A., Imboden J.B., Hsue P.Y., Ganz P. Rheumatoid arthritis: Model of systemic inflammation driving atherosclerosis. Circ. J. 2009;73:977–985. doi: 10.1253/circj.CJ-09-0274.
    1. Rho Y.H., Chung C.P., Oeser A., Solus J.F., Gebretsadik T., Shintani A., Raggi P., Milne G.L., Stein C.M. Interaction between oxidative stress and high-density lipoprotein cholesterol is associated with severity of coronary artery calcification in rheumatoid arthritis. Arthritis Care Res. 2010;62:1473–1480. doi: 10.1002/acr.20237.
    1. Khan F., Siddiqui A.A. Prevalence of anti-3-nitrotyrosine antibodies in the joint synovial fluid of patients with rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. Clin. Chim. Acta. 2006;370:100–107. doi: 10.1016/j.cca.2006.01.020.
    1. Leitinger N. The role of phospholipid oxidation products in inflammatory and autoimmune diseases: Evidence from animal models and in humans. Lipids Health Dis. 2008;49:325–350.
    1. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., Weinrauch Y., Brinkmann V., Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J. Cell biol. 2007;176:231–241. doi: 10.1083/jcb.200606027.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Brinkmann V., Laube B., Abu Abed U., Goosmann C., Zychlinsky A. Neutrophil extracellular traps: How to generate and visualize them. J. Vis. Exp. JoVE. 2010;36:1724. doi: 10.3791/1724.
    1. Bianchi M., Hakkim A., Brinkmann V., Siler U., Seger R.A., Zychlinsky A., Reichenbach J. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114:2619–2622. doi: 10.1182/blood-2009-05-221606.
    1. Lim M.B., Kuiper J.W., Katchky A., Goldberg H., Glogauer M. Rac2 is required for the formation of neutrophil extracellular traps. J. Leukoc. Biol. 2011;90:771–776. doi: 10.1189/jlb.1010549.
    1. Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010;191:677–691. doi: 10.1083/jcb.201006052.
    1. Remijsen Q., Vanden Berghe T., Wirawan E., Asselbergh B., Parthoens E., De Rycke R., Noppen S., Delforge M., Willems J., Vandenabeele P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21:290–304. doi: 10.1038/cr.2010.150.
    1. Giannakopoulos B., Krilis S.A. The pathogenesis of the antiphospholipid syndrome. New Engl. J. Med. 2013;368:1033–1044. doi: 10.1056/NEJMra1112830.
    1. Knight J.S., Carmona-Rivera C., Kaplan M.J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol. 2012;3:380. doi: 10.3389/fimmu.2012.00380.
    1. Darrah E., Andrade F. NETs: The missing link between cell death and systemic autoimmune diseases? Front. Immunol. 2012;3:428. doi: 10.3389/fimmu.2012.00428.
    1. Garcia D., Erkan D. Diagnosis and Management of the Antiphospholipid Syndrome. N. Engl. J. Med. 2018;379:1290. doi: 10.1056/NEJMra1705454.
    1. Soltész P., Szekanecz Z., Kiss E., Shoenfeld Y. Cardiac manifestations in antiphospholipid syndrome. Autoimmun. Rev. 2007;6:379–386. doi: 10.1016/j.autrev.2007.01.003.
    1. Sciascia S., Roccatello D., Bertero M.T., Di Simone D., Cosseddu D., Vaccarino A., Bazzan M., Rossi D., Garcia-Fernandez C., Ceberio L., et al. 8-isoprostane, prostaglandin E2, C-reactive protein and serum amyloid A as markers of inflammation and oxidative stress in antiphospholipid syndrome: A pilot study. Inflamm. Res. 2012;61:809–816. doi: 10.1007/s00011-012-0468-0.
    1. Alves J.D., Grima B. Oxidative stress in systemic lupus erythematosus and antiphospholipid syndrome: A gateway to atherosclerosis. Curr. Rheumatol. Rep. 2003;5:383–390. doi: 10.1007/s11926-003-0029-1.
    1. Morrow J.D., Roberts L.J., 2nd The isoprostanes. Current knowledge and directions for future research. Biochem. Pharmacol. 1996;51:1–9. doi: 10.1016/0006-2952(95)02072-1.
    1. Iuliano L., Praticò D., Ferro D., Pittoni V., Valesini G., Lawson J., FitzGerald G.A., Violi F. Enhanced lipid peroxidation in patients positive for antiphospholipid antibodies. Blood. 1997;90:3931–3935. doi: 10.1182/blood.V90.10.3931.
    1. Charakida M., Besler C., Batuca J.R., Sangle S., Marques S., Sousa M., Wang G., Tousoulis D., Delgado Alves J., Loukogeorgakis S.P., et al. Vascular abnormalities, paraoxonase activity, and dysfunctional HDL in primary antiphospholipid syndrome. JAMA. 2009;302:1210–1217. doi: 10.1001/jama.2009.1346.
    1. Matsuura E., Kobayashi K., Lopez L.R. Atherosclerosis in autoimmune diseases. Curr. Rheumatol. Rep. 2009;11:61–69. doi: 10.1007/s11926-009-0009-1.
    1. Perez-Sanchez C., Ruiz-Limon P., Aguirre M.A., Bertolaccini M.L., Khamashta M.A., Rodriguez-Ariza A., Segui P., Collantes-Estevez E., Barbarroja N., Khraiwesh H., et al. Mitochondrial dysfunction in antiphospholipid syndrome: Implications in the pathogenesis of the disease and effects of coenzyme Q(10) treatment. Blood. 2012;119:5859–5870. doi: 10.1182/blood-2011-12-400986.
    1. Prinz N., Clemens N., Strand D., Pütz I., Lorenz M., Daiber A., Stein P., Degreif A., Radsak M., Schild H., et al. Antiphospholipid antibodies induce translocation of TLR7 and TLR8 to the endosome in human monocytes and plasmacytoid dendritic cells. Blood. 2011;118:2322–2332. doi: 10.1182/blood-2011-01-330639.
    1. Yalavarthi S., Gould T.J., Rao A.N., Mazza L.F., Morris A.E., Núñez-Álvarez C., Hernández-Ramírez D., Bockenstedt P.L., Liaw P.C., Cabral A.R., et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: A newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67:2990–3003. doi: 10.1002/art.39247.
    1. Meng H., Yalavarthi S., Kanthi Y., Mazza L.F., Elfline M.A., Luke C.E., Pinsky D.J., Henke P.K., Knight J.S. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol. 2017;69:655–667. doi: 10.1002/art.39938.
    1. Cuadrado M.J., Lopez-Pedrera C., Khamashta M.A., Camps M.T., Tinahones F., Torres A., Hughes G.R., Velasco F. Thrombosis in primary antiphospholipid syndrome: A pivotal role for monocyte tissue factor expression. Arthritis Rheum. 1997;40:834–841. doi: 10.1002/art.1780400509.
    1. Lopez-Pedrera C., Aguirre M.A., Buendia P., Barbarroja N., Ruiz-Limon P., Collantes-Estevez E., Velasco F., Khamashta M., Cuadrado M.J. Differential expression of protease-activated receptors in monocytes from patients with primary antiphospholipid syndrome. Arthritis Rheum. 2010;62:869–877. doi: 10.1002/art.27299.
    1. Cuadrado M.J., Buendia P., Velasco F., Aguirre M.A., Barbarroja N., Torres L.A., Khamashta M., Lopez-Pedrera C. Vascular endothelial growth factor expression in monocytes from patients with primary antiphospholipid syndrome. J. Thromb. Haemost. 2006;4:2461–2469. doi: 10.1111/j.1538-7836.2006.02193.x.
    1. Benhamou Y., Bellien J., Armengol G., Brakenhielm E., Adriouch S., Iacob M., Remy-Jouet I., Le Cam-Duchez V., Monteil C., Renet S., et al. Role of Toll-like receptors 2 and 4 in mediating endothelial dysfunction and arterial remodeling in primary arterial antiphospholipid syndrome. Arthritis Rheumatol. 2014;66:3210–3220. doi: 10.1002/art.38785.
    1. Pierangeli S.S., Vega-Ostertag M.E., Raschi E., Liu X., Romay-Penabad Z., De Micheli V., Galli M., Moia M., Tincani A., Borghi M.O., et al. Toll-like receptor and antiphospholipid mediated thrombosis: In Vivo studies. Ann. Rheum. Dis. 2007;66:1327–1333. doi: 10.1136/ard.2006.065037.
    1. Satta N., Kruithof E.K., Fickentscher C., Dunoyer-Geindre S., Boehlen F., Reber G., Burger D., de Moerloose P. Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies. Blood. 2011;117:5523–5531. doi: 10.1182/blood-2010-11-316158.
    1. Perez-Sanchez C., Barbarroja N., Messineo S., Ruiz-Limon P., Rodriguez-Ariza A., Jimenez-Gomez Y., Khamashta M.A., Collantes-Estevez E., Cuadrado M.J., Aguirre M.A., et al. Gene profiling reveals specific molecular pathways in the pathogenesis of atherosclerosis and cardiovascular disease in antiphospholipid syndrome, systemic lupus erythematosus and antiphospholipid syndrome with lupus. Ann. Rheum. Dis. 2015;74:1441–1449. doi: 10.1136/annrheumdis-2013-204600.
    1. Alevizos I., Illei G.G. MicroRNAs as biomarkers in rheumatic diseases. Nat. Rev. Rheumatol. 2010;6:391–398. doi: 10.1038/nrrheum.2010.81.
    1. Pérez-Sánchez C., Aguirre M.A., Ruiz-Limón P., Barbarroja N., Jiménez-Gómez Y., de la Rosa I.A., Rodriguez-Ariza A., Collantes-Estévez E., Segui P., Velasco F., et al. ‘Atherothrombosis-associated microRNAs in Antiphospholipid syndrome and Systemic Lupus Erythematosus patients’. Sci. Rep. 2016;6:31375. doi: 10.1038/srep31375.
    1. Kurien B.T., Scofield R.H. Autoimmunity and oxidatively modified autoantigens. Autoimmun. Rev. 2008;7:567–573. doi: 10.1016/j.autrev.2008.04.019.
    1. Kumagai S., Jikimoto T., Saegusa J. [Pathological roles of oxidative stress in autoimmune diseases] Rinsho Byori. Jpn. J. Clin. Pathol. 2003;51:126–132.
    1. Griffiths H.R. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun. Rev. 2008;7:544–549. doi: 10.1016/j.autrev.2008.04.013.
    1. Ahsan H., Ali A., Ali R. Oxygen free radicals and systemic autoimmunity. Clin. Exp. Immunol. 2003;131:398–404. doi: 10.1046/j.1365-2249.2003.02104.x.
    1. Hakkim A., Fürnrohr B.G., Amann K., Laube B., Abed U.A., Brinkmann V., Herrmann M., Voll R.E., Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA. 2010;107:9813–9818. doi: 10.1073/pnas.0909927107.
    1. Smith C.K., Vivekanandan-Giri A., Tang C., Knight J.S., Mathew A., Padilla R.L., Gillespie B.W., Carmona-Rivera C., Liu X., Subramanian V., et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: An additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 2014;66:2532–2544. doi: 10.1002/art.38703.
    1. Firuzi O., Fuksa L., Spadaro C., Bousova I., Riccieri V., Spadaro A., Petrucci R., Marrosu G., Saso L. Oxidative stress parameters in different systemic rheumatic diseases. J. Pharm. Pharmacol. 2006;58:951–957. doi: 10.1211/jpp.58.7.0010.
    1. Mansour R.B., Lassoued S., Gargouri B., El Gaïd A., Attia H., Fakhfakh F. Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand. J. Rheumatol. 2008;37:103–108. doi: 10.1080/03009740701772465.
    1. Ben Mansour R., Lassoued S., Elgaied A., Haddouk S., Marzouk S., Bahloul Z., Masmoudi H., Attia H., Aïfa M.S., Fakhfakh F. Enhanced reactivity to malondialdehyde-modified proteins by systemic lupus erythematosus autoantibodies. Scand. J. Rheumatol. 2010;39:247–253. doi: 10.3109/03009740903362511.
    1. Jovanović V., Aziz N.A., Lim Y.T., Poh A.N.A., Chan S.J.H., Pei E.H.X., Lew F.C., Shui G., Jenner A.M., Bowen L., et al. Lipid anti-lipid antibody responses correlate with disease activity in systemic lupus erythematosus. PLoS ONE. 2013;8:e55639. doi: 10.1371/journal.pone.0055639.
    1. Shah D., Kiran R., Wanchu A., Bhatnagar A. Oxidative stress in systemic lupus erythematosus: Relationship to Th1 cytokine and disease activity. Immunol. Lett. 2010;129:7–12. doi: 10.1016/j.imlet.2010.01.005.
    1. Frostegård J., Svenungsson E., Wu R., Gunnarsson I., Lundberg I.E., Klareskog L., Hörkkö S., Witztum J.L. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum. 2005;52:192–200. doi: 10.1002/art.20780.
    1. Tewthanom K., Janwityanuchit S., Totemchockchyakarn K., Panomvana D. Correlation of lipid peroxidation and glutathione levels with severity of systemic lupus erythematosus: A pilot study from single center. J. Pharm. Pharm. Sci. 2008;11:30–34. doi: 10.18433/J3C885.
    1. Gilkeson G., Cannon C., Oates J., Reilly C., Goldman D., Petri M. Correlation of serum measures of nitric oxide production with lupus disease activity. J. Rheumatol. 1999;26:318–324.
    1. Lopez L.R., Simpson D.F., Hurley B.L., Matsuura E. OxLDL/beta2GPI complexes and autoantibodies in patients with systemic lupus erythematosus, systemic sclerosis, and antiphospholipid syndrome: Pathogenic implications for vascular involvement. Ann. N. Y. Acad. Sci. 2005;1051:313–322. doi: 10.1196/annals.1361.073.
    1. Yılmaz S., Caliskan M., Kulaksızoglu S., Ciftci O., Caliskan Z., Gullu H., Guven A., Muderrisoglu H. Association between serum total antioxidant status and coronary microvascular functions in patients with SLE. Echocardiography. 2012;29:1218–1223. doi: 10.1111/j.1540-8175.2012.01797.x.
    1. Ruiz-Limón P., Barbarroja N., Pérez-Sánchez C., Aguirre M.A., Bertolaccini M.L., Khamashta M.A., Rodríguez-Ariza A., Almaden Y., Segui P., Khraiwesh H., et al. Atherosclerosis and cardiovascular disease in systemic lupus erythematosus: Effects of In Vivo statin treatment. Ann. Rheum. Dis. 2015;74:1450–1458. doi: 10.1136/annrheumdis-2013-204351.
    1. Smolen J.S., Aletaha D., Barton A., Burmester G.R., Emery P., Firestein G.S., Kavanaugh A., McInnes I.B., Solomon D.H., Strand V., et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers. 2018;4:18001. doi: 10.1038/nrdp.2018.1.
    1. Smallwood M.J., Nissim A., Knight A.R., Whiteman M., Haigh R., Winyard P.G. Oxidative stress in autoimmune rheumatic diseases. Free Radic. Biol. Med. 2018;125:3–14. doi: 10.1016/j.freeradbiomed.2018.05.086.
    1. Mateen S., Moin S., Khan A.Q., Zafar A., Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE. 2016;11:e0152925. doi: 10.1371/journal.pone.0152925.
    1. Nathan C., Cunningham-Bussel A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013;13:349–361. doi: 10.1038/nri3423.
    1. Blaser H., Dostert C., Mak T.W., Brenner D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol. 2016;26:249–261. doi: 10.1016/j.tcb.2015.12.002.
    1. Kabe Y., Ando K., Hirao S., Yoshida M., Handa H. Redox regulation of NF-kappaB activation: Distinct redox regulation between the cytoplasm and the nucleus. Antioxid. Redox Signal. 2005;7:395–403. doi: 10.1089/ars.2005.7.395.
    1. Canty T.G., Jr., Boyle E.M., Jr., Farr A., Morgan E.N., Verrier E.D., Pohlman T.H. Oxidative stress induces NF-kappaB nuclear translocation without degradation of IkappaBalpha. Circulation. 1999;100(Suppl. S2):II-361–Ii-364. doi: 10.1161/01.CIR.100.suppl_2.II-361.
    1. Chen C.J., Fu Y.C., Yu W., Wang W. SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-κB. Biochem. Biophys. Res. Commun. 2013;430:798–803. doi: 10.1016/j.bbrc.2012.11.066.
    1. Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sánchez-Pérez P., Cadenas S., Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–197. doi: 10.1016/j.redox.2015.07.008.
    1. Netzer N., Gatterer H., Faulhaber M., Burtscher M., Pramsohler S., Pesta D. Hypoxia, Oxidative Stress and Fat. Biomolecules. 2015;5:1143–1150. doi: 10.3390/biom5021143.
    1. Teissier E., Nohara A., Chinetti G., Paumelle R., Cariou B., Fruchart J.C., Brandes R.P., Shah A., Staels B. Peroxisome proliferator-activated receptor alpha induces NADPH oxidase activity in macrophages, leading to the generation of LDL with PPAR-alpha activation properties. Circ. Res. 2004;95:1174–1182. doi: 10.1161/01.RES.0000150594.95988.45.
    1. Bulua A.C., Simon A., Maddipati R., Pelletier M., Park H., Kim K.Y., Sack M.N., Kastner D.L., Siegel R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS) J. Exp. Med. 2011;208:519–533. doi: 10.1084/jem.20102049.
    1. Nguyen G.T., Green E.R., Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell. Infect. Microbiol. 2017;7:373. doi: 10.3389/fcimb.2017.00373.
    1. Kim Y.W., West X.Z., Byzova T.V. Inflammation and oxidative stress in angiogenesis and vascular disease. J. Mol. Med. 2013;91:323–328. doi: 10.1007/s00109-013-1007-3.
    1. Kissel T., Reijm S., Slot L., Cavallari M., Wortel C., Vergroesen R., Stoeken-Rijsbergen G., Kwekkeboom J., Kampstra A., Levarht E. Antibodies and B cells recognising citrullinated proteins display a broad cross-reactivity towards other post-translational modifications. Ann. Rheum. Dis. 2020;79:472–480. doi: 10.1136/annrheumdis-2019-216499.
    1. Barbarroja N., Pérez-Sánchez C., Ruiz-Limón P., Castro-Villegas C., Aguirre M.A., Carretero R., Segui P., Jiménez-Gómez Y., Sanna M., Rodríguez-Ariza A., et al. Anticyclic citrullinated protein antibodies are implicated in the development of cardiovascular disease in rheumatoid arthritis. Arter. Thromb. Vasc. Biol. 2014;34:2706–2716. doi: 10.1161/ATVBAHA.114.304475.
    1. Asmat U., Abad K., Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016;24:547–553. doi: 10.1016/j.jsps.2015.03.013.
    1. Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J. Diabetes Complicat. 2001;15:203–210. doi: 10.1016/S1056-8727(01)00143-X.
    1. Kangralkar V., Patil S.D., Bandivadekar R. Oxidative stress and diabetes: A review. Int. J. Pharm. Appl. 2010;1:38–45.
    1. Delmastro M.M., Piganelli J.D. Oxidative stress and redox modulation potential in type 1 diabetes. Clin. Dev. Immunol. 2011;2011:593863. doi: 10.1155/2011/593863.
    1. Maxwell S.R., Thomason H., Sandler D., Leguen C., Baxter M.A., Thorpe G.H., Jones A.F., Barnett A.H. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur. J. Clin. Investig. 1997;27:484–490. doi: 10.1046/j.1365-2362.1997.1390687.x.
    1. Rocić B., Vucić M., Knezević-Cuća J., Radica A., Pavlić-Renar I., Profozić V., Metelko Z. Total plasma antioxidants in first-degree relatives of patients with insulin-dependent diabetes. Exp. Clin. Endocrinol. Diabetes. 1997;105:213–217. doi: 10.1055/s-0029-1211754.
    1. Santini S.A., Marra G., Giardina B., Cotroneo P., Mordente A., Martorana G.E., Manto A., Ghirlanda G. Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes. 1997;46:1853–1858. doi: 10.2337/diab.46.11.1853.
    1. Lenzen S. Oxidative stress: The vulnerable beta-cell. Biochem. Soc. Trans. 2008;36:343–347. doi: 10.1042/BST0360343.
    1. Tiedge M., Lortz S., Drinkgern J., Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46:1733–1742. doi: 10.2337/diab.46.11.1733.
    1. Devadas S., Zaritskaya L., Rhee S.G., Oberley L., Williams M.S. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: Selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J. Exp. Med. 2002;195:59–70. doi: 10.1084/jem.20010659.
    1. Fiorentino T.V., Prioletta A., Zuo P., Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 2013;19:5695–5703. doi: 10.2174/1381612811319320005.
    1. Carney J.M., Starke-Reed P.E., Oliver C.N., Landum R.W., Cheng M.S., Wu J.F., Floyd R.A. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc. Natl. Acad. Sci. USA. 1991;88:3633–3636. doi: 10.1073/pnas.88.9.3633.
    1. DeLeo J.A., Floyd R.A., Carney J.M. Increased In Vitro lipid peroxidation of gerbil cerebral cortex as compared with rat. Neurosci. Lett. 1986;67:63–67. doi: 10.1016/0304-3940(86)90209-0.
    1. Angelova P.R., Abramov A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett. 2018;592:692–702. doi: 10.1002/1873-3468.12964.
    1. Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967.
    1. Garwood C.J., Ratcliffe L.E., Simpson J.E., Heath P.R., Ince P.G., Wharton S.B. Review: Astrocytes in Alzheimer’s disease and other age-associated dementias: A supporting player with a central role. Neuropathol. Appl. Neurobiol. 2017;43:281–298. doi: 10.1111/nan.12338.
    1. Perry V.H., Nicoll J.A., Holmes C. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 2010;6:193–201. doi: 10.1038/nrneurol.2010.17.
    1. Longo D., Reich D., Lucchinetti C., Calabresi P. Multiple sclerosis. N. Engl. J. Med. 2018;378:169–180.
    1. Rajda C., Bergquist J., Vécsei L. Kynurenines, redox disturbances and neurodegeneration in multiple sclerosis. J. Neural Transm. Suppl. 2007;72:323–329.
    1. Rajda C., Pukoli D., Bende Z., Majláth Z., Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int. J. Mol. Sci. 2017;18:353. doi: 10.3390/ijms18020353.
    1. Fiorini A., Koudriavtseva T., Bucaj E., Coccia R., Foppoli C., Giorgi A., Schininà M.E., Di Domenico F., De Marco F., Perluigi M. Involvement of oxidative stress in occurrence of relapses in multiple sclerosis: The spectrum of oxidatively modified serum proteins detected by proteomics and redox proteomics analysis. PLoS ONE. 2013;8:e65184. doi: 10.1371/journal.pone.0065184.
    1. Choi I.Y., Lee P., Adany P., Hughes A.J., Belliston S., Denney D.R., Lynch S.G. In Vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult. Scler. J. 2018;24:1029–1038. doi: 10.1177/1352458517711568.
    1. Barcelos I.P., Troxell R.M., Graves J.S. Mitochondrial Dysfunction and Multiple Sclerosis. Biology. 2019;8:37. doi: 10.3390/biology8020037.
    1. Cortese-Krott M.M., Koning A., Kuhnle G.G.C., Nagy P., Bianco C.L., Pasch A., Wink D.A., Fukuto J.M., Jackson A.A., van Goor H., et al. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid. Redox Signal. 2017;27:684–712. doi: 10.1089/ars.2017.7083.
    1. Pérez-Sánchez C., Aguirre M.A., Ruiz-Limón P., Ábalos-Aguilera M.C., Jiménez-Gómez Y., Arias-de la Rosa I., Rodríguez-Ariza A., Fernandez-Del Rio L., Gonzalez-Reyes J.A., Segui P., et al. Ubiquinol Effects on Antiphospholipid Syndrome Prothrombotic Profile: A Randomized, Placebo-Controlled Trial. Arter. Thromb. Vasc. Biol. 2017;37:1923–1932. doi: 10.1161/ATVBAHA.117.309225.
    1. Blanco L.P., Pedersen H.L., Wang X., Lightfoot Y.L., Seto N., Carmona-Rivera C., Yu Z.X., Hoffmann V., Yuen P.S.T., Kaplan M.J. Improved Mitochondrial Metabolism and Reduced Inflammation Following Attenuation of Murine Lupus with Coenzyme Q10 Analog Idebenone. Arthritis Rheumatol. 2020;72:454–464. doi: 10.1002/art.41128.
    1. Fortner K.A., Blanco L.P., Buskiewicz I., Huang N., Gibson P.C., Cook D.L., Pedersen H.L., Yuen P.S.T., Murphy M.P., Perl A., et al. Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice. Lupus Sci. Med. 2020;7:e000387. doi: 10.1136/lupus-2020-000387.
    1. Jhun J., Lee S.H., Byun J.K., Jeong J.H., Kim E.K., Lee J., Jung Y.O., Shin D., Park S.H., Cho M.L. Coenzyme Q10 suppresses Th17 cells and osteoclast differentiation and ameliorates experimental autoimmune arthritis mice. Immunol. Lett. 2015;166:92–102. doi: 10.1016/j.imlet.2015.05.012.
    1. Jhun J., Moon J., Ryu J., Shin Y., Lee S., Cho K.H., Kang T., Cho M.L., Park S.H. Liposome/gold hybrid nanoparticle encoded with CoQ10 (LGNP-CoQ10) suppressed rheumatoid arthritis via STAT3/Th17 targeting. PLoS ONE. 2020;15:e0241080. doi: 10.1371/journal.pone.0241080.
    1. Lee S.Y., Lee S.H., Jhun J., Seo H.B., Jung K.A., Yang C.W., Park S.H., Cho M.L. A Combination with Probiotic Complex, Zinc, and Coenzyme Q10 Attenuates Autoimmune Arthritis by Regulation of Th17/Treg Balance. J. Med. Food. 2018;21:39–46. doi: 10.1089/jmf.2017.3952.
    1. Jhun J., Lee S., Kim S.Y., Na H.S., Kim E.K., Kim J.K., Jeong J.H., Park S.H., Cho M.L. Combination therapy with metformin and coenzyme Q10 in murine experimental autoimmune arthritis. Immunopharmacol. Immunotoxicol. 2016;38:103–112. doi: 10.3109/08923973.2015.1122619.
    1. Bauerova K., Paulovicova E., Mihalova D., Drafi F., Strosova M., Mascia C., Biasi F., Rovensky J., Kucharska J., Gvozdjakova A., et al. Combined methotrexate and coenzyme Q10 therapy in adjuvant-induced arthritis evaluated using parameters of inflammation and oxidative stress. Acta Biochim. Pol. 2010;57:347–354. doi: 10.18388/abp.2010_2415.
    1. Tawfik M.K. Combination of coenzyme Q10 with methotrexate suppresses Freund’s complete adjuvant-induced synovial inflammation with reduced hepatotoxicity in rats: Effect on oxidative stress and inflammation. Int. Immunopharmacol. 2015;24:80–87. doi: 10.1016/j.intimp.2014.11.018.
    1. Abdollahzad H., Aghdashi M.A., Jafarabadi M.A., Alipour B. Effects of coenzyme Q10 supplementation on inflammatory cytokines (TNF-α, IL-6) and oxidative stress in rheumatoid arthritis patients: A randomized controlled trial. Arch. Med. Res. 2015;46:527–533. doi: 10.1016/j.arcmed.2015.08.006.
    1. Nachvak S.M., Alipour B., Mahdavi A.M., Aghdashi M.A., Abdollahzad H., Pasdar Y., Samadi M., Mostafai R. Effects of coenzyme Q10 supplementation on matrix metalloproteinases and DAS-28 in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Clin. Rheumatol. 2019;38:3367–3374. doi: 10.1007/s10067-019-04723-x.
    1. Zhang Y.P., Eber A., Yuan Y., Yang Z., Rodriguez Y., Levitt R.C., Takacs P., Candiotti K.A. Prophylactic and antinociceptive effects of coenzyme Q10 on diabetic neuropathic pain in a mouse model of type 1 diabetes. Anesthesiology. 2013;118:945–954. doi: 10.1097/ALN.0b013e3182829b7b.
    1. Sourris K.C., Harcourt B.E., Tang P.H., Morley A.L., Huynh K., Penfold S.A., Coughlan M.T., Cooper M.E., Nguyen T.V., Ritchie R.H., et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic. Biol. Med. 2012;52:716–723. doi: 10.1016/j.freeradbiomed.2011.11.017.
    1. Montano S.J., Grünler J., Nair D., Tekle M., Fernandes A.P., Hua X., Holmgren A., Brismar K., Ungerstedt J.S. Glutaredoxin mediated redox effects of coenzyme Q10 treatment in type 1 and type 2 diabetes patients. BBA Clin. 2015;4:14–20. doi: 10.1016/j.bbacli.2015.06.001.
    1. Brauner H., Lüthje P., Grünler J., Ekberg N.R., Dallner G., Brismar K., Brauner A. Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin. Exp. Immunol. 2014;177:478–482. doi: 10.1111/cei.12316.
    1. Andersen C.B., Henriksen J.E., Hother-Nielsen O., Vaag A., Mortensen S.A., Beck-Nielsen H. The effect of coenzyme Q10 on blood glucose and insulin requirement in patients with insulin dependent diabetes mellitus. Mol. Asp Med. 1997;18(Suppl. S1):307–309. doi: 10.1016/S0098-2997(97)00010-1.
    1. Henriksen J.E., Andersen C.B., Hother-Nielsen O., Vaag A., Mortensen S.A., Beck-Nielsen H. Impact of ubiquinone (coenzyme Q10) treatment on glycaemic control, insulin requirement and well-being in patients with Type 1 diabetes mellitus. Diabet. Med. 1999;16:312–318. doi: 10.1046/j.1464-5491.1999.00064.x.
    1. Khalilian B., Madadi S., Fattahi N., Abouhamzeh B. Coenzyme Q10 enhances remyelination and regulate inflammation effects of cuprizone in corpus callosum of chronic model of multiple sclerosis. J. Mol. Histol. 2021;52:125–134. doi: 10.1007/s10735-020-09929-x.
    1. Moccia M., Capacchione A., Lanzillo R., Carbone F., Micillo T., Perna F., De Rosa A., Carotenuto A., Albero R., Matarese G., et al. Coenzyme Q10 supplementation reduces peripheral oxidative stress and inflammation in interferon-β1a-treated multiple sclerosis. Ther. Adv. Neurol. Disord. 2019;12:1756286418819074. doi: 10.1177/1756286418819074.
    1. Sanoobar M., Eghtesadi S., Azimi A., Khalili M., Jazayeri S., Reza Gohari M. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis. Int. J. Neurosci. 2013;123:776–782. doi: 10.3109/00207454.2013.801844.
    1. Sanoobar M., Dehghan P., Khalili M., Azimi A., Seifar F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial. Nutr. Neurosci. 2016;19:138–143. doi: 10.1179/1476830515Y.0000000002.
    1. Sanoobar M., Eghtesadi S., Azimi A., Khalili M., Khodadadi B., Jazayeri S., Gohari M.R., Aryaeian N. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: A double blind, placebo, controlled randomized clinical trial. Nutr. Neurosci. 2015;18:169–176. doi: 10.1179/1476830513Y.0000000106.

Source: PubMed

3
Tilaa