Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations

Nima Gharahdaghi, Bethan E Phillips, Nathaniel J Szewczyk, Ken Smith, Daniel J Wilkinson, Philip J Atherton, Nima Gharahdaghi, Bethan E Phillips, Nathaniel J Szewczyk, Ken Smith, Daniel J Wilkinson, Philip J Atherton

Abstract

Maintenance of skeletal muscle mass throughout the life course is key for the regulation of health, with physical activity a critical component of this, in part, due to its influence upon key hormones such as testosterone, estrogen, growth hormone (GH), and insulin-like growth factor (IGF). Despite the importance of these hormones for the regulation of skeletal muscle mass in response to different types of exercise, their interaction with the processes controlling muscle mass remain unclear. This review presents evidence on the importance of these hormones in the regulation of skeletal muscle mass and their responses, and involvement in muscle adaptation to resistance exercise. Highlighting the key role testosterone plays as a primary anabolic hormone in muscle adaptation following exercise training, through its interaction with anabolic signaling pathways and other hormones via the androgen receptor (AR), this review also describes the potential importance of fluctuations in other hormones such as GH and IGF-1 in concert with dietary amino acid availability; and the role of estrogen, under the influence of the menstrual cycle and menopause, being especially important in adaptive exercise responses in women. Finally, the downstream mechanisms by which these hormones impact regulation of muscle protein turnover (synthesis and breakdown), and thus muscle mass are discussed. Advances in our understanding of hormones that impact protein turnover throughout life offers great relevance, not just for athletes, but also for the general and clinical populations alike.

Keywords: hormone; hypertrophy; muscle growth; protein synthesis; resistance exercise.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Gharahdaghi, Phillips, Szewczyk, Smith, Wilkinson and Atherton.

Figures

Figure 1
Figure 1
Signaling pathways regulated by testosterone, growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are induced by resistance exercise (RE). RE has been shown to increase the concentration of these hormones which activate several different signaling pathways in the muscle. These pathways lead to increases in muscle protein synthesis (MPS) and net protein accretion which result in an increase in muscle mass. SC, satellite cell; AR, androgen receptor; IRS, insulin receptor substrate; ARE, androgen response element. *Dashed outline represents inhibitory protein cascades.

References

    1. Adams G., Haddad F. (1996). The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J. Appl. Physiol. 81, 2509–2516. 10.1152/jappl.1996.81.6.2509
    1. Ahtiainen J. P., Pakarinen A., Alen M., Kraemer W. J., Häkkinen K. (2003). Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur. J. Appl. Physiol. 89, 555–563. 10.1007/s00421-003-0833-3
    1. Ahtiainen J. P., Pakarinen A., Alen M., Kraemer W. J., Häkkinen K. (2005). Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. J. Strength Conditioning Res. 19, 572–582. 10.1519/15604.1
    1. Allard J. B., Duan C. (2018). IGF-binding proteins: why do they exist and why are there so many? Front. Endocrinolo. 9:117. 10.3389/fendo.2018.00117
    1. Antonio J., Wilson J. D., George F. W. (1999). Effects of castration and androgen treatment on androgen-receptor levels in rat skeletal muscles. J. Appl. Physiol. 87, 2016–2019. 10.1152/jappl.1999.87.6.2016
    1. Arnarson A., Geirsdottir O. G., Ramel A., Jonsson P., Thorsdottir I. (2015). Insulin-like growth factor-1 and resistance exercise in community dwelling old adults. J. Nutrition Health Aging 19, 856–860. 10.1007/s12603-015-0547-3
    1. Baker J., Liu J.-P., Robertson E. J., Efstratiadis A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82. 10.1016/S0092-8674(05)80085-6
    1. Bamman M. M., Shipp J. R., Jiang J., Gower B. A., Hunter G. R., Goodman A., et al. . (2001). Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am. J. Physiol. Endocrinol. Metabolism 280, 383–390. 10.1152/ajpendo.2001.280.3.E383
    1. Barclay R. D., Mackenzie R. W., Burd N. A., Tyler C. J., Tillin N. A. (2019). The role of the IGF-1 signalling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Front. Nutrition 6:146. 10.3389/fnut.2019.00146
    1. Bartke A., Darcy J. (2017). GH and aging: pitfalls and new insights. Best Pract. Res. Clin. Endocrinol. Metabol. 31, 113–125. 10.1016/j.beem.2017.02.005
    1. Basualto-Alarcón C., Jorquera G., Altamirano F., Jaimovich E., Estrada M. (2013). Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med. Sci. Sports Exercise 45, 1712–1720. 10.1249/MSS.0b013e31828cf5f3
    1. Bhasin S., Taylor W. E., Singh R., Artaza J., Sinha-Hikim I., Jasuja R., et al. . (2003). The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action. J. Gerontol. Seri. A 58, 1103–1110. 10.1093/gerona/58.12.M1103
    1. Bikle D. D., Tahimic C., Chang W., Wang Y., Philippou A., Barton E. R. (2015). Role of IGF-I signaling in muscle bone interactions. Bone 80, 79–88. 10.1016/j.bone.2015.04.036
    1. Birnie K., Ben-Shlomo Y., Holly J. M., Gunnell D., Ebrahim S., Bayer A., et al. . (2012). Associations of insulin and insulin-like growth factors with physical performance in old age in the Boyd Orr and Caerphilly studies. PLoS ONE 7:30096. 10.1371/journal.pone.0030096
    1. Bjersing J. L., Larsson A., Palstam A., Ernberg M., Bileviciute-Ljungar I., Löfgren M., et al. . (2017). Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin. BMC Musculoskeletal Disord. 18:106. 10.1186/s12891-017-1477-5
    1. Bloomer R. J., Sforzo G. A., Keller B. A. (2000). Effects of meal form and composition on plasma testosterone, cortisol, and insulin following resistance exercise. Int. J. Sport Nutrition Exercise Metabol. 10, 415–424. 10.1123/ijsnem.10.4.415
    1. Bratton M. R., Antoon J. W., Duong B. N., Frigo D. E., Tilghman S., Collins-Burow B. M., et al. . (2012). Gαo potentiates estrogen receptor α activity via the ERK signaling pathway. J. Endocrinol. 214, 45–54. 10.1530/JOE-12-0097
    1. Brook M. S., Wilkinson D. J., Mitchell W. K., Lund J. N., Phillips B. E., Szewczyk N. J., et al. . (2016). Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. J. Physiol. 594, 7399–7417. 10.1113/JP272857
    1. Burger H. G. (2002). Androgen production in women. Fertility Sterility 77, 3–5. 10.1016/S0015-0282(02)02985-0
    1. Chakravarti S., Collins W., Forecast J., Newton J., Oram D., Studd J. (1976). Hormonal profiles after the menopause. Br. Med. J. 2, 784–787. 10.1136/bmj.2.6039.784
    1. Chidi-Ogbolu N., Baar K. (2019). Effect of estrogen on musculoskeletal performance and injury risk. Front. Physiol. 9:1834. 10.3389/fphys.2018.01834
    1. Coleman M. E., DeMayo F., Yin K. C., Lee H. M., Geske R., Montgomery C., et al. . (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J. Biol. Chem. 270, 12109–12116. 10.1074/jbc.270.20.12109
    1. Consitt L. A., Saneda A., Saxena G., List E. O., Kopchick J. J. (2017). Mice overexpressing growth hormone exhibit increased skeletal muscle myostatin and MuRF1 with attenuation of muscle mass. Skeletal Muscle 7:17. 10.1186/s13395-017-0133-y
    1. Cook D. M. (2004). Growth hormone and estrogen: a clinician's approach. J. Pediatric Endocrinol. Metabolism 17, 1273–1276.
    1. Copeland J. L., Consitt L. A., Tremblay M. S. (2002). Hormonal responses to endurance and resistance exercise in females aged 19–69 years. J. Gerontol. Seri. A 57, 158–165. 10.1093/gerona/57.4.B158
    1. Costoya J. A., Finidori J. E., Moutoussamy S., Señaris R., Devesa J., et al. . (1999). Activation of growth hormone receptor delivers an antiapoptotic signal: evidence for a role of Akt in this pathway. Endocrinology 140, 5937–5943. 10.1210/endo.140.12.7209
    1. Cui J., Shen Y., Li R. (2013). Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol. Med. 19, 197–209. 10.1016/j.molmed.2012.12.007
    1. Daughaday W. H. (2000). Growth hormone axis overview–somatomedin hypothesis. Pediatr. Nephrol. 14, 537–540. 10.1007/s004670000334
    1. Doessing S., Heinemeier K. M., Holm L., Mackey A. L., Schjerling P., Rennie M., et al. . (2010). Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J. Physiol. 588, 341–351. 10.1113/jphysiol.2009.179325
    1. Dubois V., Laurent M. R., Sinnesael M., Cielen N., Helsen C., Clinckemalie L., et al. . (2014). A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J. 28, 2979–2994. 10.1096/fj.14-249748
    1. Dufau M. L., Catt K. J. (1979). Gonadotropin receptors and regulation of steroidogenesis in the testis and ovary. Vitamins & Hormones. 36, 461–592. 10.1016/S0083-6729(08)60989-9
    1. Eliakim A., Brasel J. A., Mohan S., Wong W. L. T., Cooper D. M. (1998). Increased physical activity and the growth hormone-IGF-I axis in adolescent males. Am. J. Physiol. Regulatory Integrative Comparative Physiol. 275, 308–314. 10.1152/ajpregu.1998.275.1.R308
    1. Enns D. L., Tiidus P. M. (2010). The influence of estrogen on skeletal muscle. Sports Med. 40, 41–58. 10.2165/11319760-000000000-00000
    1. Estrada M., Espinosa A., Müller M., Jaimovich E. (2003). Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144, 3586–3597. 10.1210/en.2002-0164
    1. Feng W., Webb P., Nguyen P., Liu X., Li J., Karin M., et al. . (2001). Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway. Mol. Endocrinol. 15, 32–45. 10.1210/mend.15.1.0590
    1. Ferrando A. A., Sheffield-Moore M., Yeckel C. W., Gilkison C., Jiang J., Achacosa A., et al. . (2002). Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am. J. Physiol. Endocrinol. Metabol. 282, 601–607. 10.1152/ajpendo.00362.2001
    1. Fink J., Kikuchi N., Nakazato K. (2018a). Effects of rest intervals and training loads on metabolic stress and muscle hypertrophy. Clin. Physiol. Funct. Imaging 38, 261–268. 10.1111/cpf.12409
    1. Fink J., Schoenfeld B. J., Nakazato K. (2018b). The role of hormones in muscle hypertrophy. Physician Sportsmed. 46, 129–134. 10.1080/00913847.2018.1406778
    1. Fink J. E., Schoenfeld B. J., Kikuchi N., Nakazato K. (2017). Acute and long-term responses to different rest intervals in low-load resistance training. Int. J. Sports Med. 38, 118–124. 10.1055/s-0042-119204
    1. Fry A., Lohnes C. (2010). Acute testosterone and cortisol responses to high power resistance exercise. Human Physiol. 36, 457–461. 10.1134/S0362119710040110
    1. Fry A. C., Kraemer W. J. (1997). Resistance exercise overtraining and overreaching. Sports Med. 23, 106–129. 10.2165/00007256-199723020-00004
    1. Fryburg D. A., Barrett E. J. (1993). Growth hormone acutely stimulates skeletal muscle but not whole-body protein synthesis in humans. Metabolism 42, 1223–1227. 10.1016/0026-0495(93)90285-V
    1. Fryburg D. A., Gelfand R. A., Barrett E. J. (1991). Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am. J. Physiol. Endocrinol. Metabol. 260, E499–E504. 10.1152/ajpendo.1991.260.3.E499
    1. Fryburg D. A., Louard R. J., Gerow K. E., Gelfand R. A., Barrett E. J. (1992). Growth hormone stimulates skeletal muscle protein synthesis and antagonizes insulin's antiproteolytic action in humans. Diabetes 41, 424–429. 10.2337/diab.41.4.424
    1. Gharahdaghi N., Rudrappa S., Brook M. S., Idris I., Crossland H., Hamrock C., et al. . (2019). Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men. J. Cachexia Sarcopenia Muscle 10, 1276–1294. 10.1002/jcsm.12472
    1. Gibney J., Healy M.-L., Sönksen P. H. (2007). The growth hormone/insulin-like growth factor-I axis in exercise and sport. Endocrine Rev. 28, 603–624. 10.1210/er.2006-0052
    1. Gil M. C. R., Timón R., Toribio A., Muñoz D., Maynar J., Caballero M., et al. . (2012). Effects of aerobic exercise on urinary estrogens and progestagens in pre and postmenopausal women. Eur. J. Appl. Physiol. 112, 357–364. 10.1007/s00421-011-1982-4
    1. Giustina A., Mazziotti G., Canalis E. (2008). Growth hormone, insulin-like growth factors, and the skeleton. Endocrine Rev. 29, 535–559. 10.1210/er.2007-0036
    1. Godfrey R. J., Madgwick Z., Whyte G. P. (2003). The exercise-induced growth hormone response in athletes. Sports Med. 33, 599–613. 10.2165/00007256-200333080-00005
    1. Häkkinen K., Pakarinen A. (1995). Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int. J. Sports Med. 16, 507–513. 10.1055/s-2007-973045
    1. Hakkinen K., Pakarinen A., Kraemer W. J., Newton R. U., Alen M. (2000). Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and women. J. Gerontology-Biol. Sci. Med. Sci. 55, 95–105. 10.1093/gerona/55.2.B95
    1. Handelsman D. J., Hirschberg A. L., Bermon S. (2018). Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocrine Rev. 39, 803–829. 10.1210/er.2018-00020
    1. Hansen M. (2018). Female hormones: do they influence muscle and tendon protein metabolism? Proc. Nutrition Soc. 77, 32–41. 10.1017/S0029665117001951
    1. Hansen M., Kjaer M. (2014). Influence of sex and estrogen on musculotendinous protein turnover at rest and after exercise. Exercise Sport Sci. Rev. 42, 183–192. 10.1249/JES.0000000000000026
    1. Hansen M., Skovgaard D., Reitelseder S., Holm L., Langbjerg H., Kjaer M. (2012). Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J. Gerontol. Seri. A 67, 1005–1013. 10.1093/gerona/gls007
    1. Hansen S., Kvorning T., Kjaer M., Sjøgaard G. (2001). The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand. J. Med. Sci. Sports 11, 347–354. 10.1034/j.1600-0838.2001.110606.x
    1. Hartman M. L., Iranmanesh A., Thorner M. O., Veldhuis J. D. (1993). Evaluation of pulsatile patterns of growth hormone release in humans: a brief review. Am. J. Human Biol. 5, 603–614. 10.1002/ajhb.1310050603
    1. Hermansen K., Bengtsen M., Kjær M., Vestergaard P., Jørgensen J. O. L. (2017). Impact of GH administration on athletic performance in healthy young adults: a systematic review and meta-analysis of placebo-controlled trials. Growth Hormone IGF Res. 34, 38–44. 10.1016/j.ghir.2017.05.005
    1. Hoffman J. R., Im J., Rundell K. W., Kang J., Nioka S., Speiring B. A., et al. . (2003). Effect of muscle oxygenation during resistance exercise on anabolic hormone response. Med. Sci. Sports Exercise 35, 1929–1934. 10.1249/01.MSS.0000093613.30362.DF
    1. Hoffman J. R., Kraemer W. J., Bhasin S., Storer T., Ratamess N. A., Haff G. G., et al. . (2009). Position stand on androgen and human growth hormone use. J. Strength Conditioning Res. 23, 1–59. 10.1519/JSC.0b013e31819df2e6
    1. Hooper D. R., Kraemer W. J., Focht B. C., Volek J. S., DuPont W. H., Caldwell L. K., et al. . (2017). Endocrinological roles for testosterone in resistance exercise responses and adaptations. Sports Med. 47, 1709–1720. 10.1007/s40279-017-0698-y
    1. Hough J. P., Papacosta E., Wraith E., Gleeson M. (2011). Plasma and salivary steroid hormone responses of men to high-intensity cycling and resistance exercise. J. Strength Conditioning Res. 25, 23–31. 10.1519/JSC.0b013e3181fef8e7
    1. Hymer W. C., Kraemer W. J., Nindl B. C., Marx J. O., Benson D. E., Welsch J. R., et al. . (2001). Characteristics of circulating growth hormone in women after acute heavy resistance exercise. Am. J. Physiol. Endocrinol. Metabol. 281, 878–887. 10.1152/ajpendo.2001.281.4.E878
    1. Inoue K., Yamasaki S., Fushiki T., Okada Y., Sugimoto E. (1994). Androgen receptor antagonist suppresses exercise-induced hypertrophy of skeletal muscle. Eur. J. Appl. Physiol. Occupational Physiol. 69, 88–91. 10.1007/BF00867933
    1. Jørgensen J. O., Jessen N., Pedersen S. B., Vestergaard E., Gormsen L., Lund S. A., et al. . (2006). GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus. Am. J. Physiol. Endocrinol. Metabol. 291, 899–905. 10.1152/ajpendo.00024.2006
    1. Kadi F. (2008). Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br. J. Pharmacol. 154, 522–528. 10.1038/bjp.2008.118
    1. Kido K., Ato S., Yokokawa T., Makanae Y., Sato K., Fujita S. (2016). Acute resistance exercise-induced IGF 1 expression and subsequent GLUT 4 translocation. Physiol. Rep. 4:e12907. 10.14814/phy2.12907
    1. Kitajima Y., Ono Y. (2016). Estrogens maintain skeletal muscle and satellite cell functions. J. Endocrinol. 229, 267–275. 10.1530/JOE-15-0476
    1. Kraemer W. J., Fleck S. J., Dziados J. E., Harman E. A., Marchitelli L. J., Gordon S., et al. . (1993). Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J. Appl. Physiol. 75, 594–604. 10.1152/jappl.1993.75.2.594
    1. Kraemer W. J., Häkkinen K., Newton R. U., McCormick M., Nindl B. C., Volek J. S., et al. . (1998). Acute hormonal responses to heavy resistance exercise in younger and older men. Eur. J. Appl. Physiol. Occupat. Physiol. 77, 206–211. 10.1007/s004210050323
    1. Kraemer W. J., Häkkinen K., Newton R. U., Nindl B. C., Volek J. S., McCormick M., et al. . (1999). Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J. Appl. Physiol. 87, 982–992. 10.1152/jappl.1999.87.3.982
    1. Kraemer W. J., Marchitelli L., Gordon S. E., Harman E., Dziados J. E., Mello R., et al. . (1990). Hormonal and growth factor responses to heavy resistance exercise protocols. J. Appl. Physiol. 69, 1442–1450. 10.1152/jappl.1990.69.4.1442
    1. Kraemer W. J., Ratamess N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Med. 35, 339–361. 10.2165/00007256-200535040-00004
    1. Kraemer W. J., Ratamess N. A., Hymer W. C., Nindl B. C., Fragala M. S. (2020). Growth Hormone (s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise. Front. Endocrinol. 11:33. 10.3389/fendo.2020.00033
    1. Kraemer W. J., Ratamess N. A., Nindl B. C. (2017). Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J. Appl. Physiol. 122, 549–558. 10.1152/japplphysiol.00599.2016
    1. Kraemer W. J., Spiering B. A., Volek J. S., Ratamess N. A., Sharman M. J., Rubin M. R., et al. . (2006). Androgenic responses to resistance exercise: effects of feeding and L-carnitine. Med. Sci. Sports Exercise 38, 1288–1296. 10.1249/01.mss.0000227314.85728.35
    1. Kragstrup T. W., Kjaer M., Mackey A. (2011). Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand. J. Med. Sci. Sports 21, 749–757. 10.1111/j.1600-0838.2011.01377.x
    1. Kvorning T., Andersen M., Brixen K., Schjerling P., Suetta C., Madsen K. (2007). Suppression of testosterone does not blunt mRNA expression of myoD, myogenin, IGF, myostatin or androgen receptor post strength training in humans. J. Physiol. 578, 579–593. 10.1113/jphysiol.2006.122671
    1. Lee S., Campomanes C., Sikat P., Greenfield A., Allen P., McEwen B. (2004). Estrogen induces phosphorylation of cyclic AMP response element binding (pCREB) in primary hippocampal cells in a time-dependent manner. Neuroscience 124, 549–560. 10.1016/j.neuroscience.2003.11.035
    1. Lee W. J., Thompson R. W., McClung J. M., Carson J. A. (2003). Regulation of androgen receptor expression at the onset of functional overload in rat plantaris muscle. Am. J. Physiol. Regulat. Integrat. Comparat. Physiol. 285, 1076–1085. 10.1152/ajpregu.00202.2003
    1. Leung K.-C., Johannsson G., Leong G. M., Ho K. K. (2004). Estrogen regulation of growth hormone action. Endocrine Rev. 25, 693–721. 10.1210/er.2003-0035
    1. Lin H., Wang S. W., Wang R. Y., Wang P. S. (2001). Stimulatory effect of lactate on testosterone production by rat Leydig cells. J. Cell. Biochem. 83, 147–154. 10.1002/jcb.1213
    1. Linnamo V., Pakarinen A., Komi P. V., Kraemer W. J., Häkkinen K. (2005). Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J. Strength Conditioning Res. 19, 566–571. 10.1519/R-15404.1
    1. Liu H., Bravata D. M., Olkin I., Friedlander A., Liu V., Roberts B., et al. . (2008). Systematic review: the effects of growth hormone on athletic performance. Annals Int. Med. 148, 747–758. 10.7326/0003-4819-148-10-200805200-00215
    1. Liu P. Y., Beilin J., Meier C., Nguyen T. V., Center J. R., Leedman P. J., et al. . (2007). Age-related changes in serum testosterone and sex hormone binding globulin in Australian men: longitudinal analyses of two geographically separate regional cohorts. J. Clin. Endocrinol. Metabol. 92, 3599–3603. 10.1210/jc.2007-0862
    1. Luk H. Y., Kraemer W. J., Szivak T. K., Flanagan S. D., Hooper D. R., Kupchak B. R., et al. . (2015). Acute resistance exercise stimulates sex-specific dimeric immunoreactive growth hormone responses. Growth Hormone IGF Res. 25, 136–140. 10.1016/j.ghir.2015.02.002
    1. Ly L. P., Jimenez M., Zhuang T. N., Celermajer D. S., Conway A. J., Handelsman D. J. (2001). A double-blind, placebo-controlled, randomized clinical trial of transdermal dihydrotestosterone gel on muscular strength, mobility, and quality of life in older men with partial androgen deficiency. J. Clin. Endocrinol. Metabol. 86, 4078–4088. 10.1210/jcem.86.9.7821
    1. MacLean H. E., Chiu W. M., Notini A. J., Axell A.-M., Davey R. A., McManus J. F., et al. . (2008). Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J. 22, 2676–2689. 10.1096/fj.08-105726
    1. Maggio M., Lauretani F., Basaria S., Ceda G., Bandinelli S., Metter E., et al. . (2008). Sex hormone binding globulin levels across the adult lifespan in women—the role of body mass index and fasting insulin. J. Endocrinol. Invest. 31, 597–601. 10.1007/BF03345608
    1. Mainardi M., Fusco S., Grassi C. (2015). Modulation of hippocampal neural plasticity by glucose-related signaling. Neural plasticity 2015:657928. 10.1155/2015/657928
    1. Mangan G., Bombardier E., Mitchell A., Quadrilatero J., Tiidus P. (2014). Oestrogen-dependent satellite cell activation and proliferation following a running exercise occurs via the PI 3K signalling pathway and not IGF-1. Acta Physiol. 212, 75–85. 10.1111/apha.12317
    1. Marx J. O., Ratamess N. A., Nindl B. C., Gotshalk L. A., Volek J. S., Dohi K., et al. . (2001). Low-volume circuit versus high-volume periodized resistance training in women. Med. Sci. Sports Exercise 33, 635–643. 10.1097/00005768-200104000-00019
    1. Matsumoto A. M. (2002). Andropause: clinical implications of the decline in serum testosterone levels with aging in men. J. Gerontol. Seri. A 57, 76–99. 10.1093/gerona/57.2.M76
    1. Mauras N., Rini A., Welch S., Sager B., Murphy S. P. (2003). Synergistic effects of testosterone and growth hormone on protein metabolism and body composition in prepubertal boys. Metabolism 52, 964–969. 10.1016/S0026-0495(03)00163-X
    1. McCall G. E., Byrnes W. C., Fleck S. J., Dickinson A., Kraemer W. J. (1999). Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can. J. Appl. Physiol. 24, 96–107. 10.1139/h99-009
    1. McCaulley G. O., McBride J. M., Cormie P., Hudson M. B., Nuzzo J. L., Quindry J. C., et al. . (2009). Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur. J. Appl. Physiol. 105, 695–704. 10.1007/s00421-008-0951-z
    1. Menon S., Dibble C. C., Talbott G., Hoxhaj G., Valvezan A. J., Takahashi H., et al. . (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785. 10.1016/j.cell.2013.11.049
    1. Migiano M. J., Vingren J. L., Volek J. S., Maresh C. M., Fragala M. S., Ho J.-Y., et al. . (2010). Endocrine response patterns to acute unilateral and bilateral resistance exercise in men. J. Strength Conditioning Res. 24, 128–134. 10.1519/JSC.0b013e3181a92dc5
    1. Miller B. F., Hansen M., Olesen J. L., Flyvbjerg A., Schwarz P., Babraj J. A., et al. . (2006). No effect of menstrual cycle on myofibrillar and connective tissue protein synthesis in contracting skeletal muscle. Am. J. Physiol. Endocrinol. Metabol. 290, 163–168. 10.1152/ajpendo.00300.2005
    1. Mitchell C. J., Churchward-Venne T. A., Bellamy L., Parise G., Baker S. K., Phillips S. M. (2013). Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS ONE 8:78636. 10.1371/journal.pone.0078636
    1. Mohamad N.-,v., Soelaiman I.-N., Chin K.-Y. (2016). A concise review of testosterone and bone health. Clin. Interventions In Aging 11, 1317–1324. 10.2147/CIA.S115472
    1. Mora G. R., Mahesh V. B. (1999). Autoregulation of the androgen receptor at the translational level:: Testosterone induces accumulation of androgen receptor mrna in the rat ventral prostate polyribosomes. Steroids 64, 587–591. 10.1016/S0039-128X(99)00037-9
    1. Morton R. W., Oikawa S. Y., Wavell C. G., Mazara N., McGlory C., Quadrilatero J., et al. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J. Appl. Physiol. 121, 129–138. 10.1152/japplphysiol.00154.2016
    1. Morton R. W., Sato K., Gallaugher M. P., Oikawa S. Y., McNicholas P. D., Fujita S., et al. (2018). Muscle androgen receptor content but not systemic hormones is associated with resistance training-induced skeletal muscle hypertrophy in healthy, young men. Front. Physiol. 9:1373 10.3389/fphys.2018.01373
    1. Murphy C., Koehler K. (2020). Caloric restriction induces anabolic resistance to resistance exercise. European J. Appl. Physiol. 120:1155–64. 10.1007/s00421-020-04354-0
    1. Nakamura Y., Aizawa K. (2017). “Sex hormones, menstrual cycle and resistance exercise,” in Sex Hormones, Exercise and Women, eds A. C. Hackney (Cham: Springer; ), 243–256. 10.1007/978-3-319-44558-8_14
    1. Nakamura Y., Aizawa K., Imai T., Kono I., Mesaki N. (2011). Hormonal responses to resistance exercise during different menstrual cycle states. Med. Sci. Sports Exercise 43, 967–973. 10.1249/MSS.0b013e3182019774
    1. Nelson L. R., Bulun S. E. (2001). Estrogen production and action. J. Am. Acad. Dermatol. 45, S116–S124. 10.1067/mjd.2001.117432
    1. Nicholls A. R., Holt R. I. (2016). “Growth hormone and insulin-like growth factor-1,” in Sports Endocrinology, eds F. Lanfranco, and C.J. Strasburger (Basel: Karger Publishers; ), p. 101–114. 10.1159/000445173
    1. Nindl B. C., Kraemer W. J., Gotshalk L. A., Marx J. O., Volek J. S., Bush J. A., et al. . (2001). Testosterone responses after resistance exercise in women: influence of regional fat distribution. Int. J. Sport Nutrition Exercise Metabol. 11, 451–465. 10.1123/ijsnem.11.4.451
    1. Ogasawara R., Sato K., Higashida K., Nakazato K., Fujita S. (2013). Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metabol. 305, 760–765. 10.1152/ajpendo.00302.2013
    1. Ohlsson C., Mohan S., Sjogren K., Tivesten A., Isgaard J., Isaksson O., et al. . (2009). The role of liver-derived insulin-like growth factor-I. Endocrine Rev. 30, 494–535. 10.1210/er.2009-0010
    1. Ohlsson C., Sjögren K., Jansson J.-O., Isaksson O. (2000). The relative importance of endocrine versus autocrine/paracrine insulin-like growth factor-I in the regulation of body growth. Pediatr. Nephrol. 14, 541–543. 10.1007/s004670000348
    1. O'Neill B. T., Lauritzen H. P., Hirshman M. F., Smyth G., Goodyear L. J., Kahn C. R. (2015). Differential role of insulin/IGF-1 receptor signaling in muscle growth and glucose homeostasis. Cell Rep. 11, 1220–1235. 10.1016/j.celrep.2015.04.037
    1. Paroo Z., Dipchand E. S., Noble E. G. (2002). Estrogen attenuates postexercise HSP70 expression in skeletal muscle. Am. J. Physiol. Cell Physiol. 282, 245–251. 10.1152/ajpcell.00336.2001
    1. Paroo Z., Tiidus P. M., Noble E. G. (1999). Estrogen attenuates HSP 72 expression in acutely exercised male rodents. Eur. J. Appl. Physiol. Occupat. Physiol. 80, 180–184. 10.1007/s004210050579
    1. Pinedo-Villanueva R., Westbury L. D., Syddall H. E., Sanchez-Santos M. T., Dennison E. M., Robinson S. M., et al. . (2019). Health care costs associated with muscle weakness: a UK population-based estimate. Calcified Tissue Int. 104, 137–144. 10.1007/s00223-018-0478-1
    1. Ratamess N. A., Kraemer W. J., Volek J. S., Maresh C. M., VanHeest J. L., Sharman M. J., et al. . (2005). Androgen receptor content following heavy resistance exercise in men. J. Steroid Biochem. Mol. Biol. 93, 35–42. 10.1016/j.jsbmb.2004.10.019
    1. Roberts M. D., Haun C. T., Mobley C. B., Mumford P. W., Romero M. A., Roberson P. A., et al. . (2018). Physiological differences between low versus high skeletal muscle hypertrophic responders to resistance exercise training: current perspectives and future research directions. Front. Physiol. 9:834. 10.3389/fphys.2018.00834
    1. Romagnoli C., Zonefrati R., Sharma P., Innocenti M., Cianferotti L., Brandi M. L. (2020). Characterization of skeletal muscle endocrine control in an in vitro model of myogenesis. Calcified Tissue Int. 107, 18–30. 10.1007/s00223-020-00678-3
    1. Rozario T., DeSimone D. W. (2010). The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341, 126–140. 10.1016/j.ydbio.2009.10.026
    1. Sakamaki-Sunaga M., Min S., Kamemoto K., Okamoto T. (2016). Effects of menstrual phase–dependent resistance training frequency on muscular hypertrophy and strength. J. Strength Conditioning Res. 30, 1727–1734. 10.1519/JSC.0000000000001250
    1. Sambasivan R., Yao R., Kissenpfennig A., Van Wittenberghe L., Paldi A., Gayraud-Morel B., et al. . (2011). Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656. 10.1242/dev.067587
    1. Sandri M., Barberi L., Bijlsma A., Blaauw B., Dyar K., Milan G., et al. . (2013). Signalling pathways regulating muscle mass in aging skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology 14, 303–323. 10.1007/s10522-013-9432-9
    1. Schiaffino S., Dyar K. A., Ciciliot S., Blaauw B., Sandri M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280, 4294–4314. 10.1111/febs.12253
    1. Schiaffino S., Mammucari C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal muscle 1:4. 10.1186/2044-5040-1-4
    1. Schroeder E. T., Villanueva M., West D. D., Phillips S. M. (2013). Are acute post–resistance exercise increases in testosterone, growth hormone, and IGF-1 necessary to stimulate skeletal muscle anabolism and hypertrophy? Med. Sci. Sports Exercise 45, 2044–2051. 10.1249/MSS.0000000000000147
    1. Schwarz A. J., Brasel J., Hintz R. L., Mohan S., Cooper D. (1996). Acute effect of brief low-and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J. Clin. Endocrinol. Metabol. 81, 3492–3497. 10.1210/jcem.81.10.8855791
    1. Senf S. M., Howard T. M., Ahn B., Ferreira L. F., Judge A. R. (2013). Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS ONE 8:e62687. 10.1371/journal.pone.0062687
    1. Sepulveda P. V., Bush E. D., Baar K. (2015). Pharmacology of manipulating lean body mass. Clin. Exp. Pharmacol. Physiol. 42, 1–13. 10.1111/1440-1681.12320
    1. Sheffield-Moore M. (2000). Androgens and the control of skeletal muscle protein synthesis. Annals Med. 32, 181–186. 10.3109/07853890008998825
    1. Sinha-Hikim I., Cornford M., Gaytan H., Lee M. L., Bhasin S. (2006). Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J. Clin. Endocrinol. Metabol. 91, 3024–3033. 10.1210/jc.2006-0357
    1. Sitnick M., Foley A. M., Brown M., Spangenburg E. E. (2006). Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J. Appl. Physiol. 100, 286–293. 10.1152/japplphysiol.00869.2005
    1. Smith G. I., Yoshino J., Reeds D. N., Bradley D., Burrows R. E., Heisey H. D., et al. . (2014). Testosterone and progesterone, but not estradiol, stimulate muscle protein synthesis in postmenopausal women. J. Clin. Endocrinol. Metabol. 99, 256–265. 10.1210/jc.2013-2835
    1. Sotiropoulos A., Ohanna M., Kedzia C., Menon R. K., Kopchick J. J., Kelly P. A., et al. . (2006). Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc. Natl. Acad. Sci. U.S.A. 103, 7315–7320. 10.1073/pnas.0510033103
    1. Spiering B., Kraemer W., Anderson J., Armstrong L., Nindl B., Volek J., et al. . (2008). Manipulation of resistance exercise Programme variables determines the responses of cellular and molecular Signalling pathways. Sports Med. 38, 527–540. 10.2165/00007256-200838070-00001
    1. Spiering B. A., Kraemer W. J., Vingren J. L., Ratamess N. A., Anderson J. M., Armstrong L. E., et al. . (2009). Elevated endogenous testosterone concentrations potentiate muscle androgen receptor responses to resistance exercise. J. Steroid Biochem. Mol. Biol. 114, 195–199. 10.1016/j.jsbmb.2009.02.005
    1. Sung E., Han A., Hinrichs T., Vorgerd M., Manchado C., Platen P. (2014). Effects of follicular versus luteal phase-based strength training in young women. Springerplus 3:668. 10.1186/2193-1801-3-668
    1. Syms A., Norris J., Panko W., Smith R. (1985). Mechanism of androgen-receptor augmentation. Analysis of receptor synthesis and degradation by the density-shift technique. J. Biol. Chem. 260, 455–461.
    1. Tahimic C. G., Wang Y., Bikle D. D. (2013). Anabolic effects of IGF-1 signaling on the skeleton. Front. Endocrinol. 4:6. 10.3389/fendo.2013.00006
    1. Thomas A., Bunyan K., Tiidus P. (2010). Oestrogen receptor-alpha activation augments post-exercise myoblast proliferation. Acta Physiol. 198, 81–89. 10.1111/j.1748-1716.2009.02033.x
    1. Tinline-Goodfellow C. T., West D. W., Malowany J. M., Gillen J. B., Moore D. R. (2020). An acute reduction in habitual protein intake attenuates post exercise anabolism and may bias oxidation-derived protein requirements in resistance trained men. Front. Nutrition 7:55. 10.3389/fnut.2020.00055
    1. Trejo J. L., Carro E., Torres-Aleman I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634. 10.1523/JNEUROSCI.21-05-01628.2001
    1. Tremblay M. S., Copeland J. L., Van Helder W. (2004). Effect of training status and exercise mode on endogenous steroid hormones in men. J. Appl. Physiol. 96, 531–539. 10.1152/japplphysiol.00656.2003
    1. Van Nieuwpoort I., Vlot M., Schaap L., Lips P., Drent M. (2018). The relationship between serum IGF-1, handgrip strength, physical performance and falls in elderly men and women. Eur. J. Endocrinol. 179, 73–84. 10.1530/EJE-18-0076
    1. Veldhuis J. D., Anderson S. M., Iranmanesh A., Bowers C. Y. (2005). Testosterone blunts feedback inhibition of growth hormone secretion by experimentally elevated insulin-like growth factor-I concentrations. J. Clin. Endocrinol. Metabol. 90, 1613–1617. 10.1210/jc.2004-1303
    1. Veldhuis J. D., Anderson S. M., Patrie J. T., Bowers C. Y. (2004). Estradiol supplementation in postmenopausal women doubles rebound-like release of growth hormone (GH) triggered by sequential infusion and withdrawal of somatostatin: evidence that estrogen facilitates endogenous GH-releasing hormone drive. J. Clin. Endocrinol. Metabol. 89, 121–127. 10.1210/jc.2003-031291
    1. Velloso C. (2008). Regulation of muscle mass by growth hormone and IGF-I. Br. J. Pharmacol. 154, 557–568. 10.1038/bjp.2008.153
    1. Vingren J. L., Kraemer W. J., Hatfield D. L., Anderson J. M., Volek J. S., Ratamess N. A., et al. . (2008). Effect of resistance exercise on muscle steroidogenesis. J. Appl. Physiol. 105, 1754–1760. 10.1152/japplphysiol.91235.2008
    1. Vingren J. L., Kraemer W. J., Ratamess N. A., Anderson J. M., Volek J. S., Maresh C. M. (2010). Testosterone physiology in resistance exercise and training. Sports Med. 40, 1037–1053. 10.2165/11536910-000000000-00000
    1. Wen Y., Alimov A. P., McCarthy J. J. (2016). Ribosome biogenesis is necessary for skeletal muscle hypertrophy. Exercise Sport Sciences Rev. 44, 110–115. 10.1249/JES.0000000000000082
    1. West D. W., Burd N. A., Tang J. E., Moore D. R., Staples A. W., Holwerda A. M., et al. . (2010). Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J. Appl. Physiol. 108, 60–67. 10.1152/japplphysiol.01147.2009
    1. West D. W., Kujbida G. W., Moore D. R., Atherton P., Burd N. A., Padzik J. P., et al. (2009). Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J. Physiol. 587, 5239–5247. 10.1113/jphysiol.2009.177220
    1. West D. W., Phillips S. M. (2012). Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur. J. Appl. Physiol. 112, 2693–2702. 10.1007/s00421-011-2246-z
    1. White J. P., Gao S., Puppa M. J., Sato S., Welle S. L., Carson J. A. (2013). Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol. Cell. Endocrinol. 365, 174–186. 10.1016/j.mce.2012.10.019
    1. Wikström-Frisén L., Boraxbekk C. J., Henriksson-Larsen K. (2017). Effects on power, strength and lean body mass of menstrual/oral contraceptive cycle based resistance training. J. Sports Med. Phys. Fitness 57, 43–52.
    1. Wilborn C., Taylor L., Poole C., Foster C., Willoughby D., Kreider R. (2010). Effects of a purported aromatase and 5 α-reductase inhibitor on hormone profiles in college-age men. Int. J. Sport Nutrition Exercise Metabol. 20, 457–465. 10.1123/ijsnem.20.6.457
    1. Willoughby D. S., Taylor L. (2004). Effects of sequential bouts of resistance exercise on androgen receptor expression. Med. Sci. Sports Exercise 36, 1499–1506. 10.1249/01.MSS.0000139795.83030.D1
    1. Wolfe R., Ferrando A., Sheffield-Moore M., Urban R. (2000). Testosterone and muscle protein metabolism. Mayo. Clinic. Proceedings. 75, 55–60. 10.1016/S0025-6196(19)30644-5
    1. Yarrow J. F., Borsa P. A., Borst S. E., Sitren H. S., Stevens B. R., White L. J. (2007). Neuroendocrine responses to an acute bout of eccentric-enhanced resistance exercise. Med. Sci. Sports Exercise 39, 941–947. 10.1097/mss.0b013e318043a249
    1. Yoon J.-R., Ha G.-C., Ko K.-J., Kang S.-J. (2018). Effects of exercise type on estrogen, tumor markers, immune function, antioxidant function, and physical fitness in postmenopausal obese women. J. Exerc. Rehabil. 14, 1032–1040. 10.12965/jer.1836446.223
    1. Yusuf S., Joseph P., Rangarajan S., Islam S., Mente A., Hystad P., et al. . (2020). Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 395, 795–808. 10.1016/S0140-6736(19)32008-2
    1. Zaccaria M., Varnier M., Piazza P., Noventa D., Ermolao A. (1999). Blunted growth hormone response to maximal exercise in middle-aged versus young subjects and no effect of endurance training. J. Clin. Endocrinol. Metabol. 84, 2303–2307. 10.1210/jcem.84.7.5853

Source: PubMed

3
Tilaa