Fitbit-Based Interventions for Healthy Lifestyle Outcomes: Systematic Review and Meta-Analysis

Mickael Ringeval, Gerit Wagner, James Denford, Guy Paré, Spyros Kitsiou, Mickael Ringeval, Gerit Wagner, James Denford, Guy Paré, Spyros Kitsiou

Abstract

Background: Unhealthy behaviors, such as physical inactivity, sedentary lifestyle, and unhealthful eating, remain highly prevalent, posing formidable challenges in efforts to improve cardiovascular health. While traditional interventions to promote healthy lifestyles are both costly and effective, wearable trackers, especially Fitbit devices, can provide a low-cost alternative that may effectively help large numbers of individuals become more physically fit and thereby maintain a good health status.

Objective: The objectives of this meta-analysis are (1) to assess the effectiveness of interventions that incorporate a Fitbit device for healthy lifestyle outcomes (eg, steps, moderate-to-vigorous physical activity, and weight) and (2) to identify which additional intervention components or study characteristics are the most effective at improving healthy lifestyle outcomes.

Methods: A systematic review was conducted, searching the following databases from 2007 to 2019: MEDLINE, EMBASE, CINAHL, and CENTRAL (Cochrane). Studies were included if (1) they were randomized controlled trials, (2) the intervention involved the use of a Fitbit device, and (3) the reported outcomes were related to healthy lifestyles. The main outcome measures were related to physical activity, sedentary behavior, and weight. All the studies were assessed for risk of bias using Cochrane criteria. A random-effects meta-analysis was conducted to estimate the treatment effect of interventions that included a Fitbit device compared with a control group. We also conducted subgroup analysis and fuzzy-set qualitative comparative analysis (fsQCA) to further disentangle the effects of intervention components.

Results: Our final sample comprised 41 articles reporting the results of 37 studies. For Fitbit-based interventions, we found a statistically significant increase in daily step count (mean difference [MD] 950.54, 95% CI 475.89-1425.18; P<.001) and moderate-to-vigorous physical activity (MD 6.16, 95% CI 2.80-9.51; P<.001), a significant decrease in weight (MD -1.48, 95% CI -2.81 to -0.14; P=.03), and a nonsignificant decrease in objectively assessed and self-reported sedentary behavior (MD -10.62, 95% CI -35.50 to 14.27; P=.40 and standardized MD -0.11, 95% CI -0.48 to 0.26; P=.56, respectively). In general, the included studies were at low risk for bias, except for performance bias. Subgroup analysis and fsQCA demonstrated that, in addition to the effects of the Fitbit devices, setting activity goals was the most important intervention component.

Conclusions: The use of Fitbit devices in interventions has the potential to promote healthy lifestyles in terms of physical activity and weight. Fitbit devices may be useful to health professionals for patient monitoring and support.

Trial registration: PROSPERO International Prospective Register of Systematic Reviews CRD42019145450; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019145450.

Keywords: Fitbit; fuzzy-set qualitative comparative analysis; healthy lifestyle; literature review; meta-analysis; wearables.

Conflict of interest statement

Conflicts of Interest: None declared.

©Mickael Ringeval, Gerit Wagner, James Denford, Guy Paré, Spyros Kitsiou. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 12.10.2020.

Figures

Figure 1
Figure 1
Flow diagram. RCT: randomized controlled trial.
Figure 2
Figure 2
Number of Fitbit-based randomized controlled trials published each year.
Figure 3
Figure 3
Risk of bias summary for each included study.
Figure 4
Figure 4
Forest plot of mean difference in steps per day in studies comparing an intervention that included a Fitbit device with a control group that did not utilize such a device.
Figure 5
Figure 5
Forest plot of mean difference in moderate-to-vigorous physical activity (MVPA; min/day) in studies comparing an intervention that included a Fitbit device with a control group that did not utilize such a device.
Figure 6
Figure 6
Forest plot of mean difference in weight (kg) in studies comparing an intervention that included a Fitbit device with a control group that did not utilize such a device.
Figure 7
Figure 7
Forest plot of sedentary behaviors (min/day) in studies comparing an intervention that included a Fitbit device with a control group that did not utilize such a device.
Figure 8
Figure 8
Fuzzy-set qualitative comparative analysis configurations associated with improvements in healthy lifestyle outcomes.

References

    1. Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, Bixby H, Cowan M, Ali M, Taddei C, Lo W, Reis-Santos B, Stevens G, Riley L, Miranda J, Bjerregaard P, Rivera J, Fouad H, Ma G, Mbanya J, McGarvey S, Mohan V, Onat A, Pilav A, Ramachandran A, Romdhane H, Paciorek C, Bennett J, Ezzati M, Abdeen Z, Abdul Kadir K, Abu-Rmeileh N, Acosta-Cazares B, Adams R, Aekplakorn W, Aguilar-Salinas C, Agyemang C, Ahmadvand A, Al-Othman A, Alkerwi A, Amouyel P, Amuzu A, Andersen L, Anderssen S, Anjana R, Aounallah-Skhiri H, Aris T, Arlappa N, Arveiler D, Assah F, Avdicová M, Azizi F, Balakrishna N, Bandosz P, Barbagallo C, Barceló A, Batieha A, Baur L, Romdhane H, Benet M, Bernabe-Ortiz A, Bharadwaj S, Bhargava S, Bi Y, Bjerregaard P, Bjertness E, Bjertness M, Björkelund C, Blokstra A, Bo S, Boehm B, Boissonnet C, Bovet P, Brajkovich I, Breckenkamp J, Brenner H, Brewster L, Brian G, Bruno G, Bugge A, Cabrera de León A, Can G, Cândido A, Capuano V, Carlsson A, Carvalho M, Casanueva F, Casas J. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. The Lancet. 2016 Apr 09;387(10027):1513–1530. doi: 10.1016/S0140-6736(16)00618-8.
    1. Tuchman A. Diabetes and the public's health. The Lancet. 2009 Oct 03;374(9696):1140–1141. doi: 10.1016/s0140-6736(09)61730-x.
    1. Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, Kahlmeier S. The pandemic of physical inactivity: global action for public health. The Lancet. 2012 Jul 21;380(9838):294–305. doi: 10.1016/S0140-6736(12)60898-8.
    1. Heath GW, Parra DC, Sarmiento OL, Andersen LB, Owen N, Goenka S, Montes F, Brownson RC. Evidence-based intervention in physical activity: lessons from around the world. The Lancet. 2012 Jul 21;380(9838):272–281. doi: 10.1016/S0140-6736(12)60816-2.
    1. Global status report on noncommunicable diseases. World Health Organization. 2014. [2020-10-02].
    1. Lee I, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The Lancet. 2012 Jul 21;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, Casanova A, Swaminathan S, Anjana RM, Kumar R, Rosengren A, Wei L, Yang W, Chuangshi W, Huaxing L, Nair S, Diaz R, Swidon H, Gupta R, Mohammadifard N, Lopez-Jaramillo P, Oguz A, Zatonska K, Seron P, Avezum A, Poirier P, Teo K, Yusuf S. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. The Lancet. 2017 Dec 16;390(10113):2643–2654. doi: 10.1016/S0140-6736(17)31634-3.
    1. Bhaskaran K, dos-Santos-Silva I, Leon D, Douglas I, Smeeth L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3·6 million adults in the UK. 2018 Dec 21;6(12):944–953. doi: 10.1016/S2213-8587(18)30288-2.
    1. Updated Physical Activity Guidelines Now Available. American College of Sports Medicine. 2018. [2020-10-02]. .
    1. American Heart Association Recommendations for Physical Activity in Adults and Kids. American Heart Association. 2018. [2020-10-02]. .
    1. Physical Activity Guidelines for Americans - 2nd edition. US Department of Health and Human Services. 2018. [2020-10-02]. .
    1. Sallis JF, Bull F, Guthold R, Heath GW, Inoue S, Kelly P, Oyeyemi AL, Perez LG, Richards J, Hallal PC. Progress in physical activity over the Olympic quadrennium. The Lancet. 2016 Sep 24;388(10051):1325–1336. doi: 10.1016/S0140-6736(16)30581-5.
    1. Global action plan on physical activity 2018–2030: more active people for a healthier world. World Health Organization. 2018. [2020-10-02].
    1. Rodgers A, Woodward A, Swinburn B, Dietz WH. Prevalence trends tell us what did not precipitate the US obesity epidemic. The Lancet Public Health. 2018 Apr;3(4):e162–e163. doi: 10.1016/S2468-2667(18)30021-5.
    1. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of Obesity Among Adults and Youth: United States, 2011–2014. NCHS Data Brief. 2015. Nov, [2020-10-02]. .
    1. Brickwood K, Watson G, O'Brien J, Williams AD. Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth. 2019 Apr 12;7(4):e11819. doi: 10.2196/11819.
    1. Kirk MA, Amiri M, Pirbaglou M, Ritvo P. Wearable Technology and Physical Activity Behavior Change in Adults With Chronic Cardiometabolic Disease: A Systematic Review and Meta-Analysis. Am J Health Promot. 2019 Jun;33(5):778–791. doi: 10.1177/0890117118816278.
    1. Ridgers ND, McNarry MA, Mackintosh KA. Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review. JMIR Mhealth Uhealth. 2016 Nov 23;4(4):e129. doi: 10.2196/mhealth.6540.
    1. Patients want a heavy dose of digital. Accenture. 2016. [2020-10-02]. .
    1. Fitbit Reports $571M Q4’17 and $1.616B FY’17 Revenue. Fitbit. 2018. [2020-10-02]. .
    1. Pourquoi Fitbit? Fitbit. 2020. [2020-10-02]. .
    1. Gartner Says Worldwide Wearable Device Sales to Grow 26 Percent in 2019. Gartner. 2018. [2020-10-02].
    1. Paré G, Leaver C, Bourget C. Diffusion of the Digital Health Self-Tracking Movement in Canada: Results of a National Survey. J Med Internet Res. 2018 May 02;20(5):e177. doi: 10.2196/jmir.9388.
    1. VanWormer JJ, Pronk NP, Kroeninger GJ. Clinical Counseling for Physical Activity: Translation of a Systematic Review Into Care Recommendations. Diabetes Spectrum. 2009 Jan 01;22(1):48–55. doi: 10.2337/diaspect.22.1.48.
    1. Improving your health through physical activity. Government of Quebec. 2018. [2020-10-02].
    1. Physical activity and your health. Government of Canada. 2018. [2020-10-02]. .
    1. Hillsdon M, Foster C, Thorogood M. Interventions for promoting physical activity. Cochrane Database Syst Rev. 2005 Jan 25;(1):CD003180. doi: 10.1002/14651858.CD003180.pub2.
    1. Buckingham SA, Williams AJ, Morrissey K, Price L, Harrison J. Mobile health interventions to promote physical activity and reduce sedentary behaviour in the workplace: A systematic review. Digit Health. 2019;5:2055207619839883. doi: 10.1177/2055207619839883.
    1. Piwek L, Ellis DA, Andrews S, Joinson A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016 Feb;13(2):e1001953. doi: 10.1371/journal.pmed.1001953.
    1. de Vries HJ, Kooiman TJ, van Ittersum MW, van Brussel M, de Groot M. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity (Silver Spring) 2016 Oct;24(10):2078–91. doi: 10.1002/oby.21619. doi: 10.1002/oby.21619.
    1. Gal R, May AM, van Overmeeren EJ, Simons M, Monninkhof EM. The Effect of Physical Activity Interventions Comprising Wearables and Smartphone Applications on Physical Activity: a Systematic Review and Meta-analysis. Sports Med Open. 2018 Sep 03;4(1):42. doi: 10.1186/s40798-018-0157-9.
    1. Goode AP, Hall KS, Batch BC, Huffman KM, Hastings SN, Allen KD, Shaw RJ, Kanach FA, McDuffie JR, Kosinski AS, Williams JW, Gierisch JM. The Impact of Interventions that Integrate Accelerometers on Physical Activity and Weight Loss: A Systematic Review. Ann Behav Med. 2017 Feb;51(1):79–93. doi: 10.1007/s12160-016-9829-1.
    1. Böhm B, Karwiese SD, Böhm H, Oberhoffer R. Effects of Mobile Health Including Wearable Activity Trackers to Increase Physical Activity Outcomes Among Healthy Children and Adolescents: Systematic Review. JMIR Mhealth Uhealth. 2019 Apr 30;7(4):e8298. doi: 10.2196/mhealth.8298.
    1. Stephenson A, McDonough SM, Murphy MH, Nugent CD, Mair JL. Using computer, mobile and wearable technology enhanced interventions to reduce sedentary behaviour: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017 Aug 11;14(1):105. doi: 10.1186/s12966-017-0561-4.
    1. Lewis ZH, Lyons EJ, Jarvis JM, Baillargeon J. Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health. 2015 Jun 24;15:585. doi: 10.1186/s12889-015-1947-3.
    1. Cooper C, Gross A, Brinkman C, Pope R, Allen K, Hastings S, Bogen BE, Goode AP. The impact of wearable motion sensing technology on physical activity in older adults. Exp Gerontol. 2018 Oct 02;112:9–19. doi: 10.1016/j.exger.2018.08.002.
    1. Rihoux B, Ragin CC. Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques. Thousand Oaks, California, USA: SAGE Publications; 2009.
    1. Thomas J, O'Mara-Eves A, Brunton G. Using qualitative comparative analysis (QCA) in systematic reviews of complex interventions: a worked example. Syst Rev. 2014 Jun 20;3:67. doi: 10.1186/2046-4053-3-67.
    1. An H, Jones GC, Kang S, Welk GJ, Lee J. How valid are wearable physical activity trackers for measuring steps? Eur J Sport Sci. 2017 Apr;17(3):360–368. doi: 10.1080/17461391.2016.1255261.
    1. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015 Dec 18;12(1):159. doi: 10.1186/s12966-015-0314-1.
    1. Nelson BW, Allen NB. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. JMIR Mhealth Uhealth. 2019 Mar 11;7(3):e10828. doi: 10.2196/10828.
    1. Rosenberger ME, Buman MP, Haskell WL, McConnell MV, Carstensen LL. Twenty-four Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices. Med Sci Sports Exerc. 2016 Mar 17;48(3):457–65. doi: 10.1249/MSS.0000000000000778.
    1. Xie J, Wen D, Liang L, Jia Y, Gao L, Lei J. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR Mhealth Uhealth. 2018 Apr 12;6(4):e94. doi: 10.2196/mhealth.9754.
    1. Feehan LM, Geldman J, Sayre EC, Park C, Ezzat AM, Yoo JY, Hamilton CB, Li LC. Accuracy of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data. JMIR Mhealth Uhealth. 2018 Aug 09;6(8):e10527. doi: 10.2196/10527.
    1. Henriksen A, Haugen Mikalsen M, Woldaregay AZ, Muzny M, Hartvigsen G, Hopstock LA, Grimsgaard S. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J Med Internet Res. 2018 Mar 22;20(3):e110. doi: 10.2196/jmir.9157.
    1. Cadmus-Bertram LA, Marcus BH, Patterson RE, Parker BA, Morey BL. Randomized Trial of a Fitbit-Based Physical Activity Intervention for Women. Am J Prev Med. 2015 Sep;49(3):414–8. doi: 10.1016/j.amepre.2015.01.020.
    1. Wang JB, Cadmus-Bertram LA, Natarajan L, White MM, Madanat H, Nichols JF, Ayala GX, Pierce JP. Wearable Sensor/Device (Fitbit One) and SMS Text-Messaging Prompts to Increase Physical Activity in Overweight and Obese Adults: A Randomized Controlled Trial. Telemed J E Health. 2015 Oct;21(10):782–92. doi: 10.1089/tmj.2014.0176.
    1. Hartman SJ, Nelson SH, Cadmus-Bertram LA, Patterson RE, Parker BA, Pierce JP. Technology- and Phone-Based Weight Loss Intervention: Pilot RCT in Women at Elevated Breast Cancer Risk. Am J Prev Med. 2016 Nov;51(5):714–721. doi: 10.1016/j.amepre.2016.06.024.
    1. Griauzde D, Kullgren JT, Liestenfeltz B, Ansari T, Johnson EH, Fedewa A, Saslow LR, Richardson C, Heisler M. A Mobile Phone-Based Program to Promote Healthy Behaviors Among Adults With Prediabetes Who Declined Participation in Free Diabetes Prevention Programs: Mixed-Methods Pilot Randomized Controlled Trial. JMIR Mhealth Uhealth. 2019 Jan 09;7(1):e11267. doi: 10.2196/11267.
    1. McCallum C, Rooksby J, Gray CM. Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review. JMIR Mhealth Uhealth. 2018 Mar 23;6(3):e58. doi: 10.2196/mhealth.9054.
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009 Jul 21;339:b2700. doi: 10.1136/bmj.b2700.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    1. RevMan 5. Cochrane Community. [2020-10-02]. .
    1. Higgins J, Savovic J, Page MJ, Elbers RG, Sterne JA. Cochrane Handbook for Systematic Reviews of interventions. London: Cochrane; 2019. Chapter 8: Assessing risk of bias in a randomized trial.
    1. Hunter JE, Schmidt FL. Fixed Effects vs. Random Effects Meta‐Analysis Models: Implications for Cumulative Research Knowledge. International Journal of Selection and Assessment. 2008 Jun 28;8(4):275–292. doi: 10.1111/1468-2389.00156.
    1. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to Meta-Analysis. Hoboken, New Jersey, USA: Wiley; 2008. Mar 11, Chapter 25: Multiple Comparisons within a Study.
    1. Li LC, Sayre EC, Xie H, Clayton C, Feehan LM. A Community-Based Physical Activity Counselling Program for People With Knee Osteoarthritis: Feasibility and Preliminary Efficacy of the Track-OA Study. JMIR Mhealth Uhealth. 2017 Jun 26;5(6):e86. doi: 10.2196/mhealth.7863.
    1. Götte M, Seidel CC, Kesting SV, Rosenbaum D, Boos J. Objectively measured versus self-reported physical activity in children and adolescents with cancer. PLoS One. 2017;12(2):e0172216. doi: 10.1371/journal.pone.0172216.
    1. Limb ES, Ahmad S, Cook DG, Kerry SM, Ekelund U, Whincup PH, Victor CR, Iliffe S, Ussher M, Fox-Rushby J, Furness C, Ibison J, DeWilde S, Harris T. Measuring change in trials of physical activity interventions: a comparison of self-report questionnaire and accelerometry within the PACE-UP trial. Int J Behav Nutr Phys Act. 2019 Jan 22;16(1):10. doi: 10.1186/s12966-018-0762-5.
    1. Beishuizen CR, Stephan BC, van Gool WA, Brayne C, Peters RJ, Andrieu S, Kivipelto M, Soininen H, Busschers WB, Moll van Charante EP, Richard E. Web-Based Interventions Targeting Cardiovascular Risk Factors in Middle-Aged and Older People: A Systematic Review and Meta-Analysis. J Med Internet Res. 2016 Mar 11;18(3):e55. doi: 10.2196/jmir.5218.
    1. Donoghue K, Patton R, Phillips T, Deluca P, Drummond C. The effectiveness of electronic screening and brief intervention for reducing levels of alcohol consumption: a systematic review and meta-analysis. J Med Internet Res. 2014 Jun 02;16(6):e142. doi: 10.2196/jmir.3193.
    1. McCullough AR, Ryan C, Macindoe C, Yii N, Bradley JM, O'Neill B, Elborn JS, Hughes CM. Behavior change theory, content and delivery of interventions to enhance adherence in chronic respiratory disease: A systematic review. Respir Med. 2016 Jul;116:78–84. doi: 10.1016/j.rmed.2016.05.021.
    1. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JP. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011 Jul 22;343:d4002. doi: 10.1136/bmj.d4002.
    1. Champion KE, Parmenter B, McGowan C, Spring B, Wafford QE, Gardner LA, Thornton L, McBride N, Barrett EL, Teesson M, Newton NC, Chapman C, Slade T, Sunderland M, Bauer J, Allsop S, Hides L, Stapinksi L, Birrell L, Mewton L. Effectiveness of school-based eHealth interventions to prevent multiple lifestyle risk behaviours among adolescents: a systematic review and meta-analysis. The Lancet Digital Health. 2019 Sep;1(5):e206–e221. doi: 10.1016/s2589-7500(19)30088-3.
    1. Hayman LL, Worel JN. Healthy lifestyle behaviors: the importance of individual and population approaches. J Cardiovasc Nurs. 2014;29(6):477–8. doi: 10.1097/JCN.0000000000000199.
    1. Kelly SA, Melnyk BM, Jacobson DL, O'Haver JA. Correlates among healthy lifestyle cognitive beliefs, healthy lifestyle choices, social support, and healthy behaviors in adolescents: implications for behavioral change strategies and future research. J Pediatr Health Care. 2011;25(4):216–23. doi: 10.1016/j.pedhc.2010.03.002.
    1. Amorim AB, Pappas E, Simic M, Ferreira ML, Jennings M, Tiedemann A, Carvalho-E-Silva AP, Caputo E, Kongsted A, Ferreira PH. Integrating Mobile-health, health coaching, and physical activity to reduce the burden of chronic low back pain trial (IMPACT): a pilot randomised controlled trial. BMC Musculoskelet Disord. 2019 Feb 11;20(1):71. doi: 10.1186/s12891-019-2454-y.
    1. Ashe MC, Winters M, Hoppmann CA, Dawes MG, Gardiner PA, Giangregorio LM, Madden KM, McAllister MM, Wong G, Puyat JH, Singer J, Sims-Gould J, McKay HA. "Not just another walking program": Everyday Activity Supports You (EASY) model-a randomized pilot study for a parallel randomized controlled trial. Pilot Feasibility Stud. 2015 Jan 12;1(1):4. doi: 10.1186/2055-5784-1-4.
    1. Azar KM, Koliwad S, Poon T, Xiao L, Lv N, Griggs R, Ma J. The Electronic CardioMetabolic Program (eCMP) for Patients With Cardiometabolic Risk: A Randomized Controlled Trial. J Med Internet Res. 2016 May 27;18(5):e134. doi: 10.2196/jmir.5143.
    1. Ball C, Carter K, Yeung C, Abdelmoneim S, Bauman J, Huang R, Mankad R, Iftikar S, Jain S, Lopez-Jimenez F, Mulvagh S. Impact of Digital Health Methods for Weight Management on Atherosclerotic Cardiovascular Disease Risk in “at-risk” Women. Canadian Journal of Cardiology. 2016 Apr;32(4):S9–S10. doi: 10.1016/j.cjca.2016.02.026.
    1. Brown JC, Yung RL, Gobbie-Hurder A, Shockro L, O'Connor K, Campbell N, Kasper J, Mayer EL, Tolaney SM, Partridge AH, Ligibel JA. Randomized trial of a clinic-based weight loss intervention in cancer survivors. J Cancer Surviv. 2018 Apr;12(2):186–195. doi: 10.1007/s11764-017-0657-5.
    1. Cadmus-Bertram L, Tevaarwerk AJ, Sesto ME, Gangnon R, Van Remortel B, Date P. Building a physical activity intervention into clinical care for breast and colorectal cancer survivors in Wisconsin: a randomized controlled pilot trial. J Cancer Surviv. 2019 Aug;13(4):593–602. doi: 10.1007/s11764-019-00778-6.
    1. Cheung NW, Blumenthal C, Smith BJ, Hogan R, Thiagalingam A, Redfern J, Barry T, Cinnadaio N, Chow CK. A Pilot Randomised Controlled Trial of a Text Messaging Intervention with Customisation Using Linked Data from Wireless Wearable Activity Monitors to Improve Risk Factors Following Gestational Diabetes. Nutrients. 2019 Mar 11;11(3) doi: 10.3390/nu11030590.
    1. Christiansen M, Thoma L, Master H, Mathews D, Schmitt L, Ziegler M, White D. 1-year outcomes from a novel physical therapist-administered physical activity intervention after total knee replacement: a pilot study. Arthritis Rheumatol. 2018;70:439–440.
    1. Christiansen M, Thoma L, Master H, Mathews D, Schmitt L, White D. Preliminary findings of a novel physical therapist administered physical activity intervention after total knee replacement. Osteoarthritis and Cartilage. 2018 Apr;26:S334. doi: 10.1016/j.joca.2018.02.663.
    1. Christiansen MB, Thoma LM, Master H, Voinier D, Schmitt LA, Ziegler ML, LaValley MP, White DK. Feasibility and Preliminary Outcomes of a Physical Therapist-Administered Physical Activity Intervention After Total Knee Replacement. Arthritis Care Res (Hoboken) 2020 May;72(5):661–668. doi: 10.1002/acr.23882.
    1. DiFrancisco-Donoghue J, Jung M, Stangle A, Werner WG, Zwibel H, Happel P, Balentine J. Utilizing wearable technology to increase physical activity in future physicians: A randomized trial. Prev Med Rep. 2018 Dec;12:122–127. doi: 10.1016/j.pmedr.2018.09.004.
    1. Duscha BD, Piner LW, Patel MP, Craig KP, Brady M, McGarrah RW, Chen C, Kraus WE. Effects of a 12-week mHealth program on peak VO and physical activity patterns after completing cardiac rehabilitation: A randomized controlled trial. Am Heart J. 2018 May;199:105–114. doi: 10.1016/j.ahj.2018.02.001.
    1. Eisenberg MH, Phillips LA, Fowler L, Moore PJ. The Impact of E-diaries and Accelerometers on Young Adults' Perceived and Objectively Assessed Physical Activity. Psychol Sport Exerc. 2017 May;30:55–63. doi: 10.1016/j.psychsport.2017.01.008.
    1. Falck RS, Best JR, Li LC, Chan PC, Feehan LM, Liu-Ambrose T. Can we improve cognitive function among adults with osteoarthritis by increasing moderate-to-vigorous physical activity and reducing sedentary behaviour? Secondary analysis of the MONITOR-OA study. BMC Musculoskelet Disord. 2018 Dec 21;19(1):447. doi: 10.1186/s12891-018-2369-z.
    1. Farnell G, Barkley J. The effect of a wearable physical activity monitor (Fitbit One) on physical activity behaviour in women: A pilot study. jhse. 2017;12(4) doi: 10.14198/jhse.2017.124.09.
    1. Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EE, Evenson KR. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. 2016 Dec;4(12):983–995. doi: 10.1016/S2213-8587(16)30284-4.
    1. Gilmore LA, Klempel MC, Martin CK, Myers CA, Burton JH, Sutton EF, Redman LM. Personalized Mobile Health Intervention for Health and Weight Loss in Postpartum Women Receiving Women, Infants, and Children Benefit: A Randomized Controlled Pilot Study. J Womens Health (Larchmt) 2017 Jul;26(7):719–727. doi: 10.1089/jwh.2016.5947.
    1. Hartman SJ, Nelson SH, Myers E, Natarajan L, Sears DD, Palmer BW, Weiner LS, Parker BA, Patterson RE. Cancer. 2018 Jan 01;124(1):192–202. doi: 10.1002/cncr.30987. doi: 10.1002/cncr.30987.
    1. Hornikx M, Demeyer H, Camillo CA, Janssens W, Troosters T. The effects of a physical activity counseling program after an exacerbation in patients with Chronic Obstructive Pulmonary Disease: a randomized controlled pilot study. BMC Pulm Med. 2015 Nov 04;15(1):136. doi: 10.1186/s12890-015-0126-8.
    1. H-Jennings F, Clément M, Brown M, Leong B, Shen L, Dong C. Promote Students’ Healthy Behavior Through Sensor and Game: A Randomized Controlled Trial. Med.Sci.Educ. 2016 May 3;26(3):349–355. doi: 10.1007/s40670-016-0253-8.
    1. Katz P, Margaretten M, Gregorich S, Trupin L. Physical Activity to Reduce Fatigue in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Care Res (Hoboken) 2018 Jan;70(1):1–10. doi: 10.1002/acr.23230. doi: 10.1002/acr.23230.
    1. Kooiman TJ, de Groot M, Hoogenberg K, Krijnen WP, van der Schans CP, Kooy A. Self-tracking of Physical Activity in People With Type 2 Diabetes: A Randomized Controlled Trial. Comput Inform Nurs. 2018 Jul;36(7):340–349. doi: 10.1097/CIN.0000000000000443.
    1. Li LC, Sayre EC, Xie H, Falck RS, Best JR, Liu-Ambrose T, Grewal N, Hoens AM, Noonan G, Feehan LM. Efficacy of a Community-Based Technology-Enabled Physical Activity Counseling Program for People With Knee Osteoarthritis: Proof-of-Concept Study. J Med Internet Res. 2018 Apr 30;20(4):e159. doi: 10.2196/jmir.8514.
    1. Lystrup RM, West GF, Olsen C, Ward M, Stephens MB. Pedometry to Prevent Cardiorespiratory Fitness Decline-Is it Effective? Mil Med. 2016 Oct;181(10):1235–1239. doi: 10.7205/MILMED-D-15-00540.
    1. Mahar MT, Nanney LW, Das BM, Raedeke TD, Vick GA, Rowe DA. Effects of an Intervention using Movement Technology in a University Physical Activity Class. 2015;47:522. doi: 10.1249/.
    1. McDermott MM, Spring B, Berger JS, Treat-Jacobson D, Conte MS, Creager MA, Criqui MH, Ferrucci L, Gornik HL, Guralnik JM, Hahn EA, Henke P, Kibbe MR, Kohlman-Trighoff D, Li L, Lloyd-Jones D, McCarthy W, Polonsky TS, Skelly C, Tian L, Zhao L, Zhang D, Rejeski WJ. Effect of a Home-Based Exercise Intervention of Wearable Technology and Telephone Coaching on Walking Performance in Peripheral Artery Disease: The HONOR Randomized Clinical Trial. JAMA. 2018 Apr 24;319(16):1665–1676. doi: 10.1001/jama.2018.3275.
    1. Mendoza JA, Baker KS, Moreno MA, Whitlock K, Abbey-Lambertz M, Waite A, Colburn T, Chow EJ. A Fitbit and Facebook mHealth intervention for promoting physical activity among adolescent and young adult childhood cancer survivors: A pilot study. Pediatr Blood Cancer. 2017 Dec 15;64(12):e26660. doi: 10.1002/pbc.26660.
    1. Miragall M, Domínguez-Rodríguez A, Navarro J, Cebolla A, Baños RM. Increasing physical activity through an Internet-based motivational intervention supported by pedometers in a sample of sedentary students: A randomised controlled trial. Psychol Health. 2018 Apr;33(4):465–482. doi: 10.1080/08870446.2017.1368511.
    1. Oliveira JS, Sherrington C, Paul SS, Ramsay E, Chamberlain K, Kirkham C, O'Rourke SD, Hassett L, Tiedemann A. A combined physical activity and fall prevention intervention improved mobility-related goal attainment but not physical activity in older adults: a randomised trial. J Physiother. 2019 Jan;65(1):16–22. doi: 10.1016/j.jphys.2018.11.005.
    1. Paxton RJ, Forster JE, Miller MJ, Gerron KL, Stevens-Lapsley JE, Christiansen CL. A Feasibility Study for Improved Physical Activity After Total Knee Arthroplasty. J Aging Phys Act. 2018 Jan 01;26(1):7–13. doi: 10.1123/japa.2016-0268.
    1. Redman LM, Gilmore LA, Breaux J, Thomas DM, Elkind-Hirsch K, Stewart T, Hsia DS, Burton J, Apolzan JW, Cain LE, Altazan AD, Ragusa S, Brady H, Davis A, Tilford JM, Sutton EF, Martin CK. Effectiveness of SmartMoms, a Novel eHealth Intervention for Management of Gestational Weight Gain: Randomized Controlled Pilot Trial. JMIR Mhealth Uhealth. 2017 Sep 13;5(9):e133. doi: 10.2196/mhealth.8228.
    1. Shoemaker MJ, Oberholtzer NL, Jongekrijg LE, Bowen TE, Cartwright K, Hanson K, Serba D, Dickinson MG, Kowalk A. Exercise- and Psychosocial-Based Interventions to Improve Daily Activity in Heart Failure: A Pilot Study. 2016 Dec 21;29(2):111–120. doi: 10.1177/1084822316683660.
    1. Simons D, De Bourdeaudhuij I, Clarys P, De Cocker K, Vandelanotte C, Deforche B. Effect and Process Evaluation of a Smartphone App to Promote an Active Lifestyle in Lower Educated Working Young Adults: Cluster Randomized Controlled Trial. JMIR Mhealth Uhealth. 2018 Aug 24;6(8):e10003. doi: 10.2196/10003.
    1. Sloan RA, Kim Y, Sahasranaman A, Müller-Riemenschneider F, Biddle SJ, Finkelstein EA. The influence of a consumer-wearable activity tracker on sedentary time and prolonged sedentary bouts: secondary analysis of a randomized controlled trial. BMC Res Notes. 2018 Mar 22;11(1):189. doi: 10.1186/s13104-018-3306-9.
    1. Thompson WG, Kuhle CL, Koepp GA, McCrady-Spitzer SK, Levine JA. "Go4Life" exercise counseling, accelerometer feedback, and activity levels in older people. Arch Gerontol Geriatr. 2014;58(3):314–9. doi: 10.1016/j.archger.2014.01.004.
    1. Thorndike AN, Mills S, Sonnenberg L, Palakshappa D, Gao T, Pau CT, Regan S. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial. PLoS One. 2014;9(6):e100251. doi: 10.1371/journal.pone.0100251.
    1. Van Blarigan EL, Chan H, Van Loon K, Kenfield SA, Chan JM, Mitchell E, Zhang L, Paciorek A, Joseph G, Laffan A, Atreya CE, Fukuoka Y, Miaskowski C, Meyerhardt JA, Venook AP. Self-monitoring and reminder text messages to increase physical activity in colorectal cancer survivors (Smart Pace): a pilot randomized controlled trial. BMC Cancer. 2019 Mar 11;19(1):218. doi: 10.1186/s12885-019-5427-5.
    1. Vandelanotte C, Duncan MJ, Maher CA, Schoeppe S, Rebar AL, Power DA, Short CE, Doran CM, Hayman MJ, Alley SJ. The Effectiveness of a Web-Based Computer-Tailored Physical Activity Intervention Using Fitbit Activity Trackers: Randomized Trial. J Med Internet Res. 2018 Dec 18;20(12):e11321. doi: 10.2196/11321.
    1. Ragin C, Fiss P. Redesigning Social Inquiry – Fuzzy Sets and Beyond. Chicago: University of Chicago Press; 2008. Net effects versus configurations: An empirical demonstration; pp. 190–219.
    1. Ragin C. Redesigning Social Inquiry – Fuzzy Sets and Beyond. Chicago: University of Chicago Press; 2008. Calibrating Fuzzy Sets.
    1. Davergne T, Pallot A, Dechartres A, Fautrel B, Gossec L. Use of Wearable Activity Trackers to Improve Physical Activity Behavior in Patients With Rheumatic and Musculoskeletal Diseases: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken) 2019 Jun 23;71(6):758–767. doi: 10.1002/acr.23752. doi: 10.1002/acr.23752.
    1. Cheatham SW, Stull KR, Fantigrassi M, Motel I. The efficacy of wearable activity tracking technology as part of a weight loss program: a systematic review. J Sports Med Phys Fitness. 2018 Apr;58(4):534–548. doi: 10.23736/S0022-4707.17.07437-0.
    1. Deeks J, Higgins JP, Altman DG. Cochrane Handbook for Systematic Reviews of Interventions. London: Cochrane; 2019. Analysing data and undertaking meta-analyses.
    1. Arrogi A, Schotte A, Bogaerts A, Boen F, Seghers J. Short- and long-term effectiveness of a three-month individualized need-supportive physical activity counseling intervention at the workplace. BMC Public Health. 2017 Jan 09;17(1):52. doi: 10.1186/s12889-016-3965-1.
    1. Ludwig K, Arthur R, Sculthorpe N, Fountain H, Buchan DS. Text Messaging Interventions for Improvement in Physical Activity and Sedentary Behavior in Youth: Systematic Review. JMIR Mhealth Uhealth. 2018 Sep 17;6(9):e10799. doi: 10.2196/10799.
    1. Proper KI, Hildebrandt VH, Van der Beek AJ, Twisk JW, Van Mechelen W. Effect of individual counseling on physical activity fitness and health. American Journal of Preventive Medicine. 2003 Apr;24(3):218–226. doi: 10.1016/s0749-3797(02)00645-1.
    1. Hall KD, Kahan S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med Clin North Am. 2018 Jan;102(1):183–197. doi: 10.1016/j.mcna.2017.08.012.
    1. Savoli A, Barki H, Pare G. Examining How Chronically Ill Patients’ Reactions to and Effective Use of Information Technology Can Influence How Well They Self-Manage Their Illness. MISQ. 2020 Jan 01;44(1):351–389. doi: 10.25300/misq/2020/15103.
    1. Paré G, Tate M, Johnstone D, Kitsiou S. Contextualizing the twin concepts of systematicity and transparency in information systems literature reviews. European Journal of Information Systems. 2017 Dec 19;25(6):493–508. doi: 10.1057/s41303-016-0020-3.
    1. Templier M, Paré G. Transparency in literature reviews: an assessment of reporting practices across review types and genres in top IS journals. European Journal of Information Systems. 2017 Nov 30;27(5):503–550. doi: 10.1080/0960085x.2017.1398880.
    1. Sutcliffe K, Kneale D, Thomas J. How is Qualitative Comparative Analysis (QCA) used in systematic reviews to identify critical intervention components? Cochrane. 2019. [2020-10-02]. .
    1. Lyons EJ, Lewis ZH, Mayrsohn BG, Rowland JL. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J Med Internet Res. 2014 Aug 15;16(8):e192. doi: 10.2196/jmir.3469.
    1. Mercer K, Li M, Giangregorio L, Burns C, Grindrod K. Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis. JMIR Mhealth Uhealth. 2016 Apr 27;4(2):e40. doi: 10.2196/mhealth.4461.
    1. James TL, Wallace L, Deane JK. Using Organismic Integration Theory to Explore the Associations Between Users' Exercise Motivations and Fitness Technology Feature Set Use. MISQ. 2019 Jan 1;43(1):287–312. doi: 10.25300/misq/2019/14128.

Source: PubMed

3
Tilaa