Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice

Lamiaa A Ahmed, Nagwa I Shehata, Noha F Abdelkader, Mahmoud M Khattab, Lamiaa A Ahmed, Nagwa I Shehata, Noha F Abdelkader, Mahmoud M Khattab

Abstract

Background: Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.

Methods and findings: Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.

Conclusion: This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

Conflict of interest statement

Competing Interests: The authors declare that there are no conflicts of interest.

Figures

Figure 1. Effect of tempol on cisplatin-induced…
Figure 1. Effect of tempol on cisplatin-induced changes in oxidative stress markers in postmitochondrial and mitochondrial fractions in renal tissues of mice.
(A) Reduced glutathione (GSH). (B) Thiobarbituric acid reactive substances (TBARS). Mice were studied 72 h after a single i.p. injection of cisplatin (25 mg/kg). Tempol (100 mg/kg/day) was given orally for 4 days starting one day before cisplatin injection. Each value represents the mean of 6–8 mice ± S.E.M. *p<0.05 vs. normal, #p<0.05 vs. cisplatin.
Figure 2. Effect of tempol on cisplatin-induced…
Figure 2. Effect of tempol on cisplatin-induced changes in antioxidant enzymes activities in postmitochondrial and mitochondrial fractions in renal tissues of mice.
(A) Superoxide dismutase (SOD). (B) Catalase. Mice were studied 72 h after a single i.p. injection of cisplatin (25 mg/kg). Tempol (100 mg/kg/day) was given orally for 4 days starting one day before cisplatin injection. Each value represents the mean of 6–8 mice ± S.E.M. *p<0.05 vs. normal, #p<0.05 vs. cisplatin.
Figure 3. Effect of tempol on cisplatin-induced…
Figure 3. Effect of tempol on cisplatin-induced changes in caspase-3 activity and mitochondrial nitric oxide synthase (mNOS) protein expression in renal tissues of mice.
(A) Caspase-3 activity. (B) mNOS protein expression. Mice were studied 72 h after a single i.p. injection of cisplatin (25 mg/kg). Tempol (100 mg/kg/day) was given orally for 4 days starting one day before cisplatin injection. Each value represents the mean of 6–8 mice ± S.E.M. *p<0.05 vs. normal, #p<0.05 vs. cisplatin.
Figure 4. Effect of tempol on cisplatin-induced…
Figure 4. Effect of tempol on cisplatin-induced changes in light microscopic examination (H&E x200) in renal tissues of mice.
(A) normal group and (B) tempol-treated group show normal non-affected tubular epithelium (thick dark arrow). (C) cisplatin-treated group shows severe tubular damage as revealed by acute tubular necrosis (dashed thick arrow), wide tubular epithelial vacuolation (v), apoptotic tubular epithelium (thick white arrow) and cast formation (s). (D) tempol and cisplatin-treated group shows more or less normal renal tubules with minimal focal vacuolation of the tubular epithelium (v). (E) renal injury score. Mice were studied 72 h after a single i.p. injection of cisplatin (25 mg/kg). Tempol (100 mg/kg/day) was given orally for 4 days starting one day before cisplatin injection. Each renal injury score value represents the mean of 4 mice ± S.E.M. *p<0.05 vs. normal, #p<0.05 vs. cisplatin.
Figure 5. Effect of tempol on cisplatin-induced…
Figure 5. Effect of tempol on cisplatin-induced changes in mitochondrial ultrastructural examination of renal tissues in mice.
Photomicrographs are representative specimens which show mitochondria (m) and cytoplasm (c) from normal group (A x2,000 magnification; B x10,000 magnification), tempol-treated group (C x2,000 magnification; D x10,000 magnification), cisplatin-treated group (E x2,000 magnification; F x10,000 magnification), tempol and cisplatin-treated group (G x2,000 magnification; H x10,000 magnification), mitochondrial overall injury score (I) and percentage of mitochondrial cross-sectional area/cytoplasmic area (J). Mice were studied 72 h after a single i.p. injection of cisplatin (25 mg/kg). Tempol (100 mg/kg/day) was given orally for 4 days starting one day before cisplatin injection. Each value represents the mean of 4 mice ± S.E.M. *p<0.05 vs. normal, #p<0.05 vs. cisplatin.

References

    1. Langerak AD, Dreisbach LP (2001) Chemotherapy regimens and cancer care. Texas: Landes Bioscience; Georgetown.
    1. Sahni V, Choudhury D, Ahmed Z (2009) Chemotherapy-associated renal dysfunction. Nat Rev Nephrol 8: 450–462.
    1. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334: 115–124.
    1. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73: 994–1007.
    1. Kilic U, Kilic E, Tuzcu Z, Tuzcu M, Ozercan IH, et al. (2013) Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab 10: 7.
    1. Masuda H, Tanaka T, Takahama U (1994) Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 203: 1175–1180.
    1. Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12: 2478–2480.
    1. Liu L, Yang C, Herzog C, Seth R, Kaushal GP (2010) Proteasome inhibitors prevent cisplatin-induced mitochondrial release of apoptosis-inducing factor and markedly ameliorate cisplatin nephrotoxicity. Biochem Pharmacol 2: 137–146.
    1. Zsengellér ZK, Ellezian L, Brown D, Horváth B, Mukhopadhyay P, et al. (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 60: 521–529.
    1. Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, et al. (2005) Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol 289: C1466–C1475.
    1. Galley HF (2011) Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 107: 57–64.
    1. Kaushal GP, Kaushal V, Hong X, Shah SV (2001) Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int 60: 1726–1736.
    1. Yang C, Kaushal V, Haun RS, Seth R, Shah SV, et al. (2008) Transcriptional activation of caspase-6 and -7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Differ 15: 530–544.
    1. Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol Renal Physiol 39: F700–F708.
    1. Matsushima H, Yonemura K, Ohishi K, Hishida A (1998) The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 131: 518–526.
    1. Okuda M, Masaki K, Fukatsu S, Hashimoto Y, Inui K (2000) Role of apoptosis in cisplatin induced toxicity in the renal epithelial cell line LLC-PK1. Biochem Pharmacol 59: 195–201.
    1. Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, et al. (2000) Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol Renal Physiol 278: F726–F736.
    1. Wong GH, Elwell JH, Oberley LW, Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58: 923–931.
    1. Eastgate J, Moreb J, Nick HS, Suzuki K, Taniguchi N, et al. (1993) A role for manganese superoxide dismutase in radioprotection of hematopoietic stem cells by interleukin-1. Blood 81: 639–646.
    1. Ho YS, Vincent R, Dey MS, Slot JW, Crapo JD (1998) Transgenic models for the study of lung antioxidant defense: Enhanced manganese-containing superoxide dismutase activity gives partial protection to B6C3 hybrid mice exposed to hyperoxia. Am J Respir Cell Mol Biol 18: 538–547.
    1. Shah SV, Baliga R, Rajapurkar M, Fonseca VA (2007) Oxidants in chronic kidney disease. J Am Soc Nephrol 18: 16–28.
    1. Nassar T, Kadery B, Lotan C, Da’as N, Kleinman Y, et al. (2002) Effects of superoxide dismutase-mimetic compound tempol on endothelial dysfunction in streptozotocin induced diabetic rats. Eur J Pharmacol 436: 111–118.
    1. McDonald MC, Zacharowski K, Bowes J, Cuzzocrea S, Thiemermann C (1999) Tempol reduces infract size in rodent models of regional myocardial ischemia and reperfusion. Free Radic Biol Med 27: 493–503.
    1. Metz JM, Smith D, Mick R, Lustig R, Mitchell J, et al. (2004) A phase I study of topical tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 19: 6411–6417.
    1. Kawai Y, Gemba M (2007) Cisplatin-induced renal injury in LLC-PK1 cells. In: Proceedings of the 6th World Congress on Alternatives & Animal Use in the Life Sciences. p. 453–456.
    1. Joy J, Nair CK (2008) Amelioration of cisplatin induced nephrotoxicity in Swiss albino mice by Rubia cordifolia extract. J Cancer Res Ther 4: 111–115.
    1. Horváth B, Mukhopadhyay P, Kechrid M, Patel V, Tanchian G, et al. (2012) β-Caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner. Free Radic Biol Med 52: 1325–1333.
    1. Ramachandran L, Nair CK (2012) Radioprotection by tempol: Studies on tissue antioxidant levels, hematopoietic and gastrointestinal systems, in mice whole body exposed to sub-lethal doses of gamma radiation. Iran J Radiat Res 10: 1–10.
    1. Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NS, et al. (2004) Tempol reduces the activation of nuclear factor-kappaB in acute inflammation. Free Radic Res 38: 813–819.
    1. Gao X, Zhang H, Schmidt AM, Zhang C (2008) AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 295: H491–H498.
    1. Sun MS, Hattori S, Kubo S, Awata H, Matsuda I, et al. (2000) A mouse model of renal tubular injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol 11: 291–300.
    1. Ahmed LA, El-Maraghy SA (2013) Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection. Biochem Pharmacol 86: 1301–1310.
    1. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.
    1. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52: 302–310.
    1. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61: 882–888.
    1. Marklund SL (1985) Pyrogallol autooxidation. In: Greenwald RA, editor. Handbook of Methods for Oxygen Radical Research. Florida, Boca Raton: CRC Press. p. 243–247.
    1. Abei H (1984) Catalase in vitro. Methods Enzymol 105: 121–126.
    1. Hinkle PC (1995) Oxygen proton and phosphate fluxes and stoichiometries. In: Brown GC, Cooper CE, editors. Bioenergetics: a practical approach. Oxford: IRL Press. p. 1–16.
    1. Banerjee K, Sinha M, Pham CLL, Jana S, Chanda D, et al. (2010) Synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: Implications in Parkinson’s disease. FEBS Lett 584: 1571–1576.
    1. Bagh MB, Maiti AK, Roy A, Chakrabarti S (2008) Dietary supplementation with N-acetylcysteine, α-tocopherol and α-lipoic acid prevents age related decline in Na+, K+ ATPase activity and associated peroxidative damage in rat brain synaptosomes. Biogerontol 9: 421–428.
    1. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substances and cofactors of the glycolytic pathways in brain. Biol Chem 239: 18–30.
    1. Sharman EH, Bondy SC (2001) Effects of age and dietary antioxidants on cerebral electron transport chain activity. Neurobiol Aging 22: 629–634.
    1. Storrie B, Madden EA (1990) Isolation of subcellular organelles. Methods Enzymol 182: 203–225.
    1. Mukhopadhyay P, Rajesh M, Pan H, Patel V, Mukhopadhyay B, et al. (2010) Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 48: 457–467.
    1. Kloner RA, Fishbein MC, Braunwald E, Maroko PR (1978) Effect of propranolol on mitochondrial morphology during acute myocardial ischemia. Am J Cardiol 41: 880–886.
    1. Osman AM, Sayed-Ahmed MM, Khayyal MT, El-Merzabani MM (1993) Hyperthermic potentiation of cisplatin on solid Ehrlich carcinoma. Tumori 79: 268–272.
    1. Dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC (2012) Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol 86: 1233–1250.
    1. Kidera Y, Kawakami H, Sakiyama T, Okamoto K, Tanaka K, et al. (2014) Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection. PLoS One 9: e101902.
    1. Mora Lde O, Antunes LM, Francescato HD, Bianchi Mde L (2003) The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats. Pharmacol Res 47: 517–522.
    1. Ries F, Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8: 368–379.
    1. Safirstein R, Winston J, Goldstein M, Model M, Dikman S, et al. (1986) Cisplatin nephrotoxicity. Am J Kidney Dis 8: 356–367.
    1. Somani SM, Husain K, Whitworth C, Trammel GL, Malafa M, et al. (2000) Dose-dependent protection by lipoic acid against cisplatin induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 86: 234–241.
    1. Silva CR, Greggi Antunes LM, Bianchi ML (2001) Antioxidant action of bixin against cisplatin-induced chromosome aberrations and lipid peroxidation in rats. Pharmacol Res 43: 561–566.
    1. Zhang L, Cooper AJ, Krasnikov BF, Xu H, Bubber P, et al. (2006) Cisplatin-induced toxicity is associated with platinum deposition in mouse kidney mitochondria in vivo and with selective inactivation of the alpha-ketoglutarate dehydrogenase complex in LLC-PK1 cells. Biochemistry 45: 8959–8971.
    1. Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, et al. (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci 89: 3070–3074.
    1. Anderson ME, Naganuma A, Meister A (1990) Protection against cisplatin toxicity by administration of glutathione ester. FASEB J 4: 3251–3255.
    1. Husain K, Morris C, Whitworth C, Trammel GL, Rybak LP, et al. (1996) 4-methylthiobenzoic acid protection against cisplatin nephrotoxicity: antioxidant system. Fundam Appl Toxicol 32: 278–284.
    1. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, et al. (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8: e81162.
    1. Zhang JG, Lindup WE (1994) Cisplatin nephrotoxicity: decreases in mitochondrial protein sulphydryl concentration and calcium uptake by mitochondria from rat renal cortical slices. Biochem Pharmacol 47: 1127–1135.
    1. Kruidering M, Vandewater B, Deheer E, Mulder GJ, Nagelkerke JF (1996) The use of porcine proximal tubular cells for studying nephrotoxicity in vitro: The role of oxidative stress in cisplatin-induced cell death. ATLA-Altern Lab Anim 24: 161–172.
    1. Tanabe K, Tamura Y, Lanaspa MA, Miyazaki M, Suzuki N, et al. (2012) Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am J Physiol Renal Physiol 303: F1264–F1274.
    1. Gordon JA, Gattone VH (1986) Mitochondrial alterations in cisplatin induced acute renal failure. Am J Physiol Renal Physiol 250: F991–F998.
    1. Tengan CH, Rodrigues GS, Godinho RO (2012) Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci 13: 17160–17184.
    1. Santos NA, Bezerra CS, Martins NM, Curti C, Bianchi ML, et al. (2008) Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 61: 145–155.
    1. Lahoti TS, Patel D, Thekkemadom V, Beckett R, Ray SD (2012) Doxorubicin-induced in vivo nephrotoxicity involves oxidative stress-mediated multiple pro- and anti-apoptotic signaling pathways. Curr Neurovasc Res 9: 282–295.
    1. Hassan I, Chibber S, Khan AA, Naseem I (2012) Riboflavin ameliorates cisplatin induced toxicities under photoillumination. PLoS ONE 7: e36273.
    1. Terada Y, Inoue K, Matsumoto T, Ishihara M, Hamada K, et al. (2013) 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo. PLoS ONE 8: e80850.
    1. Wilcox CS, Pearlman A (2008) Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 60: 418–469.
    1. Karatas Y, Secilmis MA, Karayaylali I, Doran F, Buyukafsar K, et al. (2004) Effect of tempol (4-hydroxy tempo) on gentamicin-induced nephrotoxicity in rats. Fundam Clin Pharmacol 18: 79–83.
    1. Naghibi B, Ghafghazi T, Haihashemi V, Talebi A, Taheri D (2007) The effect of 2,3-dihydroxybenzoic acid and tempol in prevention of vancomycin-induced nephrotoxicity in rats. Toxicol 232: 192–199.
    1. Samai M, Sharpe MA, Gard PR, Chatterjee PK (2007) Comparison of the effects of the superoxide dismutase mimetics EUK-134 and tempol on paraquat-induced nephrotoxicity. Free Radic Biol Med 43: 528–534.
    1. Alpert E, Altman H, Totary H, Gruzman A, Barnea D, et al. (2004) 4-Hydroxy tempol-induced impairment of mitochondrial function and augmentation of glucose transport in vascular endothelial and smooth muscle cells. Biochem Pharmacol 67: 1985–1995.
    1. Schubert R, Erker L, Barlow C, Yakushiji H, Larson D, et al. (2004) Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet 13: 1793–1802.
    1. Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, et al. (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58: 658–673.

Source: PubMed

3
Tilaa