Monocytes in Uremia

Matthias Girndt, Bogusz Trojanowicz, Christof Ulrich, Matthias Girndt, Bogusz Trojanowicz, Christof Ulrich

Abstract

Monocytes play an important role in both innate immunity and antigen presentation for specific cellular immune defense. In patients with chronic renal failure, as well as those treated with maintenance hemodialysis, these cells are largely dysregulated. There is a large body of literature on monocyte alterations in such patients. However, most of the publications report on small series, there is a vast spectrum of different methods and the heterogeneity of the data prevents any meta-analytic approach. Thus, a narrative review was performed to describe the current knowledge. Monocytes from patients with chronic renal failure differ from those of healthy individuals in the pattern of surface molecule expression, cytokine and mediator production, and function. If these findings can be summarized at all, they might be subsumed as showing chronic inflammation in resting cells together with limited activation upon immunologic challenge. The picture is complicated by the fact that monocytes fall into morphologically and functionally different populations and population shifts interact heavily with dysregulation of the individual cells. Severe complications of chronic renal failure such as impaired immune defense, inflammation, and atherosclerosis can be related to several aspects of monocyte dysfunction. Therefore, this review aims to provide an overview about the impairment and activation of monocytes by uremia and the resulting clinical consequences for renal failure patients.

Keywords: chronic kidney disease; cytokines; hemodialysis; inflammation; monocytes; uremic toxins.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow cytometry panel showing gating strategy of monocytes of an uremic patient by anti-CD86 staining and subdivision of monocytes in classical (Mo1), intermediate (Mo2) and non-classical Mo3 according anti-CD14/CD16 staining. R1 includes CD86+ monocytes.
Figure 2
Figure 2
Time course of circulating Mo3 cell numbers during dialysis sessions (Data from: [105]).

References

    1. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J.M., Liu Y.-J., MacPherson G., Randolph G.J., et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74–e80. doi: 10.1182/blood-2010-02-258558.
    1. Zawada A.M., Rogacev K.S., Rotter B., Winter P., Marell R.-R., Fliser D., Heine G.H. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. 2011;118:e50–e61. doi: 10.1182/blood-2011-01-326827.
    1. Le Meur Y., Lorgeot V., Aldigier J.C., Wijdenes J., Leroux-Robert C., Praloran V. Whole blood production of monocytic cytokines (IL-1beta, IL-6, TNF-alpha, sIL-6R, IL-1Ra) in haemodialysed patients. Nephrol. Dial. Transplant. 1999;14:2420–2426. doi: 10.1093/ndt/14.10.2420.
    1. Van Riemsdijk-Van Overbeeke I.C., Baan C.C., Knoop C.J., Loonen E.H., Zietse R., Weimar W. Quantitative flow cytometry shows activation of the TNF-alpha system but not of the IL-2 system at the single cell level in renal replacement therapy. Nephrol. Dial. Transpl. 2001;16:1430–1435. doi: 10.1093/ndt/16.7.1430.
    1. Braun N. Expression of adhesion molecules and activation markers on lymphocytes and monocytes during hemodialysis. Blood Purif. 1997;15:61–76. doi: 10.1159/000170318.
    1. Liakopoulos V., Roumeliotis S., Zarogiannis S., Eleftheriadis T., Mertens P.R. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin. Dial. 2019;32:58–71. doi: 10.1111/sdi.12745.
    1. Borges Bonan N., Schepers E., Pecoits-Filho R., Dhondt A., Pletinck A., de Somer F., Vanholder R., van Biesen W., Moreno-Amaral A., Glorieux G. Contribution of the uremic milieu to an increased pro-inflammatory monocytic phenotype in chronic kidney disease. Sci. Rep. 2019;9:10236. doi: 10.1038/s41598-019-46724-5.
    1. Chiu Y.-L., Shu K.-H., Yang F.-J., Chou T.-Y., Chen P.-M., Lay F.-Y., Pan S.-Y., Lin C.-J., Litjens N.H.R., Betjes M.G.H., et al. A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: The iESRD study. Immun. Ageing. 2018;15:27. doi: 10.1186/s12979-018-0131-x.
    1. Jacobson S.H., Thylén P., Lundahl J. Three monocyte-related determinants of atherosclerosis in haemodialysis. Nephrol. Dial. Transpl. 2000;15:1414–1419. doi: 10.1093/ndt/15.9.1414.
    1. Pereira R., Costa E., Gonçalves M., Miranda V., do Sameiro Faria M., Quintanilha A., Belo L., Lima M., Santos-Silva A. Neutrophil and monocyte activation in chronic kidney disease patients under hemodialysis and its relationship with resistance to recombinant human erythropoietin and to the hemodialysis procedure. Hemodial. Int. 2010;14:295–301. doi: 10.1111/j.1542-4758.2010.00450.x.
    1. Thylén P., Lundahl J., Fernvik E., Grönneberg R., Halldén G., Jacobson S.H. Impaired monocyte CD11b expression in interstitial inflammation in hemodialysis patients. Kidney Int. 2000;57:2099–2106. doi: 10.1046/j.1523-1755.2000.00060.x.
    1. Kawabata K., Nakai S., Miwa M., Sugiura T., Otsuka Y., Shinzato T., Hiki Y., Tomimatsu I., Ushida Y., Hosono F., et al. Changes in Mac-1 and CD14 expression on monocytes and serum soluble CD14 level during push/pull hemodiafiltration. Nephron. 2002;90:273–281. doi: 10.1159/000049063.
    1. Schepers E., Houthuys E., Dhondt A., de Meyer G., Neirynck N., Bernaert P., van den Bergh R., Brouckaert P., Vanholder R., Glorieux G. Transcriptome analysis in patients with chronic kidney disease on hemodialysis disclosing a key role for CD16+CX3CR1+ monocytes. PLoS ONE. 2015;10:e0121750. doi: 10.1371/journal.pone.0121750.
    1. Kawabata K., Nakai S., Miwa M., Sugiura T., Otsuka Y., Shinzato T., Hiki N., Tomimatsu I., Ushida Y., Hosono F., et al. CD31 expression on leukocytes is downregulated in vivo during hemodialysis. Nephron. 2001;89:153–160. doi: 10.1159/000046062.
    1. Chmielewski M., Bryl E., Marzec L., Aleksandrowicz E., Witkowski J.M., Rutkowski B. Expression of scavenger receptor CD36 in chronic renal failure patients. Artif. Organs. 2005;29:608–614. doi: 10.1111/j.1525-1594.2005.29097.x.
    1. Wu C.-C., Chen J.-S., Lin S.-H., Chu P., Lin Y.-F., Lin S.-M., Liao T.-N. Aberrant activation of the TNF-alpha system and production of Fas and scavenger receptors on monocytes in patients with end-stage renal disease. Artif. Organs. 2005;29:701–707. doi: 10.1111/j.1525-1594.2005.29110.x.
    1. Yang J., Fang P., Zhang L., Zhang D., Yang W.Y., Bottiglieri T., Kunapuli S.P., Yu J., Choi E.T., Ji Y., et al. Chronic Kidney Disease Induces Inflammatory CD40+ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circ. Res. 2016;11:1226–1241. doi: 10.1161/CIRCRESAHA.116.308750.
    1. Girndt M., Sester M., Sester U., Kaul H., Köhler H. Defective expression of B7-2 (CD86) on monocytes of dialysis patients correlates to the uremia-associated immune defect. Kidney Int. 2001;59:1382–1389. doi: 10.1046/j.1523-1755.2001.0590041382.x.
    1. De Cal M., Cruz D.N., Corradi V., Nalesso F., Polanco N., Lentini P., Brendolan A., Tetta C., Ronco C. HLA-DR expression and apoptosis: A cross-sectional controlled study in hemodialysis and peritoneal dialysis patients. Blood Purif. 2008;26:249–254. doi: 10.1159/000122110.
    1. Kuroki Y., Tsuchida K., Go I., Aoyama M., Naganuma T., Takemoto Y., Nakatani T. A study of innate immunity in patients with end-stage renal disease: Special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients. Int. J. Mol. Med. 2007;19:783–790. doi: 10.3892/ijmm.19.5.783.
    1. Gollapudi P., Yoon J.-W., Gollapudi S., Pahl M.V., Vaziri N.D. Leukocyte toll-like receptor expression in end-stage kidney disease. Am. J. Nephrol. 2010;31:247–254. doi: 10.1159/000276764.
    1. Koc M., Toprak A., Arikan H., Odabasi Z., Elbir Y., Tulunay A., Asicioglu E., Eksioglu-Demiralp E., Glorieux G., Vanholder R., et al. Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: Relation with inflammation. Nephrol. Dial. Transpl. 2011;26:955–963. doi: 10.1093/ndt/gfq500.
    1. Wu C.C., Liao T.N., Lu K.C., Chen J.S., Chu P., Lin S.H., Chuang C.H., Lin Y.F. Apoptotic markers on lymphocytes and monocytes are unchanged during single hemodialysis sessions using either regenerated cellulose or polysulfone membranes. Clin. Nephrol. 2005;64:198–204. doi: 10.5414/CNP64198.
    1. Okumoto S., Taniguchi Y., Nakashima A., Masaki T., Ito T., Ogawa T., Takasugi N., Kohno N., Yorioka N. C-C chemokine receptor 2 expression by circulating monocytes influences atherosclerosis in patients on chronic hemodialysis. Ther. Apher. Dial. 2009;13:205–212. doi: 10.1111/j.1744-9987.2009.00658.x.
    1. Ulrich C., Heine G.H., Garcia P., Reichart B., Georg T., Krause M., Köhler H., Girndt M. Increased expression of monocytic angiotensin-converting enzyme in dialysis patients with cardiovascular disease. Nephrol. Dial. Transpl. 2006;21:1596–1602. doi: 10.1093/ndt/gfl008.
    1. Seibert E., Zohles K., Ulrich C., Kluttig A., Nuding S., Kors J.A., Swenne C.A., Werdan K., Fiedler R., Girndt M. Association between autonomic nervous dysfunction and cellular inflammation in end-stage renal disease. BMC Cardiovasc. Disord. 2016;16:210. doi: 10.1186/s12872-016-0385-1.
    1. Malaponte G., Bevelacqua V., Fatuzzo P., Rapisarda F., Emmanuele G., Travali S., Mazzarino M.C. IL-1beta, TNF-alpha and IL-6 release from monocytes in haemodialysis patients in relation to dialytic age. Nephrol. Dial. Transpl. 2002;17:1964–1970. doi: 10.1093/ndt/17.11.1964.
    1. Girndt M., Sester U., Kaul H., Köhler H. Production of proinflammatory and regulatory monokines in hemodialysis patients shown at a single-cell level. J. Am. Soc. Nephrol. 1998;9:1689–1696.
    1. Mege J.L., Capo C., Purgus R., Olmer M. Monocyte production of transforming growth factor beta in long-term hemodialysis: Modulation by hemodialysis membranes. Am. J. Kidney Dis. 1996;28:395–399. doi: 10.1016/S0272-6386(96)90497-7.
    1. Asmis R., Stevens J., Begley J.G., Grimes B., van Zant G., Fanti P. The isoflavone genistein inhibits LPS-stimulated TNFalpha, but not IL-6 expression in monocytes from hemodialysis patients and healthy subjects. Clin. Nephrol. 2006;65:267–275. doi: 10.5414/CNP65267.
    1. Kim H.W., Yang H.-N., Kim M.G., Choi H.M., Jo S.-K., Cho W.Y., Kim H.K. Microinflammation in hemodialysis patients is associated with increased CD14CD16(+) pro-inflammatory monocytes: Possible modification by on-line hemodiafiltration. Blood Purif. 2011;31:281–288. doi: 10.1159/000321889.
    1. Malaponte G., Libra M., Bevelacqua Y., Merito P., Fatuzzo P., Rapisarda F., Cristina M., Naselli G., Stivala F., Mazzarino M.C., et al. Inflammatory status in patients with chronic renal failure: The role of PTX3 and pro-inflammatory cytokines. Int. J. Mol. Med. 2007;20:471–481. doi: 10.3892/ijmm.20.4.471.
    1. Balakrishnan V.S., Jaber B.L., Natov S.N., Cendoroglo M., King A.J., Schmid C.H., Pereira B.J. Interleukin-1 receptor antagonist synthesis by peripheral blood mononuclear cells in hemodialysis patients. Kidney Int. 1998;54:2106–2112. doi: 10.1046/j.1523-1755.1998.00185.x.
    1. Donati D., Degiannis D., Mazzola E., Gastaldi L., Raskova J., Raska K., Camussi G. Interleukin-1 receptors and receptor antagonist in haemodialysis. Nephrol. Dial. Transpl. 1997;12:111–118. doi: 10.1093/ndt/12.1.111.
    1. Momoi T., Ono M., Takagi T., Sugiura S., Ogawa H., Saito A. The effects of hemodialysis (HD) membranes on interleukin 1-beta (IL-1 beta) production from peripheral blood mononuclear cells (PBMC) Clin. Nephrol. 1995;44:S24–S28.
    1. Memoli B., Grandaliano G., Soccio M., Postiglione L., Guida B., Bisesti V., Esposito P., Procino A., Marrone D., Michael A., et al. In vivo modulation of soluble “antagonistic” IL-6 receptor synthesis and release in ESRD. J. Am. Soc. Nephrol. 2005;16:1099–1107. doi: 10.1681/ASN.2004080628.
    1. Morita Y., Yamamura M., Kashihara N., Makino H. Increased production of interleukin-10 and inflammatory cytokines in blood monocytes of hemodialysis patients. Res. Commun. Mol. Pathol. Pharmacol. 1997;98:19–33.
    1. Sardenberg C., Suassuna P., Watanabe R., Cruz Andreoli M.C., Aparecida Dalboni M., Faria Seabra V., Draibe S.A., Cendoroglo Neto M., Jaber B. Balance between cytokine production by peripheral blood mononuclear cells and reactive oxygen species production by monocytes in patients with chronic kidney disease. Ren. Fail. 2004;26:673–681. doi: 10.1081/JDI-200037122.
    1. Scholze A., Krueger K., Diedrich M., Räth C., Torges A., Jankowski V., Maier A., Thilo F., Zidek W., Tepel M. Superoxide dismutase type 1 in monocytes of chronic kidney disease patients. Amino Acids. 2011;41:427–438. doi: 10.1007/s00726-010-0763-4.
    1. Krueger K., Shen J., Maier A., Tepel M., Scholze A. Lower Superoxide Dismutase 2 (SOD2) Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy. Oxid. Med. Cell. Longev. 2016;2016:7423249. doi: 10.1155/2016/7423249.
    1. Krueger K., Koch K., Jühling A., Tepel M., Scholze A. Low expression of thiosulfate sulfurtransferase (rhodanese) predicts mortality in hemodialysis patients. Clin. Biochem. 2010;43:95–101. doi: 10.1016/j.clinbiochem.2009.08.005.
    1. Marzec L., Zdrojewski Z., Liberek T., Bryl E., Chmielewski M., Witkowski J.M., Rutkowski B. Expression of Hsp72 protein in chronic kidney disease patients. Scand. J. Urol. Nephrol. 2009;43:400–408. doi: 10.3109/00365590903089489.
    1. Rastmanesh M.M., Bluyssen H.A.R., Joles J.A., Boer P., Willekes N., Braam B. Increased expression of SOCS3 in monocytes and SOCS1 in lymphocytes correlates with progressive loss of renal function and cardiovascular risk factors in chronic kidney disease. Eur. J. Pharmacol. 2008;593:99–104. doi: 10.1016/j.ejphar.2008.07.013.
    1. Ulrich C., Trojanowicz B., Fiedler R., Kohler F., Wolf A.-F., Seibert E., Girndt M. Differential Expression of Lipoprotein-Associated Phospholipase A2 in Monocyte Subsets: Impact of Uremia and Atherosclerosis. Nephron. 2017;135:1–11. doi: 10.1159/000454778.
    1. Trojanowicz B., Ulrich C., Kohler F., Bode V., Seibert E., Fiedler R., Girndt M. Monocytic angiotensin-converting enzyme 2 relates to atherosclerosis in patients with chronic kidney disease. Nephrol. Dial. Transpl. 2017;32:287–298. doi: 10.1093/ndt/gfw206.
    1. Muniz-Junqueira M.I., Braga Lopes C., Magalhães C.A.M., Schleicher C.C., Veiga J.P.R. Acute and chronic influence of hemodialysis according to the membrane used on phagocytic function of neutrophils and monocytes and pro-inflammatory cytokines production in chronic renal failure patients. Life Sci. 2005;77:3141–3155. doi: 10.1016/j.lfs.2005.03.034.
    1. Kitazono T., Padgett R.C., Armstrong M.L., Tompkins P.K., Heistad D.D. Evidence that angiotensin II is present in human monocytes. Circulation. 1995;91:1129–1134. doi: 10.1161/01.CIR.91.4.1129.
    1. Trojanowicz B., Ulrich C., Seibert E., Fiedler R., Girndt M. Uremic Conditions Drive Human Monocytes to Pro-Atherogenic Differentiation via an Angiotensin-Dependent Mechanism. PLoS ONE. 2014;9:e102137. doi: 10.1371/journal.pone.0102137.
    1. Merino A., Alvarez-Lara M.A., Ramirez R., Carracedo J., Martin-Malo A., Aljama P. Losartan prevents the development of the pro-inflammatory monocytes CD14+CD16+ in haemodialysis patients. Nephrol. Dial. Transpl. 2012;27:2907–2912. doi: 10.1093/ndt/gfr767.
    1. Heidenreich S., Schmidt M., Bachmann J., Harrach B. Apoptosis of monocytes cultured from long-term hemodialysis patients. Kidney Int. 1996;49:792–799. doi: 10.1038/ki.1996.110.
    1. Nockher W.A., Scherberich J.E. Expanded CD14+ CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect. Immun. 1998;66:2782–2790. doi: 10.1128/IAI.66.6.2782-2790.1998.
    1. Heine G.H., Ulrich C., Seibert E., Seiler S., Marell J., Reichart B., Krause M., Schlitt A., Köhler H., Girndt M. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008;73:622–629. doi: 10.1038/sj.ki.5002744.
    1. Saionji K., Ohsaka A. Expansion of CD4+CD16+ blood monocytes in patients with chronic renal failure undergoing dialysis: Possible involvement of macrophage colony-stimulating factor. Acta Haematol. 2001;105:21–26. doi: 10.1159/000046528.
    1. Kim H.W., Woo Y.S., Yang H.N., Choi H.M., Jo S.K., Cho W.Y., Kim H.-K. Primed monocytes: Putative culprits of chronic low-grade inflammation and impaired innate immune responses in patients on hemodialysis. Clin. Exp. Nephrol. 2011;15:258–263. doi: 10.1007/s10157-010-0379-8.
    1. Liakopoulos V., Jeron A., Shah A., Bruder D., Mertens P.R., Gorny X. Hemodialysis-related changes in phenotypical features of monocytes. Sci. Rep. 2018;8:13964. doi: 10.1038/s41598-018-31889-2.
    1. Ramirez R., Carracedo J., Berdud I., Carretero D., Merino A., Rodríguez M., Tetta C., Martín-Malo A., Aljama P. Microinflammation in hemodialysis is related to a preactivated subset of monocytes. Hemodial. Int. 2006;10:S24–S27. doi: 10.1111/j.1542-4758.2006.01186.x.
    1. Kawanaka N., Nagake Y., Yamamura M., Makino H. Expression of Fc gamma receptor III (CD16) on monocytes during hemodialysis in patients with chronic renal failure. Nephron. 2002;90:64–71. doi: 10.1159/000046316.
    1. Carmona A., Agüera M.L., Luna-Ruiz C., Buendía P., Calleros L., García-Jerez A., Rodríguez-Puyol M., Arias M., Arias-Guillen M., de Arriba G., et al. Markers of endothelial damage in patients with chronic kidney disease on hemodialysis. Am. J. Physiol. Renal Physiol. 2017;312:F673–F681. doi: 10.1152/ajprenal.00013.2016.
    1. Ramírez R., Carracedo J., Merino A., Soriano S., Ojeda R., Alvarez-Lara M.A., Martín-Malo A., Aljama P. CD14+CD16+ monocytes from chronic kidney disease patients exhibit increased adhesion ability to endothelial cells. Contrib. Nephrol. 2011;171:57–61. doi: 10.1159/000327134.
    1. Merino A., Portolés J., Selgas R., Ojeda R., Buendia P., Ocaña J., Bajo M.A., del Peso G., Carracedo J., Ramírez R., et al. Effect of different dialysis modalities on microinflammatory status and endothelial damage. Clin. J. Am. Soc. Nephrol. 2010;5:227–234. doi: 10.2215/CJN.03260509.
    1. Ulrich C., Heine G.H., Seibert E., Fliser D., Girndt M. Circulating monocyte subpopulations with high expression of angiotensin-converting enzyme predict mortality in patients with end-stage renal disease. Nephrol. Dial. Transpl. 2010;25:2265–2272. doi: 10.1093/ndt/gfq012.
    1. Merino A., Nogueras S., García-Maceira T., Rodríguez M., Martin-Malo A., Ramirez R., Carracedo J., Aljama P. Bacterial DNA and endothelial damage in haemodialysis patients. Nephrol. Dial. Transpl. 2008;23:3635–3642. doi: 10.1093/ndt/gfn308.
    1. Bonan N.B., Steiner T.M., Kuntsevich V., Virzì G.M., Azevedo M., Nakao L.S., Barreto F.C., Ronco C., Thijssen S., Kotanko P., et al. Uremic Toxicity-Induced Eryptosis and Monocyte Modulation: The Erythrophagocytosis as a Novel Pathway to Renal Anemia. Blood Purif. 2016;41:317–323. doi: 10.1159/000443784.
    1. Nockher W.A., Wiemer J., Scherberich J.E. Haemodialysis monocytopenia: Differential sequestration kinetics of CD14+CD16+ and CD14++ blood monocyte subsets. Clin. Exp. Immunol. 2001;123:49–55. doi: 10.1046/j.1365-2249.2001.01436.x.
    1. De Sequera P., Corchete E., Bohorquez L., Albalate M., Perez-Garcia R., Alique M., Marques M., García-Menéndez E., Portolés J., Ramirez R. Residual Renal Function in Hemodialysis and Inflammation. Ther. Apher. Dial. 2017;21:592–598. doi: 10.1111/1744-9987.12576.
    1. Bolasco P., Spiga P., Arras M., Murtas S., La Nasa G. Could there be Haemodynamic Stress Effects on Pro-Inflammatory CD14+CD16+ Monocytes during Convective-Diffusive Treatments? A Prospective Randomized Controlled Trial. Blood Purif. 2019;47:385–394. doi: 10.1159/000494711.
    1. Carracedo J., Merino A., Nogueras S., Carretero D., Berdud I., Ramírez R., Tetta C., Rodríguez M., Martín-Malo A., Aljama P. On-line hemodiafiltration reduces the proinflammatory CD14+CD16+ monocyte-derived dendritic cells: A prospective, crossover study. J. Am. Soc. Nephrol. 2006;17:2315–2321. doi: 10.1681/ASN.2006020105.
    1. Ariza F., Merino A., Carracedo J., Alvarez de Lara M.A., Crespo R., Ramirez R., Martín-Malo A., Aljama P. Post-dilution high convective transport improves microinflammation and endothelial dysfunction independently of the technique. Blood Purif. 2013;35:270–278. doi: 10.1159/000350611.
    1. Fiedler R., Neugebauer F., Ulrich C., Wienke A., Gromann C., Storr M., Böhler T., Seibert E., Girndt M. Randomized controlled pilot study of 2 weeks’ treatment with high cutoff membrane for hemodialysis patients with elevated C-reactive protein. Artif. Organs. 2012;36:886–893. doi: 10.1111/j.1525-1594.2012.01479.x.
    1. Andrikos E., Buoncristiani E., D’Intini V., Bordoni V., Bonello M., Levin N., Buoncristiani U., Pappas M., Ronco C. Effect of daily hemodialysis on monocytes apoptosis. Blood Purif. 2005;23:79–82. doi: 10.1159/000082015.
    1. Bordoni V., Piroddi M., Galli F., de Cal M., Bonello M., Dimitri P., Salvatori G., Ranishta R., Levin N., Tetta C., et al. Oxidant and carbonyl stress-related apoptosis in end-stage kidney disease: Impact of membrane flux. Blood Purif. 2006;24:149–156. doi: 10.1159/000089452.
    1. D’Intini V., Bordoni V., Bolgan I., Bonello M., Brendolan A., Crepaldi C., Gastaldon F., Levin N.W., Bellomo R., Ronco C. Monocyte apoptosis in uremia is normalized with continuous blood purification modalities. Blood Purif. 2004;22:9–12. doi: 10.1159/000074918.
    1. Witko-Sarsat V., Friedlander M., Nguyen Khoa T., Capeillere-Blandin C., Nguyen A.T., Canteloup S., Dayer J.M., Jungers P., Drueke T., Descamps-Latscha B. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J. Immunol. 1998;161:2524–2532.
    1. Jankowski J., van der Giet M., Jankowski V., Schmidt S., Hemeier M., Mahn B., Giebing G., Tolle M., Luftmann H., Schluter H., et al. Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J. Clin. Investig. 2003;112:256–264. doi: 10.1172/JCI200315524.
    1. Schmidt S., Westhoff T.H., Krauser P., Ignatius R., Jankowski J., Jankowski V., Zidek W., van der Giet M. The uraemic toxin phenylacetic acid impairs macrophage function. Nephrol. Dial. Transpl. 2008;23:3485–3493. doi: 10.1093/ndt/gfn266.
    1. Wang J.-M., Zhou J.-J., Zheng Q., Gan H., Wang H. Dialysis method alters the expression of microRNA-33a and its target genes ABCA1, ABCG1 in THP-1 macrophages. Ther. Apher. Dial. 2014;18:44–50. doi: 10.1111/1744-9987.12040.
    1. Trojanowicz B., Imdahl T., Ulrich C., Fiedler R., Girndt M. Circulating miR-421 Targeting Leucocytic Angiotensin Converting Enzyme 2 Is Elevated in Patients with Chronic Kidney Disease. Nephron. 2019;141:61–74. doi: 10.1159/000493805.
    1. Schepers E., Meert N., Glorieux G., Goeman J., van der Eycken J., Vanholder R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transpl. 2007;22:592–596. doi: 10.1093/ndt/gfl584.
    1. Ito S., Higuchi Y., Yagi Y., Nishijima F., Yamato H., Ishii H., Osaka M., Yoshida M. Reduction of indoxyl sulfate by AST-120 attenuates monocyte inflammation related to chronic kidney disease. J. Leukoc. Biol. 2013;93:837–845. doi: 10.1189/jlb.0112023.
    1. He T., Xiong J., Huang Y., Zheng C., Liu Y., Bi X., Liu C., Han W., Yang K., Xiao T., et al. Klotho restrain RIG-1/NF-κB signaling activation and monocyte inflammatory factor release under uremic condition. Life Sci. 2019;231:116570. doi: 10.1016/j.lfs.2019.116570.
    1. Kim H.Y., Yoo T.-H., Hwang Y., Lee G.H., Kim B., Jang J., Yu H.T., Kim M.C., Cho J.-Y., Lee C.J., et al. Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD) Sci. Rep. 2017;7:3057. doi: 10.1038/s41598-017-03130-z.
    1. Böger R.H., Bode-Böger S.M., Tsao P.S., Lin P.S., Chan J.R., Cooke J.P. An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J. Am. Coll. Cardiol. 2000;36:2287–2295. doi: 10.1016/S0735-1097(00)01013-5.
    1. Chen M.-F., Li Y.-J., Yang T.-L., Lou B., Xie X.-M. Losartan inhibits monocytic adhesion induced by ADMA via downregulation of chemokine receptors in monocytes. Eur. J. Clin. Pharmacol. 2009;65:457–464. doi: 10.1007/s00228-008-0607-2.
    1. Bhaskaran M., Radhakrishnan N., Patni H., Singh P., Chaudhary A.N., Singhal P.C. Dialysis membrane-induced oxidative stress: Role of heme oxygenase-1. Nephron Exp. Nephrol. 2007;105:e24–e32. doi: 10.1159/000097016.
    1. Carracedo J., Ramírez R., Martín-Malo A., Rodríguez M., Madueño J.A., Aljama P. Role of adhesion molecules in mononuclear cell apoptosis induced by cuprophan hemodialysis membranes. Nephron. 2001;89:186–193. doi: 10.1159/000046066.
    1. Carracedo J., Ramírez R., Martin-Malo A., Rodríguez M., Aljama P. Nonbiocompatible hemodialysis membranes induce apoptosis in mononuclear cells: The role of G-proteins. J. Am. Soc. Nephrol. 1998;9:46–53. doi: 10.1159/000051190.
    1. Carracedo J., Ramírez R., Soriano S., Martín-Malo A., Rodríguez M., Aljama P. Caspase-3-dependent pathway mediates apoptosis of human mononuclear cells induced by cellulosic haemodialysis membranes. Nephrol. Dial. Transpl. 2002;17:1971–1977. doi: 10.1093/ndt/17.11.1971.
    1. Carracedo J., Ramirez R., Soriano S., Alvarez de Lara M.A., Rodriguez M., Martin-Malo A., Aljama P. Monocytes from dialysis patients exhibit characteristics of senescent cells: Does it really mean inflammation? Contrib. Nephrol. 2005;149:208–218. doi: 10.1159/000085542.
    1. Girndt M., Heisel O., Köhler H. Influence of dialysis with polyamide vs haemophan haemodialysers on monokines and complement activation during a 4-month long-term study. Nephrol. Dial. Transpl. 1999;14:676–682. doi: 10.1093/ndt/14.3.676.
    1. Lin Y.F., Chang D.M., Shaio M.F., Lu K.C., Chyr S.H., Li B.L., Sheih S.D. Cytokine production during hemodialysis: Effects of dialytic membrane and complement activation. Am. J. Nephrol. 1996;16:293–299. doi: 10.1159/000169012.
    1. Mandolfo S., Tetta C., David S., Gervasio R., Ognibene D., Wratten M.L., Tessore E., Imbasciati E. In vitro and in vivo biocompatibility of substituted cellulose and synthetic membranes. Int. J. Artif. Organs. 1997;20:603–609. doi: 10.1177/039139889702001102.
    1. Marchant A., Tielemans C., Husson C., Gastaldello K., Schurmans T., de Groote D., Duchow J., Vanherweghem L., Goldman M. Cuprophane haemodialysis induces upregulation of LPS receptor (CD14) on monocytes: Role of complement activation. Nephrol. Dial. Transpl. 1996;11:657–662. doi: 10.1093/oxfordjournals.ndt.a027355.
    1. Pertosa G., Simone S., Soccio M., Marrone D., Gesualdo L., Schena F.P., Grandaliano G. Coagulation cascade activation causes CC chemokine receptor-2 gene expression and mononuclear cell activation in hemodialysis patients. J. Am. Soc. Nephrol. 2005;16:2477–2486. doi: 10.1681/ASN.2004070621.
    1. Dhondt A., Vanholder R., Glorieux G., Waterloos M.A., de Smet R., Lesaffer G., Lameire N. Vitamin E-bonded cellulose membrane and hemodialysis bioincompatibility: Absence of an acute benefit on expression of leukocyte surface molecules. Am. J. Kidney Dis. 2000;36:1140–1146. doi: 10.1053/ajkd.2000.19824.
    1. Girndt M., Lengler S., Kaul H., Sester U., Sester M., Köhler H. Prospective crossover trial of the influence of vitamin E-coated dialyzer membranes on T-cell activation and cytokine induction. Am. J. Kidney Dis. 2000;35:95–104. doi: 10.1016/S0272-6386(00)70307-6.
    1. Stavroulopoulos A., Petras D., Kakavas I., Agroyannis I., Stamatelou K., Vyssoulis G., Papadakis I.T., Stefanadis C. Monocyte expression of adhesion molecules during low- and high-flux polysulfone hemodialysis and the effect of atorvastatin administration. Blood Purif. 2010;29:274–279. doi: 10.1159/000274462.
    1. Kaplow L.S., Goffinet J.A. Profound neutropenia during the early phase of hemodialysis. JAMA. 1968;203:1135–1137. doi: 10.1001/jama.1968.03140130047014.
    1. Schouten W.E.M., Grooteman M.P.C., Schoorl M., van Houte A.J., Nubé M.J. Monocyte activation in peripheral blood and dialyser eluates: Phenotypic profile and cytokine release. Nephron. 2002;91:646–653. doi: 10.1159/000065026.
    1. Stuard S., Carreno M.P., Poignet J.L., Albertazzi A., Haeffner-Cavaillon N. A major role for CD62P/CD15s interaction in leukocyte margination during hemodialysis. Kidney Int. 1995;48:93–102. doi: 10.1038/ki.1995.272.
    1. Tabor B., Geissler B., Odell R., Schmidt B., Blumenstein M., Schindhelm K. Dialysis neutropenia: The role of the cytoskeleton. Kidney Int. 1998;53:783–789. doi: 10.1046/j.1523-1755.1998.00813.x.
    1. Thylén P., Fernvik E., Haegerstrand A., Lundahl J., Jacobson S.H. Dialysis-induced serum factors inhibit adherence of monocytes and granulocytes to adult human endothelial cells. Am. J. Kidney Dis. 1997;29:78–85. doi: 10.1016/S0272-6386(97)90011-1.
    1. Thylén P., Fernvik E., Lundahl J., Hed J., Jacobson S.H. Cell surface receptor modulation on monocytes and granulocytes during clinical and experimental hemodialysis. Am. J. Nephrol. 1995;15:392–400. doi: 10.1159/000168872.
    1. Thylén P., Fernvik E., Lundahl J., Hed J., Jacobson S.H. Modulation of CD11b/CD18 on monocytes and granulocytes following hemodialysis membrane interaction in vitro. Int. J. Artif. Organs. 1996;19:156–163. doi: 10.1177/039139889601900304.
    1. Girndt M., Kaul H., Leitnaker C.K., Sester M., Sester U., Köhler H. Selective sequestration of cytokine-producing monocytes during hemodialysis treatment. Am. J. Kidney Dis. 2001;37:954–963. doi: 10.1016/s0272-6386(05)80011-3.
    1. Sester U., Sester M., Heine G., Kaul H., Girndt M., Köhler H. Strong depletion of CD14(+)CD16(+) monocytes during haemodialysis treatment. Nephrol. Dial. Transpl. 2001;16:1402–1408. doi: 10.1093/ndt/16.7.1402.
    1. Griveas I., Visvardis G., Sakellariou G., Passadakis P., Thodis I., Vargemezis V., Pavlitou A., Fleva A. Biocompatibility study based on differential sequestration kinetics of CD14+CD16+ blood monocyte subsets with different dialyzers. Ren. Fail. 2006;28:493–499. doi: 10.1080/08860220600781336.
    1. Kino K., Akizawa T., Koshikawa S. Effects of membrane characteristics on cytokine production by mononuclear cells in regular haemodialysis patients. Nephrol. Dial. Transpl. 1995;10:29–33. doi: 10.1093/ndt/10.supp3.29.
    1. Koliousi E., Vartholomatos G., Katopodis K.P., Kolaitis N., Siamopoulos K.C. Effect of the hemodialysis session on bcl-2 expression in peripheral blood mononuclear cells in vivo. Blood Purif. 2006;24:542–547. doi: 10.1159/000097077.
    1. Trojanowicz B., Ulrich C., Fiedler R., Storr M., Boehler T., Martus P., Pawlak M., Glomb M.A., Henning C., Templin M., et al. Impact of serum and dialysates obtained from chronic hemodialysis patients maintained on high cut-off membranes on inflammation profile in human THP-1 monocytes. Hemodial. Int. 2017;21:348–358. doi: 10.1111/hdi.12494.
    1. Trojanowicz B., Ulrich C., Fiedler R., Martus P., Storr M., Boehler T., Werner K., Hulko M., Zickler D., Willy K., et al. Modulation of leucocytic angiotensin-converting enzymes expression in patients maintained on high-permeable haemodialysis. Nephrol. Dial. Transpl. 2018;33:34–43. doi: 10.1093/ndt/gfx206.
    1. Colì L., Donati G., Cappuccilli M.L., Cianciolo G., Comai G., Cuna V., Carretta E., La Manna G., Stefoni S. Role of the hemodialysis vascular access type in inflammation status and monocyte activation. Int. J. Artif. Organs. 2011;34:481–488. doi: 10.5301/IJAO.2011.8466.
    1. Atamaniuk J., Kopecky C., Skoupy S., Säemann M.D., Weichhart T. Apoptotic cell-free DNA promotes inflammation in haemodialysis patients. Nephrol. Dial. Transpl. 2012;27:902–905. doi: 10.1093/ndt/gfr695.
    1. Pertosa G., Gesualdo L., Bottalico D., Schena F.P. Endotoxins modulate chronically tumour necrosis factor alpha and interleukin 6 release by uraemic monocytes. Nephrol. Dial. Transpl. 1995;10:328–333.
    1. Eleftheriadis T., Pissas G., Remoundou M., Filippidis G., Antoniadi G., Oustampasidou N., Liakopoulos V., Stefanidis I. Ferroportin in monocytes of hemodialysis patients and its associations with hepcidin, inflammation, markers of iron status and resistance to erythropoietin. Int. Urol. Nephrol. 2014;46:161–167. doi: 10.1007/s11255-013-0497-9.
    1. Sonnweber T., Theurl I., Seifert M., Schroll A., Eder S., Mayer G., Weiss G. Impact of iron treatment on immune effector function and cellular iron status of circulating monocytes in dialysis patients. Nephrol. Dial. Transpl. 2011;26:977–987. doi: 10.1093/ndt/gfq483.
    1. Guz G., Glorieux G.L., de Smet R., Waterloos M.-A.F., Vanholder R.C., Dhondt A.W. Impact of iron sucrose therapy on leucocyte surface molecules and reactive oxygen species in haemodialysis patients. Nephrol. Dial. Transpl. 2006;21:2834–2840. doi: 10.1093/ndt/gfl263.
    1. Jurek A., Turyna B., Kubit P., Klein A. The ability of HDL to inhibit VCAM-1 expression and oxidized LDL uptake is impaired in renal patients. Clin. Biochem. 2008;41:1015–1018. doi: 10.1016/j.clinbiochem.2008.04.019.
    1. Krishnan S., Shimoda M., Sacchi R., Kailemia M.J., Luxardi G., Kaysen G.A., Parikh A.N., Ngassam V.N., Johansen K., Chertow G.M., et al. HDL Glycoprotein Composition and Site-Specific Glycosylation Differentiates Between Clinical Groups and Affects IL-6 Secretion in Lipopolysaccharide-Stimulated Monocytes. Sci. Rep. 2017;7:43728. doi: 10.1038/srep43728.
    1. Tokuda N., Kano M., Meiri H., Nomoto K., Naito S. Calcitriol therapy modulates the cellular immune responses in hemodialysis patients. Am. J. Nephrol. 2000;20:129–137. doi: 10.1159/000013569.
    1. Wu E.L., Cui H.X. Effect of 1,25-(OH)2D3 and lipopolysaccharide on mononuclear cell inflammation in type 2 diabetes mellitus and diabetic nephropathy uremia. Genet. Mol. Res. 2016;15:1–11. doi: 10.4238/gmr.15038553.
    1. Stubbs J.R., Idiculla A., Slusser J., Menard R., Quarles L.D. Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J. Am. Soc. Nephrol. 2010;21:353–361. doi: 10.1681/ASN.2009040451.
    1. Meireles M.S., Kamimura M.A., Dalboni M.A., Giffoni de Carvalho J.T., Aoike D.T., Cuppari L. Effect of cholecalciferol on vitamin D-regulatory proteins in monocytes and on inflammatory markers in dialysis patients: A randomized controlled trial. Clin. Nutr. 2016;35:1251–1258. doi: 10.1016/j.clnu.2016.04.014.
    1. Seibert E., Heine G.H., Ulrich C., Seiler S., Köhler H., Girndt M. Influence of cholecalciferol supplementation in hemodialysis patients on monocyte subsets: A randomized, double-blind, placebo-controlled clinical trial. Nephron Clin. Pract. 2013;123:209–219. doi: 10.1159/000354717.
    1. Arena A., Coppolino G., Nostro L., Pavone B., Bonvissuto G., Campo S., Iannello D., Bonina L., Buemi M. Impaired antiviral activity of monocytes from patients on hemodiafiltration. J. Nephrol. 2007;20:560–567.
    1. Dopheide J.F., Zeller G.C., Kuhlmann M., Girndt M., Sester M., Sester U. Differentiation of Monocyte Derived Dendritic Cells in End Stage Renal Disease is Skewed towards Accelerated Maturation. Adv. Clin. Exp. Med. 2015;24:257–266. doi: 10.17219/acem/40463.
    1. Choi H.M., Woo Y.S., Kim M.G., Jo S.-K., Cho W.Y., Kim H.K. Altered monocyte-derived dendritic cell function in patients on hemodialysis: A culprit for underlying impaired immune responses. Clin. Exp. Nephrol. 2011;15:546–553. doi: 10.1007/s10157-011-0424-2.
    1. Lim W.H., Kireta S., Leedham E., Russ G.R., Coates P.T. Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int. 2007;72:1138–1148. doi: 10.1038/sj.ki.5002425.
    1. Verkade M.A., van Druningen C.J., Op de Hoek C.T., Weimar W., Betjes M.G.H. Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis. Clin. Exp. Med. 2007;7:65–71. doi: 10.1007/s10238-007-0127-x.
    1. Ross R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Gottsäter A., Forsblad J., Mätzsch T., Persson K., Ljungcrantz I., Ohlsson K., Lindgärde F. Interleukin-1 receptor antagonist is detectable in human carotid artery plaques and is related to triglyceride levels and Chlamydia pneumoniae IgA antibodies. J. Intern. Med. 2002;251:61–68. doi: 10.1046/j.1365-2796.2002.00926.x.
    1. Balakrishnan V.S., Schmid C.H., Jaber B.L., Natov S.N., King A.J., Pereira B.J. Interleukin-1 receptor antagonist synthesis by peripheral blood mononuclear cells: A novel predictor of morbidity among hemodialysis patients. J. Am. Soc. Nephrol. 2000;11:2114–2121.
    1. Jeng Y., Lim P.S., Wu M.Y., Tseng T.-Y., Chen C.H., Chen H.P., Wu T.-K. Proportions of Proinflammatory Monocytes Are Important Predictors of Mortality Risk in Hemodialysis Patients. Mediators Inflamm. 2017;2017:1070959. doi: 10.1155/2017/1070959.
    1. Rogacev K.S., Seiler S., Zawada A.M., Reichart B., Herath E., Roth D., Ulrich C., Fliser D., Heine G.H. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 2011;32:84–92. doi: 10.1093/eurheartj/ehq371.
    1. Ulrich C., Seibert E., Heine G.H., Fliser D., Girndt M. Monocyte angiotensin converting enzyme expression may be associated with atherosclerosis rather than arteriosclerosis in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011;6:505–511. doi: 10.2215/CJN.06870810.
    1. Rogacev K.S., Ziegelin M., Ulrich C., Seiler S., Girndt M., Fliser D., Heine G.H. Haemodialysis-induced transient CD16+ monocytopenia and cardiovascular outcome. Nephrol. Dial. Transpl. 2009;24:3480–3486. doi: 10.1093/ndt/gfp287.
    1. Lorenzen J.M., David S., Richter A., de Groot K., Kielstein J.T., Haller H., Thum T., Fliser D. TLR-4+ peripheral blood monocytes and cardiovascular events in patients with chronic kidney disease—A prospective follow-up study. Nephrol. Dial. Transpl. 2011;26:1421–1424. doi: 10.1093/ndt/gfq758.
    1. Ando M., Lundkvist I., Bergström J., Lindholm B. Enhanced scavenger receptor expression in monocyte-macrophages in dialysis patients. Kidney Int. 1996;49:773–780. doi: 10.1038/ki.1996.107.
    1. Konishi Y., Okamura M., Konishi M., Negoro N., Yoshida T., Inoue T., Kanayama Y., Yoshikawa J. Enhanced gene expression of scavenger receptor in peripheral blood monocytes from patients on cuprophane haemodialysis. Nephrol. Dial. Transpl. 1997;12:1167–1172. doi: 10.1093/ndt/12.6.1167.
    1. Gonçalves M.S.B., Fabris B.A., Brinholi F.F., Bortolasci C.C., Watanabe M.A.E., Oliveira K.B., Delfino V.D.A., Lavado E.L., Barbosa D.S. Increased oxidative stress in foam cells obtained from hemodialysis patients. Hemodial. Int. 2013;17:266–274. doi: 10.1111/j.1542-4758.2012.00736.x.
    1. Kliger E., Kristal B., Shapiro G., Chezar J., Sela S. Primed polymorphonuclear leukocytes from hemodialysis patients enhance monocyte transendothelial migration. Am. J. Physiol. Heart Circ. Physiol. 2017;313:H974–H987. doi: 10.1152/ajpheart.00122.2017.
    1. Ewert L., Fischer A., Brandt S., Scurt F.G., Philipsen L., Müller A.J., Girndt M., Zenclussen A.C., Lindquist J.A., Gorny X., et al. Cold shock Y-box binding protein-1 acetylation status in monocytes is associated with systemic inflammation and vascular damage. Atherosclerosis. 2018;278:156–165. doi: 10.1016/j.atherosclerosis.2018.09.020.
    1. Ashman N., Macey M.G., Fan S.L., Azam U., Yaqoob M.M. Increased platelet-monocyte aggregates and cardiovascular disease in end-stage renal failure patients. Nephrol. Dial. Transpl. 2003;18:2088–2096. doi: 10.1093/ndt/gfg348.
    1. Stach K., Karb S., Akin I., Borggrefe M., Krämer B., Kälsch T., Kälsch A.-I. Elevation of Platelet and Monocyte Activity Markers of Atherosclerosis in Haemodialysis Patients Compared to Peritoneal Dialysis Patients. Mediators Inflamm. 2017;2017:8506072. doi: 10.1155/2017/8506072.
    1. Becs G., Hudák R., Fejes Z., Debreceni I.B., Bhattoa H.P., Balla J., Kappelmayer J. Haemodiafiltration elicits less platelet activation compared to haemodialysis. BMC Nephrol. 2016;17:147. doi: 10.1186/s12882-016-0364-x.
    1. Benck U., Stach K., Jung S., Krämer B.K., Kälsch T., Kälsch A.-I. Short- and long-term effects of hemodialysis on platelet and monocyte activity markers of atherosclerosis in patients with end-stage renal disease. Cardiol. J. 2018;25:595–600. doi: 10.5603/CJ.a2017.0152.
    1. Libby P., Everett B.M. Novel Antiatherosclerotic Therapies. Arterioscler. Thromb. Vasc. Biol. 2019;39:538–545. doi: 10.1161/ATVBAHA.118.310958.

Source: PubMed

3
Tilaa