Emetine Is Not Ipecac: Considerations for Its Use as Treatment for SARS-CoV2

Martin D Bleasel, Gregory M Peterson, Martin D Bleasel, Gregory M Peterson

Abstract

Emetine is a potent antiviral that acts on many viruses in the low-nM range, with several studies in animals and humans demonstrating antiviral activity. Historically, emetine was used to treat patients with Spanish influenza, in the last stages of the pandemic in the early 1900s. Some of these patients were "black" with cyanosis. Emetine rapidly reversed the cyanosis and other symptoms of this disease in 12-24 h. However, emetine also has been shown to have anti-inflammatory properties and it appears it is these anti-inflammatory properties that were responsible for the effects seen in patients with Spanish influenza. Emetine, in the past, has also been used in 10s to 100s of millions of people at a dose of ~60 mg daily to treat amoebiasis. Based on viral inhibition data we can calculate a likely SARS-CoV2 antiviral dose of ~1/10th the amoebiasis dose, which should dramatically reduce the risk of any side effects. While there are no anti-inflammatory dose response data available, based on the potential mode of action, the anti-inflammatory actions may also occur at low doses. This paper also examines the toxicity of emetine seen in clinical practice and that seen in the laboratory, and discusses the methods of administration aimed at reducing side effects if higher doses were found to be necessary. While emetine is a "pure drug" as it is extracted from ipecac, some of the differences between emetine and ipecac are also discussed.

Keywords: COVID-19; anti-inflammatory; antiviral; coronavirus; dehydroemetine; emetine; ipecac; re-purposing; toxicity; treatment.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Bleasel M.D., Peterson G.M. Emetine, ipecac, ipecac alkaloids and analogues as potential antiviral agents for coronaviruses. Pharmaceuticals. 2020;13:51. doi: 10.3390/ph13030051.
    1. Choy K.-T., Wong A.Y.-L., Kaewpreedee P., Sia S.-F., Chen D., Hui K.P.Y., Chu D.K.W., Chan M.C.W., Cheung P.-H., Huang X., et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 2020:104786. doi: 10.1016/j.antiviral.2020.104786.
    1. Bojkova D., Klann K., Koch B., Widera M., Krause D., Ciesek S., Cinatl J., Münch C. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020:1–8. doi: 10.1038/s41586-020-2332-7.
    1. Ellinger B., Bojkova D., Zaliani A., Cinatl J., Westhaus S., Reinshagen J., Kuzikov M., Wolf M. Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection. Res. Sq. 2020 doi: 10.21203/-23951/v1.
    1. World Health Organization WHO|Essential Medicines List and WHO Model Formulary: Comparative Table of Medicines on the WHO Essential Medicines List from 1977–2011. [(accessed on 10 October 2020)]; Available online:
    1. USP Emetine Hydrochloride Injection (USP 32: Online) [(accessed on 20 October 2020)]; Available online: .
    1. Silber T.J. Ipecac syrup abuse, morbidity, and mortality: Isn’t it time to repeal its over-the-counter status? J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 2005;37:256–260. doi: 10.1016/j.jadohealth.2004.08.022.
    1. Ho P.C., Dweik R., Cohen M.C. Rapidly reversible cardiomyopathy associated with chronic ipecac ingestion. Clin. Cardiol. 1998;21:780–783. doi: 10.1002/clc.4960211018.
    1. USP 32 NF 27: United States Pharmacopeia and National Formulary. United States Pharmacopeial Convention; Rockville, MD, USA: 2009.
    1. Lee M. Ipecacuanha: The South American vomiting root. J. R. Coll. Physicians Edinb. 2008;38:355–360.
    1. Brossi A., Teitel S., Parry G.V. Chapter 3 The ipecac alkaloids. In: Manske R.H.F., editor. The Alkaloids: Chemistry and Physiology. Volume 13. Academic Press; Cambridge, MA, USA: 1971. pp. 189–212.
    1. Alves Garcia R.M., de Oliveira L.O., Alves Moreira M., Silva Barros W. Variation in emetine and cephaeline contents in roots of wild Ipecac (Psychotria ipecacuanha) Biochem. Syst. Ecol. 2005;33:233–243. doi: 10.1016/j.bse.2004.08.005.
    1. Rosales-López C., Muñoz-Arrieta R., Abdelnour-Esquivel A., Rosales-López C., Muñoz-Arrieta R., Abdelnour-Esquivel A. Emetine and cephaeline content in plants of Psychotria ipecacuanha in Costa Rica. Rev. Colomb. Quím. 2020;49:18–22. doi: 10.15446/rev.colomb.quim.v49n2.78347.
    1. Han G., Wang Y., Feng S., Jia Y. Simultaneous determination of cephaeline and emetine in ipecac and its preparations using RP-HPLC. Chin. Herb. Med. 2013;5:286–291. doi: 10.1016/S1674-6384(13)60042-8.
    1. Walters A.L., Eckler C.R., Koch E.W. Pharmacological studies of the ipecac alkaloids and some synthetic derivatives of cephaeline ii. Studies on emetic effect and irritant action. J. Pharmacol. Exp. Ther. 1917;10:185–197.
    1. USP Monographs: Ipecac Oral Solution. [(accessed on 26 February 2020)]; Available online: .
    1. Rogers L. The rapid cure of amoebic dysentery and hepatitis by hypodermic injections of soluble salts of emetine. Br. Med. J. 1912;1:1424–1425. doi: 10.1136/bmj.1.2686.1424.
    1. Jorda V., Lenfeld J., Rothschild L. Zur Frage der Wirkung des Emetins bei Herpes zoster [Effect of emetine in herpes zoster] Z. Gesamte Inn. Med. 1958;13:71–76.
    1. Yang S., Xu M., Lee E.M., Gorshkov K., Shiryaev S.A., He S., Sun W., Cheng Y.-S., Hu X., Tharappel A.M., et al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discov. 2018;4:1–14. doi: 10.1038/s41421-018-0034-1.
    1. Tang Q., Li S., Du L., Chen S., Gao J., Cai Y., Xu Z., Zhao Z., Lan K., Wu S. Emetine protects mice from enterovirus infection by inhibiting viral translation. Antivir. Res. 2020;173:104650. doi: 10.1016/j.antiviral.2019.104650.
    1. Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Di Napoli R. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. Features, evaluation, and treatment of coronavirus.
    1. Bouloy M., Weber F. Molecular biology of rift valley fever virus. Open Virol. J. 2010;4:8–14. doi: 10.2174/1874357901004010008.
    1. Clyde K., Kyle J.L., Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J. Virol. 2006;80:11418–11431. doi: 10.1128/JVI.01257-06.
    1. White M.K., Wollebo H.S., Beckham J.D., Tyler K.L., Khalili K. Zika Virus: An emergent neuropathological agent. Ann. Neurol. 2016;80:479–489. doi: 10.1002/ana.24748.
    1. Lee J.E., Saphire E.O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009;4:621–635. doi: 10.2217/fvl.09.56.
    1. Wells A.I., Coyne C.B. Enteroviruses: A gut-wrenching game of entry, detection, and evasion. Viruses. 2019;11:460. doi: 10.3390/v11050460.
    1. Schottstedt V., Blümel J., Burger R., Drosten C., Gröner A., Gürtler L., Heiden M., Hildebrandt M., Jansen B., Montag-Lessing T., et al. Human cytomegalovirus (HCMV)—Revised. Transfus. Med. Hemother. 2010;37:365–375. doi: 10.1159/000322141.
    1. Reuven N.B., Staire A.E., Myers R.S., Weller S.K. The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. J. Virol. 2003;77:7425–7433. doi: 10.1128/JVI.77.13.7425-7433.2003.
    1. Wudiri G.A., Schneider S.M., Nicola A.V. Herpes simplex virus 1 envelope cholesterol facilitates membrane fusion. Front. Microbiol. 2017;8:2383. doi: 10.3389/fmicb.2017.02383.
    1. Weller S.K., Coen D.M. Herpes simplex viruses: Mechanisms of DNA replication. Cold Spring Harb. Perspect. Biol. 2012;4:a013011. doi: 10.1101/cshperspect.a013011.
    1. Shafagati N., Williams J. Human metapneumovirus—What we know now. F1000Research. 2018;7 doi: 10.12688/f1000research.12625.1.
    1. Burchard G.D., Mirelman D. Entamoeba histolytica: Virulence potential and sensitivity to metronidazole and emetine of four isolates possessing nonpathogenic zymodemes. Exp. Parasitol. 1988;66:231–242. doi: 10.1016/0014-4894(88)90095-1.
    1. Yang C.-W., Peng T.-T., Hsu H.-Y., Lee Y.-Z., Wu S.-H., Lin W.-H., Ke Y.-Y., Hsu T.-A., Yeh T.-K., Huang W.-Z., et al. Repurposing old drugs as antiviral agents for coronaviruses. Biomed. J. 2020;43:368–374. doi: 10.1016/j.bj.2020.05.003.
    1. Shen L., Niu J., Wang C., Huang B., Wang W., Zhu N., Deng Y., Wang H., Ye F., Cen S., et al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol. 2019;93:e00023-19. doi: 10.1128/JVI.00023-19.
    1. Ko M., Chang S.Y., Byun S.Y., Choi I., d’Alexandry d’Orengiani A.-L.P.H., Shum D., Min J.-Y., Windisch M.P. Screening of FDA-approved drugs using a MERS-CoV clinical isolate from South Korea identifies potential therapeutic options for COVID-19. bioRxiv. 2020 doi: 10.1101/2020.02.25.965582.
    1. Dyall J., Coleman C.M., Hart B.J., Venkataraman T., Holbrook M.R., Kindrachuk J., Johnson R.F., Olinger G.G., Jahrling P.B., Laidlaw M., et al. Repurposing of clinically developed drugs for treatment of middle east respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014;58:4885–4893. doi: 10.1128/AAC.03036-14.
    1. Mukhopadhyay R., Roy S., Venkatadri R., Su Y.-P., Ye W., Barnaeva E., Mathews Griner L., Southall N., Hu X., Wang A.Q., et al. Efficacy and mechanism of action of low dose emetine against human cytomegalovirus. PLoS Pathog. 2016;12:e1005717. doi: 10.1371/journal.ppat.1005717.
    1. Andersen P.I., Krpina K., Ianevski A., Shtaida N., Jo E., Yang J., Koit S., Tenson T., Hukkanen V., Anthonsen M.W., et al. Novel antiviral activities of obatoclax, emetine, niclosamide, brequinar, and homoharringtonine. Viruses. 2019;11:964. doi: 10.3390/v11100964.
    1. Low S.J.Y., Chen K.C., Wu K.X., Ng M.M.-L., Chu J.J.H. Antiviral activity of emetine dihydrochloride against dengue virus infection. J. Antivir. Antiretrovir. 2009;1:62–71. doi: 10.4172/jaa.1000009.
    1. Valadão A.L.C., Abreu C.M., Dias J.Z., Arantes P., Verli H., Tanuri A., de Aguiar R.S. Natural plant alkaloid (emetine) inhibits hiv-1 replication by interfering with reverse transcriptase activity. Molecules. 2015;20:11474–11489. doi: 10.3390/molecules200611474.
    1. Hanisch J. Keratoconjunctivitis epidemica gyógyításának új módja (Emctin-kezelés) [New treatment of keratoconjunctivitis using epidemica emetine] Szemeszet. 1963;99:29–33.
    1. Bialasiewicz A. Adenoviral Keratoconjunctivitis. Sultan Qaboos Univ. Med. J. 2007;7:15–23.
    1. Del Puerto B.M., Tato J.C., Koltan A., Bures O.M., De Chieri P.R., Garcia A., Escaray T.I., Lorenzo B. Hepatitis viral en el niño con especial referencia a su tratamiento con emetina [Viral hepatitis in children and special reference to its treatment with emetine; English summary was used] Prensa Med. Argent. 1968;55:818–834.
    1. Fusillo A. Effetto delle piccole dosi di emetina nella terapia delle malattie da virus. Nuovo metodo terapeutico specifico dell’epatite virale [Effect of small doses of emetine in the therapy of virus diseases. New specific therapeutic method in viral hepatitis] Translation by Elisabetta Mayer. Minerva Med. 1973;64:129–132.
    1. Fusillo A. Prospects of A New Anti-Viral Chemotherapy. Action Against Allergy; Twickenham, UK: 1984.
    1. Fusillo A., Fusillo A., Fusillo N. In: Antonio Fusillo Un Uomo solo Contro i Virus (di Ogni Genere e Specie) [Antonio Fusillo a Man Alone against the Virus (of All Kinds and Species)] Giacon A., editor. Carrucci Editiore; Noci Bar, Italy: 2012.
    1. Points J.F. The evolution of a successful treatment for the complicated cases of influenza. New-Orleans Med. Surg. J. 1920;72:409–413.
    1. Joukovsky T. Trois cas de zona traités par les injection d’émetique [Three cases of zona treated with emetine injections] Ann. Soc. Belge. Méd. Trop. 1937;17:331–332.
    1. Griveaud E., Achard J. L’émétine dans le traitement du zona; bilan après cinq ans d’expérience [Emetine in the treatment of zona; report on five years of experience] Sem. Hopitaux Organe Fonde Par Assoc. Enseign. Med. Hopitaux Paris. 1959;35:872–875.
    1. Vidal J. NNN Zona et emétine [Shingles and emetine] Hospital. 1952;40:305–306.
    1. Morin Y.-A. Ph.D. Thesis. Faculty of Medicine, University of Paris; Paris, France: 1953. Un traitement ambulatoire du zona: Le chlorhydrate d’émétine. (Méthode du Docteur Vidal de Châtel-Guyon.)
    1. Thong Dinh Vy Émétine et zona. Presse Médicale. 1954;19:955.
    1. Reynon M. Zona ophtalmique et émétine [Ophthalmic zona and emetine] Ann. Ocul. 1954;187:467–470.
    1. Viegas L.B., Viegas L.C. Zona et chlorhydrate d’émétine [Shingles and emetine hydrochloride] Ann. Dermatol. Syphiligr. 1957;84:400–405.
    1. Tato J.C., Smith Bunge S.M., Del Puerto B.M., Koltan A., Bures O., Escaray T.I. Nuevo enfoque terapeutico en el tratamiento de las estomatitis herpetica o aftosa con clorhidrato de emetina [New therapeutic focus in the treatment of herpetic stomatitis or aftosa with emetine hydrochloride] Prensa Med. Argent. 1961;48:1021–1022.
    1. Grosz I. Emetyn a pas’owki ocznej [Emetine therapy of herpes zoster ophthalmicus] Klin. Ocz. 1964;34:207–210.
    1. Lin J.-Y., Li M.-L., Shih S.-R. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res. 2009;37:47–59. doi: 10.1093/nar/gkn901.
    1. Johnson A.G., Grosely R., Petrov A.N., Puglisi J.D. Dynamics of IRES-mediated translation. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160177. doi: 10.1098/rstb.2016.0177.
    1. Beales L.P., Holzenburg A., Rowlands D.J. Viral internal ribosome entry site structures segregate into two distinct morphologies. J. Virol. 2003;77:6574–6579. doi: 10.1128/JVI.77.11.6574-6579.2003.
    1. Sanjuán R., Domingo-Calap P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016;73:4433–4448. doi: 10.1007/s00018-016-2299-6.
    1. Kieft J.S. Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 2008;33:274–283. doi: 10.1016/j.tibs.2008.04.007.
    1. Kanamori Y., Nakashima N. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA. 2001;7:266–274. doi: 10.1017/S1355838201001741.
    1. Siddique M.A.H., Satoh K., Kurosawa R., Nobuhiro K., Elias-Al-Mamun M., Omura J., Satoh T., Nogi M., Sunamura S., Miyata S., et al. Identification of emetine as a therapeutic agent for pulmonary arterial hypertension. Arterioscler. Thromb. Vasc. Biol. 2019;39:2367–2385. doi: 10.1161/ATVBAHA.119.313309.
    1. Tan Y.H., Armstrong J.A., Ho M. Accentuation of interferon production by metabolic inhibitors and its dependence on protein synthesis. Virology. 1971;44:503–509. doi: 10.1016/0042-6822(71)90363-1.
    1. Rosztóczy I. Effect of emetine on the multiplication of pseudorabies and Semliki Forest viruses and on the interferon production by cultured cells. Acta Microbiol. Acad. Sci. Hung. 1969;16:227–235.
    1. Ortaldo J.R., Phillips W., Wasserman K., Herberman R.B. Effects of metabolic inhibitors on spontaneous and interferon-boosted human natural killer cell activity. J. Immunol. 1980;125:1839–1844.
    1. Bishop G.A., Schwartz S.A. Enhancement of human natural killer cells by interferon requires RNA and protein synthesis. Clin. Immunol. Immunopathol. 1982;25:374–385. doi: 10.1016/0090-1229(82)90202-1.
    1. Jefferies W.A., Kolaitis G., Gabathuler R. IFN-gamma-induced recognition of the antigen-processing variant CMT.64 by cytolytic T cells can be replaced by sequential addition of beta 2 microglobulin and antigenic peptides. J. Immunol. 1993;151:2974–2985.
    1. Leung K.H., Koren H.S. Regulation of human natural killing. III. Mechanism for interferon induction of loss of susceptibility to suppression by cyclic AMP elevating agents. J. Immunol. 1984;132:1445–1450.
    1. Schellekens H., Huffmeyer J.H., van Griensven L.J. The influence of emetine on the induction of interferon by poly-I: Poly-C in Swiss mice. J. Gen. Virol. 1975;26:197–200. doi: 10.1099/0022-1317-26-2-197.
    1. Tan Y.H., Jeng D.K., Ho M. The release of interferon: An active process inhibited by p-hydroxymercuribenzoate. Virology. 1972;48:41–48. doi: 10.1016/0042-6822(72)90112-2.
    1. Grollman A.P. Structural basis for inhibition of protein synthesis by emetine and cycloheximide based on an analogy between ipecac alkaloids and glutarimide antibiotics. Proc. Natl. Acad. Sci. USA. 1966;56:1867–1874. doi: 10.1073/pnas.56.6.1867.
    1. Entner N. Emetine binding to ribosomes of Entamoeba histolytica—Inhibition of protein synthesis and amebicidal action. J. Protozool. 1979;26:324–328. doi: 10.1111/j.1550-7408.1979.tb02789.x.
    1. Entner N., Grollman A.P. Inhibition of protein synthesis: A mechanism of amebicide action of emetine and other structurally related compounds. J. Protozool. 1973;20:160–163. doi: 10.1111/j.1550-7408.1973.tb06025.x.
    1. Powell J.D., Pollizzi K.N., Heikamp E.B., Horton M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012;30:39–68. doi: 10.1146/annurev-immunol-020711-075024.
    1. Marques-Ramos A., Candeias M.M., Menezes J., Lacerda R., Willcocks M., Teixeira A., Locker N., Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA. 2017;23:1712–1728. doi: 10.1261/rna.063040.117.
    1. Yang W.C.T., Dubick M. Mechanism of emetine cardiotoxicity. Pharmacol. Ther. 1980;10:15–26. doi: 10.1016/0163-7258(80)90007-8.
    1. Gilman Gilman A., Goodman L., Goodman A., editors. Pharmacological Basis Therapeutics. 6th ed. Macmillan; New York, NY, USA: 1980.
    1. Reynolds J.E.F., Parfitt K., Parsons A., Sweerman S., editors. Martindale: The Extra Pharmacopoeia. 29th ed. The Pharmaceutical Press; London, UK: 1989.
    1. Harinasuta C. A comparison of chloroquine and emetine in the treatment of amoebic liver abscess. Indian Med. Gaz. 1951;86:137–142.
    1. Klatskin G., Friedman H. Emetine toxicity in man; studies on the nature of early toxic manifestations, their relation to the dose level, and their significance in determining safe dosage. Ann. Intern. Med. 1948;28:892–915. doi: 10.7326/0003-4819-28-5-892.
    1. Klatskin G. Observations on amebiasis in American troops stationed in India. Ann. Intern. Med. 1946;25:773–788. doi: 10.7326/0003-4819-25-5-773.
    1. Heilig R., Visveswar S.K. On the cardiac effects of emetine: A discussion of this subject appears in the editorial section of this number. Indian Med. Gaz. 1943;78:419–424.
    1. Minton N., Swift R., Lawlor C., Mant T., Henry J. Ipecacuanha-induced emesis: A human model for testing antiemetic drug activity. Clin. Pharmacol. Ther. 1993;54:53–57. doi: 10.1038/clpt.1993.109.
    1. Hasegawa M., Sasaki T., Sadakane K., Tabuchi M., Takeda Y., Kimura M., Fujii Y. Studies for the emetic mechanisms of ipecac syrup (TJN-119) and its active components in ferrets: Involvement of 5-hydroxytryptamine receptors. Jpn. J. Pharmacol. 2002;89:113–119. doi: 10.1254/jjp.89.113.
    1. Chopra R.N., Ghosh B.N. The therapeutics of emetine. Indian Med. Gaz. 1922;57:248–253.
    1. Parmer L.G., Cottrill C.W. Distribution of emetine in tissues. J. Lab. Clin. Med. 1949;34:818–821.
    1. Jimenez A., Carrasco L., Vazquez D. Enzymic and nonenzymic translocation by yeast polysomes: Site of action of a number of inhibitors. Biochemistry. 1977;16:4727–4730. doi: 10.1021/bi00640a030.
    1. Gupta R.S., Siminovitch L. The molecular basis of emetine resistance in Chinese hamster ovary cells: Alteration in the 40S ribosomal subunit. Cell. 1977;10:61–66. doi: 10.1016/0092-8674(77)90140-4.
    1. Ocampo P.S., Lázár V., Papp B., Arnoldini M., Abel zur Wiesch P., Busa-Fekete R., Fekete G., Pál C., Ackermann M., Bonhoeffer S. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob. Agents Chemother. 2014;58:4573–4582. doi: 10.1128/AAC.02463-14.
    1. Uzor P.F. Recent developments on potential new applications of emetine as anti-cancer agent. EXCLI J. 2016;15:323–328. doi: 10.17179/EXCLI2016-280.
    1. Akinboye E., Bakare O. Biological activities of emetine. Open Nat. Prod. J. 2011;4:9–15. doi: 10.2174/1874848101104010008.
    1. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020;20:355–362. doi: 10.1038/s41577-020-0331-4.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Cardone M., Yano M., Rosenberg A.S., Puig M. Lessons learned to date on COVID-19 hyperinflammatory syndrome: Considerations for interventions to mitigate SARS-CoV-2 viral infection and detrimental hyperinflammation. Front. Immunol. 2020;11:1131. doi: 10.3389/fimmu.2020.01131.
    1. Girija A.S.S., Shankar E.M., Larsson M. Could SARS-CoV-2-induced hyperinflammation magnify the severity of coronavirus disease (CoViD-19) leading to acute respiratory distress syndrome? Front. Immunol. 2020;11:1206. doi: 10.3389/fimmu.2020.01206.
    1. Gilead Z., Becker Y. Effect of emetine on ribonucleic acid biosynthesis in HeLa cells. Eur. J. Biochem. 1971;23:143–149. doi: 10.1111/j.1432-1033.1971.tb01601.x.
    1. Rich R.F., Green W.R. Characterization of the Fas ligand/Fas-dependent apoptosis of antiretroviral, class I MHC tetramer-defined, CD8+ CTL by in vivo retrovirus-infected cells. J. Immunol. 2002;168:2751–2758. doi: 10.4049/jimmunol.168.6.2751.
    1. Knight R. The chemotherapy of amoebiasis. J. Antimicrob. Chemother. 1980;6:577–593. doi: 10.1093/jac/6.5.577.
    1. Bisseru B., Woodruff A.W., Roux G. Dehydroemetine resinate in the treatment of intestinal amoebiasis. Trans. R. Soc. Trop. Med. Hyg. 1965;59:550–552. doi: 10.1016/0035-9203(65)90157-4.
    1. Hilmy Salem H., Abd-Rabbo H. Dehydroemetine in acute amoebiasis. Trans. R. Soc. Trop. Med. Hyg. 1964;58:539–544. doi: 10.1016/0035-9203(64)90110-5.
    1. Valentin Feyns L., Grady L.T. Emetine hydrochloride. In: Florey K., Bishara R., Brewer G.A., Fairbrother J.E., Grady L.T., Leemann H.-G., Mollica J.A., Rudy B.C., editors. Analytical Profiles of Drug Substances. Volume 10. Academic Press; Cambridge, MA, USA: 1981. pp. 289–335.
    1. Openshaw H.T., Whittaker N. 276. The synthesis of emetine and related compounds. Part IV. A new synthesis of 3-substituted 1,2,3,4,6,7-hexahydro-9,10-dimethoxy-2-oxo-11bH-benzo[a]quinolizines. J. Chem. Soc. Resumed. 1963:1449–1460. doi: 10.1039/jr9630001449.
    1. Openshaw H.T., Whittaker N. 277. The synthesis of emetine and related compounds. Part, V. A stereochemically favourable synthesis of emetine. J. Chem. Soc. Resumed. 1963:1461–1471. doi: 10.1039/jr9630001461.

Source: PubMed

3
Tilaa