Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists

Margherita Neri, Irene Riezzo, Natascha Pascale, Cristoforo Pomara, Emanuela Turillazzi, Margherita Neri, Irene Riezzo, Natascha Pascale, Cristoforo Pomara, Emanuela Turillazzi

Abstract

Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality. Reperfusion strategies are the current standard therapy for AMI. However, they may result in paradoxical cardiomyocyte dysfunction, known as ischemic reperfusion injury (IRI). Different forms of IRI are recognized, of which only the first two are reversible: reperfusion-induced arrhythmias, myocardial stunning, microvascular obstruction, and lethal myocardial reperfusion injury. Sudden death is the most common pattern for ischemia-induced lethal ventricular arrhythmias during AMI. The exact mechanisms of IRI are not fully known. Molecular, cellular, and tissue alterations such as cell death, inflammation, neurohumoral activation, and oxidative stress are considered to be of paramount importance in IRI. However, comprehension of the exact pathophysiological mechanisms remains a challenge for clinicians. Furthermore, myocardial IRI is a critical issue also for forensic pathologists since sudden death may occur despite timely reperfusion following AMI, that is one of the most frequently litigated areas of cardiology practice. In this paper we explore the literature regarding the pathophysiology of myocardial IRI, focusing on the possible role of the calpain system, oxidative-nitrosative stress, and matrix metalloproteinases and aiming to foster knowledge of IRI pathophysiology also in terms of medicolegal understanding of sudden deaths following AMI.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Schematic representation of calpain activation during myocardial IRI. Ca2+ overload and pH recovery in reperfusion phase are crucial in the activation of the calpain system. Increased sarcolemmal fragility may lead to membrane rupture and cell death. In addition, both the death-receptor and mitochondrial mediated apoptotic pathways seem to be affected by calpain activation. The degradation of myofibrillar proteins and the loss/disorganization of T-tubules structure are key factors in post-MI heart failure development.
Figure 2
Figure 2
Schematic representation of oxidative stress contributing to tissue injury and cell death in IRI. Following ischemia, hypoxia results in reduction of ATP production, ion pump function unbalance, leading to overload of Na+ and Ca2+, activation of anaerobic glycolysis, and, finally, reduction of pH. During the initial ischemic phase, the activation and upregulation of enzymes (such as NADPH oxidase, a superoxide-generating enzyme comprising a membrane-bound catalytic subunit) occurs, that are capable of producing ROS, when molecular oxygen is reintroduced in the reperfusion phase. ROS induces cell dysfunction and death via other mechanisms: activation of metalloproteinases and calpains, mitochondrial permeability transition pore (MPTP) opening which contributes to swelling and lysis of cells. This may elicit the release of proapoptotic factors in the cytosol, thus contributing to cell death. ROS indirectly interact with nitric oxide (NO) production, partly mediated by the inducible NOS (iNOS), the high-capacity NO-producing enzyme. Unlike the other two NOS isoforms, iNOS is not constitutively expressed in cells, and its production is elicited by several stimuli like IRI. NO cytotoxic effects are both direct and indirect mediated by NO reaction with superoxide to form the potent oxidant peroxynitrite which in turn exerts cytotoxicity.
Figure 3
Figure 3
Histomorphological pictures showing the phenotypic results of altered pathways in IRI. (a) Mild calpain 1 expression in the left ventricle cardiac tissue of a patient who died following early reperfused AMI (calpain 1, antibody anti-calpain 1, Santa Cruz, USA). (b) NOX2 expression in the left ventricle cardiac tissue of a patient who died following prompt fibrinolysis in acute STEMI. (c) Strong immunopositivity to anti-nitrotyrosine antibody (Abcam, Cambridge, UK). (d) Mild immunopositivity to anti-iNOS (inducible nitric oxide synthase) antibody (Santa Cruz, CA, USA) in the left ventricle sample of a patient who died following reperfusion therapy in STEMI.
Figure 4
Figure 4
The matrix metalloproteinases system. MMPs activity results from different levels of regulation: transcription, activation, and inhibition by tissue inhibitors of metalloproteinases (TIMPs). During ischemia/reperfusion, oxidative stress stimulates the activity of MMPs, like MMP-2. Several biological activities of MMPs may contribute to myocardial contractile dysfunction and cell death. MMPs can both degrade extracellular matrix (ECM) and modulate different cellular mechanisms, thus leading to contractile dysfunction and modulation of cardiac remodelling and healing.

References

    1. Mozaffarian D., Benjamin E. J., Go A. S., et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–e322.
    1. American College of Emergency Physicians, Society for Cardiovascular Angiography and Interventions, O'Gara P. T., et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2013;61:e78–e140.
    1. Gerczuk P. Z., Kloner R. A. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. Journal of the American College of Cardiology. 2012;59(11):969–978. doi: 10.1016/j.jacc.2011.07.054.
    1. Braunwald E., Kloner R. A. Myocardial reperfusion: a double-edged sword? Journal of Clinical Investigation. 1985;76(5):1713–1719. doi: 10.1172/jci112160.
    1. Piper H. M., García-Dorado D., Ovize M. A fresh look at reperfusion injury. Cardiovascular Research. 1998;38(2):291–300. doi: 10.1016/S0008-6363(98)00033-9.
    1. Verma S., Fedak P. W. M., Weisel R. D., et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation. 2002;105(20):2332–2336. doi: 10.1161/01.CIR.0000016602.96363.36.
    1. Yellon D. M., Hausenloy D. J. Myocardial reperfusion injury. The New England Journal of Medicine. 2007;357(11):1074–1135. doi: 10.1056/nejmra071667.
    1. Reffelmann T., Kloner R. A. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Research in Cardiology. 2006;101(5):359–372. doi: 10.1007/s00395-006-0615-2.
    1. Pagliaro P., Moro F., Tullio F., Perrelli M.-G., Penna C. Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxidants & Redox Signaling. 2011;14(5):833–850. doi: 10.1089/ars.2010.3245.
    1. Braunwald E. The war against heart failure: the Lancet lecture. The Lancet. 2015;385(9970):812–824. doi: 10.1016/s0140-6736(14)61889-4.
    1. Moran A. E., Forouzanfar M. H., Roth G. A., et al. The global burden of ischemic heart disease in 1990 and 2010: the global burden of disease 2010 study. Circulation. 2014;129(14):1493–1501. doi: 10.1161/circulationaha.113.004046.
    1. Bell R. M., Bøtker H. E., Carr R. D., et al. 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic Research in Cardiology. 2016;111, article 41 doi: 10.1007/s00395-016-0558-1.
    1. Hausenloy D. J., Yellon D. M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. Journal of Clinical Investigation. 2013;123(1):92–100. doi: 10.1172/jci62874.
    1. Greco C., Rosato S., D'Errigo P., Mureddu G. F., Lacorte E., Seccareccia F. Trends in mortality and heart failure after acute myocardial infarction in Italy from 2001 to 2011. International Journal of Cardiology. 2015;184(1):115–121. doi: 10.1016/j.ijcard.2015.01.073.
    1. Kalogeris T., Bao Y., Korthuis R. J. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology. 2014;2(1):702–714. doi: 10.1016/j.redox.2014.05.006.
    1. Buja L. M. Myocardial ischemia and reperfusion injury. Cardiovascular Pathology. 2005;14(4):170–175. doi: 10.1016/j.carpath.2005.03.006.
    1. Bonnemeier H., Wiegand U. K. H., Giannitsis E., et al. Temporal repolarization inhomogeneity and reperfusion arrhythmias in patients undergoing successful primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction: impact of admission troponin T. American Heart Journal. 2003;145(3):484–492. doi: 10.1067/mhj.2003.174.
    1. Baines C. P. How and when do myocytes die during ischemia and reperfusion: the late phase. Journal of Cardiovascular Pharmacology and Therapeutics. 2011;16(3-4):239–243. doi: 10.1177/1074248411407769.
    1. Zhao Z.-Q. Oxidative stress-elicited myocardial apoptosis during reperfusion. Current Opinion in Pharmacology. 2004;4(2):159–165. doi: 10.1016/j.coph.2003.10.010.
    1. Prasad A., Stone G. W., Holmes D. R., Gersh B. Reperfusion injury, microvascular dysfunction, and cardioprotection: the 'dark side' of reperfusion. Circulation. 2009;120(21):2105–2112. doi: 10.1161/circulationaha.108.814640.
    1. Turer A. T., Hill J. A. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. The American Journal of Cardiology. 2010;106(3):360–368. doi: 10.1016/j.amjcard.2010.03.032.
    1. Dirksen M. T., Laarman G. J., Simoons M. L., Duncker D. J. G. M. Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovascular Research. 2007;74(3):343–355. doi: 10.1016/j.cardiores.2007.01.014.
    1. McCafferty K., Forbes S., Thiemermann C., Yaqoob M. M. The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Disease Models and Mechanisms. 2014;7(12):1321–1333. doi: 10.1242/dmm.016741.
    1. Heide R. S. V., Steenbergen C. Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circulation Research. 2013;113(4):464–477. doi: 10.1161/circresaha.113.300765.
    1. Ferdinandy P., Hausenloy D. J., Heusch G., Baxter G. F., Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacological Reviews. 2014;66(4):1142–1174. doi: 10.1124/pr.113.008300.
    1. Abbott R., Cohen M. Medico-legal issues in cardiology. Cardiology in Review. 2013;21(5):222–228. doi: 10.1097/CRD.0b013e31828af110.
    1. Tan S. Y. Medical malpractice: a cardiovascular perspective. Cardiovascular Therapeutics. 2012;30(3):e140–e145. doi: 10.1111/j.1755-5922.2010.00254.x.
    1. Letavernier E., Zafrani L., Perez J., Letavernier B., Haymann J.-P., Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovascular Research. 2012;96(1):38–45. doi: 10.1093/cvr/cvs099.
    1. Inserte J., Hernando V., Garcia-Dorado D. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovascular Research. 2012;96(1):23–31. doi: 10.1093/cvr/cvs232.
    1. Garcia-Dorado D., Ruiz-Meana M., Inserte J., Rodriguez-Sinovas A., Piper H. M. Calcium-mediated cell death during myocardial reperfusion. Cardiovascular Research. 2012;94(2):168–180. doi: 10.1093/cvr/cvs116.
    1. Neuhof C., Neuhof H. Calpain system and its involvement in myocardial ischemia and reperfusion injury. World Journal of Cardiology. 2014;6(7):638–652. doi: 10.4330/wjc.v6.i7.638.
    1. Parameswaran S., Sharma R. K. Altered expression of calcineurin, calpain, calpastatin and HMWCaMBP in cardiac cells following ischemia and reperfusion. Biochemical and Biophysical Research Communications. 2014;443(2):604–609. doi: 10.1016/j.bbrc.2013.12.019.
    1. Perrin C., Ecarnot-Laubriet A., Vergely C., Rochette L. Calpain and caspase-3 inhibitors reduce infarct size and post-ischemic apoptosis in rat heart without modifying contractile recovery. Cellular and molecular biology (Noisy-le-Grand, France) 2003;49:OL497–OL505.
    1. Tissier S., Lancel S., Marechal X., et al. Calpain inhibitors improve myocardial dysfunction and inflammation induced by endotoxin in rats. Shock (Augusta, Ga.) 2004;21(4):352–357. doi: 10.1097/00024382-200404000-00010.
    1. Yoshikawa Y., Hagihara H., Ohga Y., et al. Calpain inhibitor-1 protects the rat heart from ischemia-reperfusion injury: analysis by mechanical work and energetics. American Journal of Physiology—Heart and Circulatory Physiology. 2005;288(4):H1690–H1698. doi: 10.1152/ajpheart.00666.2004.
    1. Neuhof C., Fabiunke V., Deibele K., et al. Reduction of myocardial infarction by calpain inhibitors A-705239 and A-705253 in isolated perfused rabbit hearts. Biological Chemistry. 2004;385(11):1077–1082. doi: 10.1515/BC.2004.139.
    1. Hernando V., Inserte J., Sartório C. L., Parra V. M., Poncelas-Nozal M., Garcia-Dorado D. Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. Journal of Molecular and Cellular Cardiology. 2010;49(2):271–279. doi: 10.1016/j.yjmcc.2010.02.024.
    1. Goll D. E., Thompson V. F., Li H., Wei W., Cong J. The calpain system. Physiological Reviews. 2003;83(3):731–801. doi: 10.1152/physrev.00029.2002.
    1. Jánossy J., Ubezio P., Apáti Á., Magócsi M., Tompa P., Friedrich P. Calpain as a multi-site regulator of cell cycle. Biochemical Pharmacology. 2004;67(8):1513–1521. doi: 10.1016/j.bcp.2003.12.021.
    1. Ono Y., Sorimachi H. Calpains: an elaborate proteolytic system. Biochimica et Biophysica Acta—Proteins and Proteomics. 2012;1824(1):224–236. doi: 10.1016/j.bbapap.2011.08.005.
    1. Moldoveanu T., Hosfield C. M., Lim D., Elce J. S., Jia Z., Davies P. L. A Ca2+ switch aligns the active site of calpain. Cell. 2002;108(5):649–660. doi: 10.1016/s0092-8674(02)00659-1.
    1. Seki S., Horikoshi K., Takeda H., et al. Effects of sustained low-flow ischemia and reperfusion on Ca2+ transients and contractility in perfused rat hearts. Molecular and Cellular Biochemistry. 2001;216(1-2):111–119. doi: 10.1023/a:1011067529272.
    1. Liu X., Vleet T. V., Schnellmann R. G. The role of calpain in oncotic cell death. Annual Review of Pharmacology and Toxicology. 2004;44:349–370. doi: 10.1146/annurev.pharmtox.44.101802.121804.
    1. Portbury A. L., Willis M. S., Patterson C. Tearin' up my heart: proteolysis in the cardiac sarcomere. Journal of Biological Chemistry. 2011;286(12):9929–9934. doi: 10.1074/jbc.r110.170571.
    1. Barta J., Tóth A., Édes I., et al. Calpain-1-sensitive myofibrillar proteins of the human myocardium. Molecular and Cellular Biochemistry. 2005;278(1-2):1–8. doi: 10.1007/s11010-005-1370-7.
    1. Sachse F. B., Torres N. S., Savio-Galimberti E., et al. Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circulation Research. 2012;110(4):588–597. doi: 10.1161/CIRCRESAHA.111.257428.
    1. Balijepalli R. C., Kamp T. J. Cardiomyocyte transverse tubule loss leads the way to heart failure. Future Cardiology. 2011;7(1):39–42. doi: 10.2217/fca.10.113.
    1. Crossman D. J., Ruygrok P. R., Soeller C., Cannell M. B. Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS ONE. 2011;6(3) doi: 10.1371/journal.pone.0017901.e17901
    1. Wu C.-Y. C., Chen B., Jiang Y.-P., et al. Calpain-dependent cleavage of junctophilin-2 and T-tubule remodeling in a mouse model of reversible heart failure. Journal of the American Heart Association. 2014;3(3) doi: 10.1161/jaha.113.000527.e000527
    1. Murphy R. M., Dutka T. L., Horvath D., Bell J. R., Delbridge L. M., Lamb G. D. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. Journal of Physiology. 2013;591(3):719–729. doi: 10.1113/jphysiol.2012.243279.
    1. Bajaj G., Sharma R. K. TNF-α-mediated cardiomyocyte apoptosis involves caspase-12 and calpain. Biochemical and Biophysical Research Communications. 2006;345(4):1558–1564. doi: 10.1016/j.bbrc.2006.05.059.
    1. Li Y., Arnold J. M. O., Pampillo M., Babwah A. V., Peng T. Taurine prevents cardiomyocyte death by inhibiting NADPH oxidase-mediated calpain activation. Free Radical Biology and Medicine. 2009;46(1):51–61. doi: 10.1016/j.freeradbiomed.2008.09.025.
    1. Li Y., Li Y., Feng Q., Arnold M., Peng T. Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes. Cardiovascular Research. 2009;84(1):100–110. doi: 10.1093/cvr/cvp189.
    1. Gottlieb R. A., Burleson K. O., Kloner R. A., Babior B. M., Engler R. L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. Journal of Clinical Investigation. 1994;94(4):1621–1628. doi: 10.1172/JCI117504.
    1. Saraste A., Pulkki K., Kallajoki M., Henriksen K., Parvinen M., Voipio-Pulkki L.-M. Apoptosis in human acute myocardial infarction. Circulation. 1997;95(2):320–323. doi: 10.1161/01.CIR.95.2.320.
    1. Freude B., Masters T. N., Robicsek F., et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. Journal of Molecular and Cellular Cardiology. 2000;32(2):197–208. doi: 10.1006/jmcc.1999.1066.
    1. Potz B. A., Sabe A. A., Abid M. R., Sellke F. W. Calpains and coronary vascular disease. Circulation Journal. 2016;80(1):4–10. doi: 10.1253/circj.cj-15-0997.
    1. Khalil P. N., Neuhof C., Huss R., et al. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. European Journal of Pharmacology. 2005;528(1–3):124–131. doi: 10.1016/j.ejphar.2005.10.032.
    1. Kudo-Sakamoto Y., Akazawa H., Ito K., et al. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. Journal of Biological Chemistry. 2014;289(28):19408–19419. doi: 10.1074/jbc.M114.567206.
    1. Bolli R., Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiological Reviews. 1999;79(2):609–634.
    1. Navarro-Yepes J., Burns M., Anandhan A., et al. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxidants and Redox Signaling. 2014;21(1):66–85. doi: 10.1089/ars.2014.5837.
    1. Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochemical Journal. 1996;313(1):17–29. doi: 10.1042/bj3130017.
    1. Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology. 2007;39(1):44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Bartosz G. Reactive oxygen species: destroyers or messengers? Biochemical Pharmacology. 2009;77(8):1303–1315. doi: 10.1016/j.bcp.2008.11.009.
    1. Auten R. L., Davis J. M. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric Research. 2009;66(2):121–127. doi: 10.1203/pdr.0b013e3181a9eafb.
    1. Thompson-Gorman S. L., Zweier J. L. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury. Journal of Biological Chemistry. 1990;265(12):6656–6663.
    1. Xia Y., Zweier J. L. Substrate control of free radical generation from xanthine oxidase in the postischemic heart. Journal of Biological Chemistry. 1995;270(32):18797–18803. doi: 10.1074/jbc.270.32.18797.
    1. Zorov D. B., Juhaszova M., Yaniv Y., Nuss H. B., Wang S., Sollott S. J. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovascular Research. 2009;83(2):213–225. doi: 10.1093/cvr/cvp151.
    1. Venditti P., Masullo P., Di Meo S. Effects of myocardial ischemia and reperfusion on mitochondrial function and susceptibility to oxidative stress. Cellular and Molecular Life Sciences. 2001;58(10):1528–1537. doi: 10.1007/PL00000793.
    1. Arroyo C. M., Kramer J. H., Dickens B. F., Weglicki W. B. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Letters. 1987;221(1):101–104. doi: 10.1016/0014-5793(87)80360-5.
    1. Kurian G. A., Rajagopal R., Vedantham S., Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxidative Medicine and Cellular Longevity. 2016;2016:14. doi: 10.1155/2016/1656450.1656450
    1. Marczin N., El-Habashi N., Hoare G. S., Bundy R. E., Yacoub M. Antioxidants in myocardial ischemia-reperfusion injury: therapeutic potential and basic mechanisms. Archives of Biochemistry and Biophysics. 2003;420(2):222–236. doi: 10.1016/j.abb.2003.08.037.
    1. Dhalla N. S., Elmoselhi A. B., Hata T., Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovascular Research. 2000;47(3):446–456. doi: 10.1016/S0008-6363(00)00078-X.
    1. Becker L. B. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovascular Research. 2004;61(3):461–470. doi: 10.1016/j.cardiores.2003.10.025.
    1. Tang X.-L., Takano H., Rizvi A., et al. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. American Journal of Physiology—Heart and Circulatory Physiology. 2002;282(1):H281–H291.
    1. Siu K. L., Lotz C., Ping P., Cai H. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS. Journal of Molecular and Cellular Cardiology. 2015;78:174–185. doi: 10.1016/j.yjmcc.2014.07.005.
    1. Wink D. A., Hanbauer I., Grisham M. B., et al. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Current Topics in Cellular Regulation. 1996;34:159–187. doi: 10.1016/s0070-2137(96)80006-9.
    1. Moncada S., Higgs A. The L-arginine–nitric oxide pathway. The New England Journal of Medicine. 1993;329(27):2002–2012. doi: 10.1056/nejm199312303292706.
    1. Jones S. P., Bolli R. The ubiquitous role of nitric oxide in cardioprotection. Journal of Molecular and Cellular Cardiology. 2006;40(1):16–23. doi: 10.1016/j.yjmcc.2005.09.011.
    1. Elrod J. W., Greer J. J. M., Bryan N. S., et al. Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(7):1517–1523. doi: 10.1161/01.ATV.0000224324.52466.e6.
    1. Drapier - J.-C., Pellat C., Henry Y. Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. Journal of Biological Chemistry. 1991;266(16):10162–10167.
    1. Lancaster J. R., Jr., Hibbs J. B., Jr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(3):1223–1227. doi: 10.1073/pnas.87.3.1223.
    1. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620.
    1. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Archives of Biochemistry and Biophysics. 1991;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7.
    1. van der Vliet A., O'Neill C. A., Halliwell B., Cross C. E., Kaur H. Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Letters. 1994;339(1-2):89–92. doi: 10.1016/0014-5793(94)80391-9.
    1. Thomas D. D., Ridnour L. A., Isenberg J. S., et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radical Biology and Medicine. 2008;45(1):18–31. doi: 10.1016/j.freeradbiomed.2008.03.020.
    1. Hall C. N., Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide—Biology and Chemistry. 2009;21(2):92–103. doi: 10.1016/j.niox.2009.07.002.
    1. Zhang J., Cai H. Netrin-1 prevents ischemia/reperfusion-induced myocardial infarction via a DCC/ERK1/2/eNOSs1177/NO/DCC feed-forward mechanism. Journal of Molecular and Cellular Cardiology. 2010;48(6):1060–1070. doi: 10.1016/j.yjmcc.2009.11.020.
    1. Lee M. Y., Griendling K. K. Redox signaling, vascular function, and hypertension. Antioxidants and Redox Signaling. 2008;10(6):1045–1059. doi: 10.1089/ars.2007.1986.
    1. West M. B., Rokosh G., Obal D., et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation. 2008;118(19):1970–1978. doi: 10.1161/CIRCULATIONAHA.108.791533.
    1. Heusch P., Aker S., Boengler K., et al. Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. American Journal of Physiology—Heart and Circulatory Physiology. 2010;299(2):H446–H453. doi: 10.1152/ajpheart.01034.2009.
    1. Soskić S. S., Dobutović B. D., Sudar E. M., et al. Regulation of inducible Nitric Oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovascular Medicine Journal. 2011;5(1):153–163. doi: 10.2174/1874192401105010153.
    1. Zweier J. L., Fertmann J., Wei G. Nitric oxide and peroxynitrite in postischemic myocardium. Antioxidants and Redox Signaling. 2001;3(1):11–22. doi: 10.1089/152308601750100443.
    1. Yasmin W., Strynadka K. D., Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovascular Research. 1997;33(2):422–432. doi: 10.1016/S0008-6363(96)00254-4.
    1. Ziolo M. T., Bers D. M. The real estate of NOS signaling: location, location, location. Circulation Research. 2003;92(12):1279–1281. doi: 10.1161/.
    1. Kohr M. J., Roof S. R., Zweier J. L., Ziolo M. T. Modulation of myocardial contraction by peroxynitrite. Frontiers in Physiology. 2012;3, article 468 doi: 10.3389/fphys.2012.00468.
    1. Laguens R. P., Gómez-Dumm C. L. Fine structure of myocardial mitochondria in rats after exercise for one-half to two hours. Circulation Research. 1967;21(3):271–279. doi: 10.1161/01.res.21.3.271.
    1. Kane J. J., Murphy M. L., Bisset J. K., deSoyza N., Doherty J. E., Straub K. D. Mitochondrial function, oxygen extraction, epicardial S-T segment changes and tritiated digoxin distribution after reperfusion of ischemic myocardium. The American Journal of Cardiology. 1975;36(2):218–224. doi: 10.1016/0002-9149(75)90530-5.
    1. Jennings R. B., Ganote C. E. Mitochondrial structure and function in acute myocardial ischemic injury. Circulation Research. 1976;38(5):80–91.
    1. Capetanaki Y. Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends in Cardiovascular Medicine. 2002;12(8):339–348. doi: 10.1016/s1050-1738(02)00184-6.
    1. Adam-Vizi V., Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends in Pharmacological Sciences. 2006;27(12):639–645. doi: 10.1016/j.tips.2006.10.005.
    1. Andreyev A. Y., Kushnareva Y. E., Starkov A. A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 2005;70(2):200–214. doi: 10.1007/s10541-005-0102-7.
    1. Inoue M., Sato E. F., Nishikawa M., et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Current Medicinal Chemistry. 2003;10(23):2495–2505. doi: 10.2174/0929867033456477.
    1. Murphy M. P. How mitochondria produce reactive oxygen species. Biochemical Journal. 2009;417(1):1–13. doi: 10.1042/BJ20081386.
    1. Starkov A. A. The role of mitochondria in reactive oxygen species metabolism and signaling. Annals of the New York Academy of Sciences. 2008;1147:37–52. doi: 10.1196/annals.1427.015.
    1. Tsutsui H., Kinugawa S., Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovascular Research. 2009;81(3):449–456. doi: 10.1093/cvr/cvn280.
    1. Ong S.-B., Samangouei P., Kalkhoran S. B., Hausenloy D. J. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology. 2015;78:23–34. doi: 10.1016/j.yjmcc.2014.11.005.
    1. Hausenloy D. J., Yellon D. M. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. Journal of Molecular and Cellular Cardiology. 2003;35(4):339–341. doi: 10.1016/s0022-2828(03)00043-9.
    1. Heusch G., Boengler K., Schulz R. Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Research in Cardiology. 2010;105(2):151–154. doi: 10.1007/s00395-009-0080-9.
    1. Halestrap A. P., Richardson A. P. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology. 2015;78:129–141. doi: 10.1016/j.yjmcc.2014.08.018.
    1. Di Lisa F., Carpi A., Giorgio V., Bernardi P. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochimica et Biophysica Acta—Molecular Cell Research. 2011;1813(7):1316–1322. doi: 10.1016/j.bbamcr.2011.01.031.
    1. Weiss J. N., Korge P., Honda H. M., Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circulation Research. 2003;93(4):292–301. doi: 10.1161/01.RES.0000087542.26971.D4.
    1. Morciano G., Giorgi C., Bonora M., et al. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology. 2015;78:142–153. doi: 10.1016/j.yjmcc.2014.08.015.
    1. Halestrap A. P., Clarke S. J., Javadov S. A. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovascular Research. 2004;61(3):372–385. doi: 10.1016/s0008-6363(03)00533-9.
    1. Murphy E., Steenbergen C. What makes the mitochondria a killer? Can we condition them to be less destructive? Biochimica et Biophysica Acta—Molecular Cell Research. 2011;1813(7):1302–1308. doi: 10.1016/j.bbamcr.2010.09.003.
    1. Griffiths E. J., Halestrap A. P. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochemical Journal. 1995;307(1):93–98. doi: 10.1042/bj3070093.
    1. Kandasamy A. D., Chow A. K., Ali M. A. M., Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovascular Research. 2010;85(3):413–423. doi: 10.1093/cvr/cvp268.
    1. Viappiani S., Nicolescu A. C., Holt A., et al. Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochemical Pharmacology. 2009;77(5):826–834. doi: 10.1016/j.bcp.2008.11.004.
    1. Okamoto T., Akaike T., Sawa T., Miyamoto Y., Van der Vliet A., Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. The Journal of Biological Chemistry. 2001;276(31):29596–29602. doi: 10.1074/jbc.m102417200.
    1. Gu Z., Kaul M., Yan B., et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297(5584):1186–1190. doi: 10.1126/science.1073634.
    1. Sariahmetoglu M., Crawford B. D., Leon H., et al. Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB Journal. 2007;21(10):2486–2495. doi: 10.1096/fj.06-7938com.
    1. Sawicki G., Salas E., Murat J., Miszta-Lane H., Radomski M. W. Release of gelatinase A during platelet activation mediates aggregation. Nature. 1997;386(6625):616–619. doi: 10.1038/386616a0.
    1. Fernandez-Patron C., Radomski M. W., Davidge S. T. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circulation Research. 1999;85(10):906–911. doi: 10.1161/01.RES.85.10.906.
    1. Fernandez-Patron C., Stewart K. G., Zhang Y., Koivunen E., Radomski M. W., Davidge S. T. Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circulation Research. 2000;87(8):670–676. doi: 10.1161/01.RES.87.8.670.
    1. Cheung P.-Y., Sawicki G., Wozniak M., Wang W., Radomski M. W., Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101(15):1833–1839. doi: 10.1161/01.CIR.101.15.1833.
    1. Zhao Z.-Q., Nakamura M., Wang N.-P., et al. Reperfusion induces myocardial apoptotic cell death. Cardiovascular Research. 2000;45(3):651–660. doi: 10.1016/S0008-6363(99)00354-5.
    1. Gao W. D., Atar D., Liu Y., Perez N. G., Murphy A. M., Marban E. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circulation Research. 1997;80(3):393–399.
    1. McDonough J. L., Arrell D. K., Van Eyk J. E. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circulation Research. 1999;84(1):9–20. doi: 10.1161/01.RES.84.1.9.
    1. Solaro R. J., Rarick H. M. Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circulation Research. 1998;83(5):471–480. doi: 10.1161/01.res.83.5.471.
    1. Wang W., Schulze C. J., Suarez-Pinzon W. L., Dyck J. R. B., Sawicki G., Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106(12):1543–1549. doi: 10.1161/01.CIR.0000028818.33488.7B.
    1. Menon B., Singh M., Ross R. S., Johnson J. N., Singh K. β-Adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of β1 integrin signaling and mitochondrial pathway. American Journal of Physiology - Cell Physiology. 2006;290(1):C254–C261. doi: 10.1152/ajpcell.00235.2005.
    1. Menon B., Singh M., Singh K. Matrix metalloproteinases mediate β-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes. American Journal of Physiology—Cell Physiology. 2005;289(1):C168–C176. doi: 10.1152/ajpcell.00606.2004.
    1. Zhou H.-Z., Ma X., Gray M. O., et al. Transgenic MMP-2 expression induces latent cardiac mitochondrial dysfunction. Biochemical and Biophysical Research Communications. 2007;358(1):189–195. doi: 10.1016/j.bbrc.2007.04.094.
    1. Halade G. V., Jin Y.-F., Lindsey M. L. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacology and Therapeutics. 2013;139(1):32–40. doi: 10.1016/j.pharmthera.2013.03.009.
    1. Turner N. A., Porter K. E. Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. IUBMB Life. 2012;64(2):143–150. doi: 10.1002/iub.594.
    1. Xie Z., Singh M., Singh K. Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1β. Journal of Biological Chemistry. 2004;279(38):39513–39519. doi: 10.1074/jbc.M405844200.
    1. Lindsey M., Wedin K., Brown M. D., et al. Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation. 2001;103(17):2181–2187. doi: 10.1161/01.CIR.103.17.2181.
    1. McMillan W. D., Tamarina N. A., Cipollone M., et al. The relationship between MMP-9 expression and aortic diameter. Circulation. 1997;96:2228–2232.
    1. Heymans S., Luttun A., Nuyens D., et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Medicine. 1999;5(10):1135–1142. doi: 10.1038/13459.
    1. Rohde L. E., Ducharme A., Arroyo L. H., et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999;99(23):3063–3070. doi: 10.1161/01.CIR.99.23.3063.
    1. Ducharme A., Frantz S., Aikawa M., et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. Journal of Clinical Investigation. 2000;106(1):55–62. doi: 10.1172/JCI8768.
    1. Kelly D., Cockerill G., Ng L. L., et al. Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. European Heart Journal. 2007;28(6):711–718. doi: 10.1093/eurheartj/ehm003.
    1. Cleutjens J. P. M., Kandala J. C., Guarda E., Guntaka R. V., Weber K. T. Regulation of collagen degradation in the rat myocardium after infarction. Journal of Molecular and Cellular Cardiology. 1995;27(6):1281–1292. doi: 10.1016/S0022-2828(05)82390-9.
    1. Romanic A. M., Burns-Kurtis C. L., Gout B., Berrebi-Bertrand I., Ohlstein E. H. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sciences. 2001;68(7):799–814. doi: 10.1016/S0024-3205(00)00982-6.
    1. Danielsen C. C., Wiggers H., Andersen H. R. Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. Journal of Molecular and Cellular Cardiology. 1998;30(7):1431–1442. doi: 10.1006/jmcc.1998.0711.
    1. Lu L., Gunja-Smith Z., Frederick Woessner J., et al. Matrix metalloproteinases and collagen ultrastructure in moderate myocardial ischemia and reperfusion in vivo. American Journal of Physiology - Heart and Circulatory Physiology. 2000;279(2):H601–H609.
    1. Romanic A. M., Harrison S. M., Bao W., et al. Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovascular Research. 2002;54(3):549–558. doi: 10.1016/S0008-6363(02)00254-7.
    1. Etoh T., Joffs C., Deschamps A. M., et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. American Journal of Physiology—Heart and Circulatory Physiology. 2001;281(3):H987–H994.
    1. DeLeon-Pennell K. Y., Altara R., Yabluchanskiy A., Modesti A., Lindsey M. L. The circular relationship between matrix metalloproteinase-9 and inflammation following myocardial infarction. IUBMB Life. 2015;67(8):611–618. doi: 10.1002/iub.1408.
    1. Yabluchanskiy A., Ma Y., Iyer R. P., Hall M. E., Lindsey M. L. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology. 2013;28(6):391–403. doi: 10.1152/physiol.00029.2013.
    1. Braunwald E. The rise of cardiovascular medicine. European Heart Journal. 2012;33(7):838–845. doi: 10.1093/eurheartj/ehr452.
    1. Van Der Weg K., Kuijt W. J., Tijssen J. G. P., et al. Prospective evaluation of where reperfusion ventricular arrhythmia ‘bursts’ fit into optimal reperfusion in STEMI. International Journal of Cardiology. 2015;195:136–142. doi: 10.1016/j.ijcard.2015.05.106.
    1. Terkelsen C. J., Sørensen J. T., Kaltoft A. K., et al. Prevalence and significance of accelerated idioventricular rhythm in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. American Journal of Cardiology. 2009;104(12):1641–1646. doi: 10.1016/j.amjcard.2009.07.037.
    1. Zaitsev A. V., Warren M. D. Mechanisms of ischemic ventricular fibrillation. In: Zipes D. P., Jalife J., editors. Cardiac Electrophysiology: From Cell to Bedside. 5. Philadelphia, Pa, USA: Saunders; 2009.
    1. Wit A. L., Janse M. J. Reperfusion arrhythmias and sudden cardiac death. Circulation Research. 2001;89(9):741–743.
    1. Zhao G., Gao H., Qiu J., Lu W., Wei X. The molecular mechanism of protective effects of grape seed proanthocyanidin extract on reperfusion arrhythmias in rats in vivo. Biological and Pharmaceutical Bulletin. 2010;33(5):759–767. doi: 10.1248/bpb.33.759.
    1. Moens A. L., Claeys M. J., Timmermans J. P., Vrints C. J. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology. 2005;100(2):179–190. doi: 10.1016/j.ijcard.2004.04.013.
    1. Brown T. W., McCarthy M. L., Kelen G. D., Levy F. An epidemiologic study of closed emergency department malpractice claims in a national database of physician malpractice insurers. Academic Emergency Medicine. 2010;17(5):553–560. doi: 10.1111/j.1553-2712.2010.00729.x.
    1. Mangalmurti S., Seabury S. A., Chandra A., Lakdawalla D., Oetgen W. J., Jena A. B. Medical professional liability risk among US cardiologists. American Heart Journal. 2014;167(5):690–696. doi: 10.1016/j.ahj.2014.02.007.
    1. Oetgen W. J., Parikh P. D., Cacchione J. G., et al. Characteristics of medical professional liability claims in patients with cardiovascular diseases. The American Journal of Cardiology. 2010;105(5):745–752. doi: 10.1016/j.amjcard.2009.10.072.
    1. Karhunen J. P., Karhunen P. J., Raivio P. M., Sihvo E. I. T., Vainikka T. L. S., Salminen U.-S. Medico-legal autopsy in postoperative hemodynamic collapse following coronary artery bypass surgery. Forensic Science, Medicine, and Pathology. 2011;7(1):9–13. doi: 10.1007/s12024-010-9189-2.
    1. Whittle J., Conigliaro J., Good C. B., Kelley M. E., Skanderson M. Understanding of the benefits of coronary revascularization procedures among patients who are offered such procedures. American Heart Journal. 2007;154(4):662–668. doi: 10.1016/j.ahj.2007.04.065.
    1. Fröhlich G. M., Meier P., White S. K., Yellon D. M., Hausenloy D. J. Myocardial reperfusion injury: looking beyond primary PCI. European Heart Journal. 2013;34(23):1714–1722. doi: 10.1093/eurheartj/eht090.
    1. Kren L., Meluzin J., Pavlovsky Z., et al. Experimental model of myocardial infarction: histopathology and reperfusion damage revisited. Pathology Research and Practice. 2010;206(9):647–650. doi: 10.1016/j.prp.2010.03.008.
    1. Frank A., Bonney M., Bonney S., Weitzel L., Koeppen M., Eckle T. Myocardial ischemia reperfusion injury—from basic science to clinical bedside. Seminars in Cardiothoracic and Vascular Anesthesia. 2012;16(3):123–132. doi: 10.1177/1089253211436350.
    1. Perricone A. J., Vander Heide R. S. Novel therapeutic strategies for ischemic heart disease. Pharmacological Research. 2014;89:36–45. doi: 10.1016/j.phrs.2014.08.004.
    1. Sluijter J. P., Condorelli G., Davidson S. M., et al. Novel therapeutic strategies for cardioprotection. Pharmacology & Therapeutics. 2014;144(1):60–70.
    1. Morin D., Musman J., Pons S., Berdeaux A., Ghaleh B. Mitochondrial translocator protein (TSPO): from physiology to cardioprotection. Biochemical Pharmacology. 2016;105:1–13. doi: 10.1016/j.bcp.2015.12.003.
    1. James M. L., Selleri S., Kassiou M. Development of ligands for the peripheral benzodiazepine receptor. Current Medicinal Chemistry. 2006;13(17):1991–2001. doi: 10.2174/092986706777584979.
    1. Šileikyte J., Petronilli V., Zulian A., et al. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor) The Journal of Biological Chemistry. 2011;286(2):1046–1053. doi: 10.1074/jbc.m110.172486.
    1. Tsamatsoulis M., Kapelios C. J., Katsaros L., et al. Cardioprotective effects of intracoronary administration of 4-chlorodiazepam in small and large animal models of ischemia-reperfusion. International Journal of Cardiology. 2016;224:90–95. doi: 10.1016/j.ijcard.2016.09.011.
    1. Spartalis E. Role of platelet-rich plasma in ischemic heart disease: an update on the latest evidence. World Journal of Cardiology. 2015;7(10):665–670. doi: 10.4330/wjc.v7.i10.665.
    1. Mishra A., Velotta J., Brinton T. J., et al. RevaTen platelet-rich plasma improves cardiac function after myocardial injury. Cardiovascular Revascularization Medicine. 2011;12(3):158–163. doi: 10.1016/j.carrev.2010.08.005.
    1. Li X.-H., Zhou X., Zeng S., et al. Effects of intramyocardial injection of platelet-rich plasma on the healing process after myocardial infarction. Coronary Artery Disease. 2008;19(5):363–370. doi: 10.1097/MCA.0b013e3282fc6165.
    1. Wehberg K. E., Answini G., Wood D., et al. Intramyocardial injection of autologous platelet-rich plasma combined with transmyocardial revascularization. Cell Transplantation. 2009;18(3):353–359. doi: 10.3727/096368909788534988.
    1. Nahrendorf M., Weissleder R., Ertl G. Does FXIII deficiency impair wound healing after myocardial infarction? PLoS ONE. 2006;1(1, article e48) doi: 10.1371/journal.pone.0000048.
    1. Nahrendorf M., Aikawa E., Figueiredo J.-L., et al. Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. European Heart Journal. 2008;29(4):445–454. doi: 10.1093/eurheartj/ehm558.
    1. Vanhoutte D., Heymans S. Factor XIII: the cement of the heart after myocardial infarction? European Heart Journal. 2008;29(4):427–428. doi: 10.1093/eurheartj/ehm610.
    1. Hoppe B. Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation. Thrombosis and Haemostasis. 2014;112(4):649–658. doi: 10.1160/TH14-01-0085.
    1. Gemmati D., Zeri G., Orioli E., et al. Factor XIII-A dynamics in acute myocardial infarction: a novel prognostic biomarker? Thrombosis and Haemostasis. 2015;114(1):123–132. doi: 10.1160/th14-11-0952.
    1. Bulluck H., Yellon D. M., Hausenloy D. J. Reducing myocardial infarct size: challenges and future opportunities. Heart. 2016;102(5):341–348. doi: 10.1136/heartjnl-2015-307855.
    1. Dominguez-Rodriguez A., Abreu-Gonzalez P., Reiter R. J. Cardioprotection and pharmacological therapies in acute myocardial infarction: challenges in the current era. World Journal of Cardiology. 2014;6(3):100–106. doi: 10.4330/wjc.v6.i3.100.
    1. Buja L. M., Weerasinghe P. Unresolved issues in myocardial reperfusion injury. Cardiovascular Pathology. 2010;19(1):29–35. doi: 10.1016/j.carpath.2008.10.001.

Source: PubMed

3
Tilaa