Olive Leaf Extract Modulates Quorum Sensing Genes and Biofilm Formation in Multi-Drug Resistant Pseudomonas aeruginosa

Nazly R El-Sayed, Reham Samir, Lina Jamil M Abdel-Hafez, Mohammed A Ramadan, Nazly R El-Sayed, Reham Samir, Lina Jamil M Abdel-Hafez, Mohammed A Ramadan

Abstract

Biofilm acts as a complex barrier against antibiotics. In this study, we investigated the inhibitory activities of Olea europaea (olive) leaves Camellia sinensis (green tea), Styrax benzoin, Ocimum basilicum, Humulus lupulus, Ruta graveolens, and Propolis extracts on the biofilm formation, pyocyanin production, and twitching motility of Pseudomonas aeruginosa isolates. Moreover, we investigated the effect of olive leaf extract on the transcription of some biofilm related genes. A total of 204 isolates of Pseudomonas were collected from different Egyptian hospitals. A susceptibility test, carried out using the disc diffusion method, revealed that 49% of the isolates were multidrug-resistant. More than 90% of the isolates were biofilm-forming, of which 26% were strong biofilm producers. At subinhibitory concentrations, green tea and olive leaf extracts had the highest biofilm inhibitory effects with 84.8% and 82.2%, respectively. The expression levels of lasI, lasR, rhlI, and rhlR treated with these extracts were significantly reduced (p < 0.05) by around 97-99% compared to untreated isolates. This study suggests the ability of olive leaf extract to reduce the biofilm formation and virulence factor production of P. aeruginosa through the down regulation of quorum sensing (QS) genes. This may help in reducing our dependence on antibiotics and to handle biofilm-related infections of opportunistic pathogens more efficiently.

Keywords: Pseudomonas; biofilm; green tea; olive leaves; quorum sensing inhibitors; real-time RT-PCR.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Effect of different herbal extracts on biofilm formation of P. aeruginosa. Bar chart showing the absorbance of P. aeruginosa C21 and E81 in absence and presence of the sub-MIC of Camellia sinensis (3.125 mg/mL), Olea europaea (6.25 mg/mL), Styrax benzoin (12.5 mg/mL), Humulus lupulus (6.25 mg/mL), Ocimum basilicum (6.25 mg/mL), Propolis (6.25 mg/mL), and Ruta graveolens (12.5 mg/mL). Biofilm formation was evaluated using the microtiter plate method. Data are an average of three independent experiments. The results are presented by the mean ± SD. ns = nonsignificant; * = p < 0.05; *** = p < 0.001: significance was compared to the respective control.
Figure 2
Figure 2
Effect of different herbal extracts on twitching motility of P. aeruginosa. Bar chart showing the percent inhibition of C21 and E81 twitching motility in the absence and presence of herbal extracts Camellia sinensis (3.125 mg/mL), Olea europaea (6.25 mg/mL), Styrax benzoin (12.5 mg/mL), Humulus lupulus (6.25 mg/mL), Ocimum basilicum (6.25 mg/mL), Propolis (6.25 mg/mL), and Ruta graveolens (12.5 mg/mL). Data are an average of three independent experiments. The results are presented by the mean ± SD. ns = nonsignificant; ** = p < 0.01; *** = p < 0.001: significance was compared to the respective control.
Figure 3
Figure 3
Effect of different herbal extracts on pyocyanin production of P. aeruginosa. Bar chart showing percent inhibition of C21 and E81 pyocyanin production in the absence and presence of herbal extracts Camellia sinensis (3.125 mg/mL), Olea europaea (6.25 mg/mL), Styrax benzoin (12.5 mg/mL), Humulus lupulus (6.25 mg/mL), Ocimum basilicum (6.25 mg/mL), Propolis (6.25 mg/mL), and Ruta graveolens (12.5 mg/mL). Pyocyanin production was evaluated by the chloroform-HCl extraction method. Data are an average of three independent experiments. The results are presented by the mean ± SD. ns = nonsignificant; * = p < 0.05; *** = p < 0.001: significance was compared to the respective control.
Figure 4
Figure 4
Effect of Camellia sinensis and Olea europaea extracts on the transcription of quorum sensing (QS)-regulated genes of P. aeruginosaC21. Bar chart of the qRT-PCR analysis representing the relative transcription levels of lasI, lasR, rhlI, and rhlR genes treated with sub-MIC levels of Camellia sinensis (3.125 mg/mL) and Olea europaea (6.25 mg/mL), normalized with the reference gene 5s RNA and compared to the untreated control. The error bars indicate the standard deviations of three replicates. **** = p < 0.0001: significance was compared to the respective control.
Figure 5
Figure 5
Effect of Camellia sinensis and Olea europaea extracts on the expression of QS-regulated genes of P. aeruginosa (E81). Bar chart of the qRT-PCR analysis representing the relative transcription levels of lasI, lasR, rhlI, and rhlR genes treated with sub-MIC levels of Camellia sinensis (3.125 mg/mL) and Olea europaea (6.25 mg/mL), normalized with the reference gene 5s RNA and compared to the untreated control. The error bars indicate the standard deviations of three replicates. **** = p < 0.0001: significance was compared to the respective control.

References

    1. Kierbel A., Gassama-Diagne A., Rocha C., Radoshevich L., Olson J., Mostov K., Engel J. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J. Cell Biol. 2007;177:21–27. doi: 10.1083/jcb.200605142.
    1. Mehrad B., Clark N.M., Zhanel G.G., Lynch III J.P. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest. 2015;147:1413–1421. doi: 10.1378/chest.14-2171.
    1. Sanford J.A., Gallo R.L. Functions of the skin microbiota in health and disease. Semin. Immunol. 2013;25:370–377. doi: 10.1016/j.smim.2013.09.005.
    1. McDermott C., Chess-Williams R., Mills K., Kang S., Farr S., Grant G., Perkins A., Davey A., Anoopkumar-Dukie S. Alterations in acetylcholine, PGE2 and IL6 release from urothelial cells following treatment with pyocyanin and lipopolysaccharide. Toxicol. Vitro Intern. J. Publ. Assoc. BIBRA. 2013;27:1693–1698. doi: 10.1016/j.tiv.2013.04.015.
    1. Guttenplan S.B., Kearns D.B. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 2013;37:849–871. doi: 10.1111/1574-6976.12018.
    1. Costerton J.W., Cheng K., Geesey G.G., Ladd T.I., Nickel J.C., Dasgupta M., Marrie T.J. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251.
    1. Hassett D.J., Korfhagen T.R., Irvin R.T., Schurr M.J., Sauer K., Lau G.W., Sutton M.D., Yu H., Hoiby N. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: Insights into pathogenic processes and treatment strategies. Expert. Opin. Ther. Targets. 2010;14:117–130. doi: 10.1517/14728220903454988.
    1. Su S., Hassett D.J. Anaerobic Pseudomonas aeruginosa and other obligately anaerobic bacterial biofilms growing in the thick airway mucus of chronically infected cystic fibrosis patients: An emerging paradigm or “Old Hat”? Expert. Opin. Ther. Targets. 2012;16:859–873. doi: 10.1517/14728222.2012.708025.
    1. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. 2010;35:322–332. doi: 10.1016/j.ijantimicag.2009.12.011.
    1. Sugano M., Morisaki H., Negishi Y., Endo-Takahashi Y., Kuwata H., Miyazaki T., Yamamoto M. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms. J. Liposome Res. 2016;26:156–162. doi: 10.3109/08982104.2015.1063648.
    1. Dworkin M., Falkow S., Rosenberg E., Schleifer K., Stackebrandt E. The Prokaryotes: Vol. 6: Proteobacteria: Gamma Subclass. Springer; New York, NY, USA: 2006.
    1. Kazmierczak B.I., Schniederberend M., Jain R. Cross-regulation of Pseudomonas motility systems: The intimate relationship between flagella, pili and virulence. Curr. Opin. Microbiol. 2015;28:78–82. doi: 10.1016/j.mib.2015.07.017.
    1. Mattick J.S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 2002;56:289–314. doi: 10.1146/annurev.micro.56.012302.160938.
    1. Wagner S., Sommer R., Hinsberger S., Lu C., Hartmann R.W., Empting M., Titz A. Novel strategies for the treatment of Pseudomonas aeruginosa infections. J. Med. Chem. 2016;59:5929–5969.
    1. Lee J., Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6:26–41. doi: 10.1007/s13238-014-0100-x.
    1. Papenfort K., Bassler B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016;14:576–588. doi: 10.1038/nrmicro.2016.89.
    1. Hurley M.N., Cámara M., Smyth A.R. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur. Respir. J. 2012;40:1014–1023. doi: 10.1183/09031936.00042012.
    1. Yan S., Wu G. Can Biofilm Be Reversed Through Quorum Sensing in Pseudomonas aeruginosa? Front. Microbiol. 2019;10:1582. doi: 10.3389/fmicb.2019.01582.
    1. Ouyang J., Sun F., Feng W., Sun Y., Qiu X., Xiong L., Liu Y., Chen Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol. 2016;120:966–974. doi: 10.1111/jam.13073.
    1. Rajkumari J., Borkotoky S., Reddy D., Mohanty S.K., Kumavath R., Murali A., Suchiang K., Busi S. Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: Insights from in vitro, in vivo and in silico studies. Microbiol. Res. 2019;226:19–26. doi: 10.1016/j.micres.2019.05.001.
    1. Muslim S.N., Kadmy I.M.A., Ali A.N.M., Salman B.K., Ahmad M., Khazaal S.S., Hussein N.H., Muslim S.N. Chitosan extracted from Aspergillus flavus shows synergistic effect, eases quorum sensing mediated virulence factors and biofilm against nosocomial pathogen Pseudomonas aeruginosa. Int. J. Biol. Macromol. 2018;107:52–58. doi: 10.1016/j.ijbiomac.2017.08.146.
    1. Bjarnsholt T. The role of bacterial biofilms in chronic infections. Apmis. 2013;121:1–58. doi: 10.1111/apm.12099.
    1. Zhong L., Ravichandran V., Zhang N., Wang H., Bian X., Zhang Y., Li A. Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. Int. J. Mol. Sci. 2020;21:2190. doi: 10.3390/ijms21062190.
    1. Nogueira J.W.A., Costa R.A., da Cunha M.T., Cavalcante T.T.A. Antibiofilm activity of natural substances derived from plants. Afr. J. Microbiol. Res. 2017;11:1051–1060.
    1. Hnamte S., Parasuraman P., Ranganathan S., Ampasala D.R., Reddy D., Kumavath R.N., Suchiang K., Mohanty S.K., Busi S. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: In vitro, in vivo and in silico approach. Microb. Pathog. 2019;131:128–134. doi: 10.1016/j.micpath.2019.04.005.
    1. Paczkowski J.E., Mukherjee S., McCready A.R., Cong J.-P., Aquino C.J., Kim H., Henke B.R., Smith C.D., Bassler B.L. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 2017;292:4064–4076. doi: 10.1074/jbc.M116.770552.
    1. Koehn F.E., Carter G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005;4:206–220. doi: 10.1038/nrd1657.
    1. Kostylev M., Kim D.Y., Smalley N.E., Salukhe I., Greenberg E.P., Dandekar A.A. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc. Natl. Acad. Sci. USA. 2019;116:7027–7032. doi: 10.1073/pnas.1819796116.
    1. Malgaonkar A., Nair M. Quorum sensing in Pseudomonas aeruginosa mediated by RhlR is regulated by a small RNA PhrD. Sci. Rep. 2019;9:432. doi: 10.1038/s41598-018-36488-9.
    1. CLSI . Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2016. CLSI Supplement M100S.
    1. Hauser A.R. Pseudomonas aeruginosa: So many virulence factors, so little time. Crit. Care Med. 2011;39:2193–2194. doi: 10.1097/CCM.0b013e318221742d.
    1. Paphitou N.I. Antimicrobial resistance: Action to combat the rising microbial challenges. Int. J. Antimicrob. Agents. 2013;42:S25–S28. doi: 10.1016/j.ijantimicag.2013.04.007.
    1. Yayan J., Ghebremedhin B., Rasche K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. PLoS ONE. 2015;10:e0139836. doi: 10.1371/journal.pone.0139836.
    1. Helal Z.H., Hafez H.M., Khan M.I. Susceptibility of Multidrug Resistant Pseudomonas Aeruginosa to Commonly Used Biocides and Its Association with Qac Efflux Pump Genes. Egypt. J. Med. Microbiol. 2015;38:1–10.
    1. Taha M.N., Saafan A.E., Ahmedy A., El Gebaly E., Khairalla A.S. Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1. J. Microbiol. 2019;57:618–625. doi: 10.1007/s12275-019-8548-2.
    1. Ghoneim E., Awad S., Khalil M. Prevalence of Multi-Drug Resistant Pseudomonas Spp. and Acinetobacter Spp. causing nosocomial infection in intensive care unit (ICU) of national liver institute. Egypt. J. Med. Microbiol. 2010;19:107–118.
    1. Abdelraheem W.M., Abdelkader A.E., Mohamed E.S., Mohammed M.S. Detection of biofilm formation and assessment of biofilm genes expression in different Pseudomonas aeruginosa clinical isolates. Meta Gene. 2020;23:100646. doi: 10.1016/j.mgene.2020.100646.
    1. El-Khashaab T.H., Erfan D.M., Kamal A., El-Moussely L.M., Ismail D.K. Pseudomonas aeruginosa biofilm formation and quorum sensing lasR gene in patients with wound infection. Egypt. J. Med. Microbiol. 2016;25:1–8. doi: 10.12816/0037098.
    1. Thilakavathy P., Priyan R.V., Jagatheeswari P., Charles J., Dhanalakshmi V., Lallitha S., Rajendran T., Divya B. Evaluation of ica gene in comparison with phenotypic methods for detection of biofilm production by coagulase negative staphylococci in a tertiary care hospital. J. Clin. Diagn. Res. 2015;9:DC16–DC19. doi: 10.7860/JCDR/2015/11725.6371.
    1. Perez L.R.R., Costa M., Freitas A.L.P.d., Barth A.L. Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Braz. J. Microbiol. 2011;42:476–479. doi: 10.1590/S1517-83822011000200011.
    1. Corehtash Z.G., Ahmad Khorshidi F.F., Akbari H., Aznaveh A.M. Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J. Microbiol. 2015;8:e22345.
    1. Brackman G., Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015;21:5–11. doi: 10.2174/1381612820666140905114627.
    1. Ahmed M.N., Porse A., Sommer M.O.A., Høiby N., Ciofu O. Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob. Agents Chemother. 2018;62:e00320-18. doi: 10.1128/AAC.00320-18.
    1. Heydari S., Eftekhar F. Biofilm formation and β-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J. Microbiol. 2015;8:e15514. doi: 10.5812/jjm.15514.
    1. Mishra S.K., Basukala P., Basukala O., Parajuli K., Pokhrel B.M., Rijal B.P. Detection of biofilm production and antibiotic resistance pattern in clinical isolates from indwelling medical devices. Curr. Microbiol. 2015;70:128–134. doi: 10.1007/s00284-014-0694-5.
    1. Al-Wrafy F., Brzozowska E., Górska S., Gamian A. Pathogenic factors of Pseudomonas aeruginosa—The role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig. Med. Dosw. 2017;71:78–91. doi: 10.5604/01.3001.0010.3792.
    1. Bai L., Takagi S., Ando T., Yoneyama H., Ito K., Mizugai H., Isogai E. Antimicrobial activity of tea catechin against canine oral bacteria and the functional mechanisms. J. Vet. Med. Sci. 2016;78:1439–1445. doi: 10.1292/jvms.16-0198.
    1. Souilem S., Fki I., Kobayashi I., Khalid N., Neves M.A., Isoda H., Sayadi S., Nakajima M. Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food Bioproc. Tech. 2017;10:229–248. doi: 10.1007/s11947-016-1834-7.
    1. Taweechaisupapong S., Ngaonee P., Patsuk P., Pitiphat W., Khunkitti W. Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. S. Afr. J. Bot. 2012;78:37–43. doi: 10.1016/j.sajb.2011.04.003.
    1. Yin H., Deng Y., Wang H., Liu W., Zhuang X., Chu W. Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa. Sci. Rep. 2015;5:16158. doi: 10.1038/srep16158.
    1. Qais F.A., Khan M.S., Ahmad I. Broad-spectrum quorum sensing and biofilm inhibition by green tea against gram-negative pathogenic bacteria: Deciphering the role of phytocompounds through molecular modelling. Microb. Pathog. 2019;126:379–392. doi: 10.1016/j.micpath.2018.11.030.
    1. Vandeputte O.M., Kiendrebeogo M., Rajaonson S., Diallo B., Mol A., El Jaziri M., Baucher M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2010;76:243–253. doi: 10.1128/AEM.01059-09.
    1. Najee H.B., Alkurjia D., Almahdawy O., Kamerzan C., Marutescu L., Gheorghe I., Marcela P., Chifiriuc M.C., Veronica L. Antimicrobial Activity of Olea europaea Fatty Oil against Multi-Drug Resistant and Biofilm Forming Microorganisms. Not. Sci. Biol. 2018;10:498–502. doi: 10.15835/nsb10410404.
    1. Edziri H., Jaziri R., Chehab H., Verschaeve L., Flamini G., Boujnah D., Hammami M., Aouni M., Mastouri M. A comparative study on chemical composition, antibiofilm and biological activities of leaves extracts of four Tunisian olive cultivars. Heliyon. 2019;5:e01604. doi: 10.1016/j.heliyon.2019.e01604.
    1. Martín-Vertedor D., Garrido M., Pariente J.A., Espino J., Delgado-Adámez J. Bioavailability of bioactive molecules from olive leaf extracts and its functional value. Phytother. Res. 2016;30:1172–1179. doi: 10.1002/ptr.5625.
    1. Vogel P., Machado I.K., Garavaglia J., Zani V.T., de Souza D., Dal Bosco S.M. Polyphenols benefits of olive leaf (Olea europaea L) to human health. Nutr. Hosp. 2015;31:1427–1433.
    1. Naveed S., Hameed A., Jaffery W.Z. Consumption of Green Tea in Professionals and Non-Professionals. Am. J. Drug Deliv. Ther. 2014;1:082–088.
    1. Ulrey R.K., Barksdale S.M., Zhou W., van Hoek M.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014;14:1–12. doi: 10.1186/1472-6882-14-499.
    1. Rasamiravaka T., Labtani Q., Duez P., El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Biomed. Res. Int. 2015;2015:1–17. doi: 10.1155/2015/759348.
    1. Luo J., Dong B., Wang K., Cai S., Liu T., Cheng X., Lei D., Chen Y., Li Y., Kong J. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS ONE. 2017;12:e0176883. doi: 10.1371/journal.pone.0176883.
    1. Luo J., Kong J.-L., Dong B.-Y., Huang H., Wang K., Wu L.-H., Hou C.-C., Liang Y., Li B., Chen Y.-Q. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways. Drug Des. Devel. Ther. 2016;10:183–203. doi: 10.2147/DDDT.S97221.
    1. Freeman D., Falkiner F., Keane C. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989;42:872–874. doi: 10.1136/jcp.42.8.872.
    1. Oliveira A., Maria de Lourdes R. Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Res. Notes. 2010;3:1–8. doi: 10.1186/1756-0500-3-260.
    1. Stepanović S., Vuković D., Hola V., BONAVENTURA G.D., Djukić S., Ćirković I., Ruzicka F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis. 2007;115:891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x.
    1. King E.O., Ward M.K., Raney D.E. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 1954;44:301–307.
    1. O’Toole G.A., Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998;30:295–304. doi: 10.1046/j.1365-2958.1998.01062.x.
    1. O’May C., Tufenkji N. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl. Environ. Microbiol. 2011;77:3061–3067. doi: 10.1128/AEM.02677-10.
    1. Savithramma N., Rao M.L., Bhumi G. Phytochemical screening of Thespesia populnea (L.) Soland and Tridax procumbens L. J. Chem. Pharm. Res. 2011;3:28–34.
    1. Ivanova V., Stefova M., Chinnici F. Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods. J. Serb. Chem. Soc. 2010;75:45–59. doi: 10.2298/JSC1001045I.
    1. Govan J.R., Brown A.R., Jones A.M. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol. 2007;2:153–164. doi: 10.2217/17460913.2.2.153.
    1. Christensen G.D., Simpson W.A., Bisno A.L., Beachey E.H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 1982;37:318–326. doi: 10.1128/IAI.37.1.318-326.1982.
    1. Essar D.W., Eberly L., Hadero A., Crawford I. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 1990;172:884–900. doi: 10.1128/JB.172.2.884-900.1990.
    1. Parai D., Banerjee M., Dey P., Chakraborty A., Islam E., Mukherjee S.K. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling. 2018;34:320–334. doi: 10.1080/08927014.2018.1437910.
    1. Lou Z., Letsididi K.S., Yu F., Pei Z., Wang H., Letsididi R. Inhibitive effect of eugenol and its nanoemulsion on quorum sensing–mediated virulence factors and biofilm formation by Pseudomonas aeruginosa. J. Food Prot. 2019;82:379–389. doi: 10.4315/0362-028X.JFP-18-196.
    1. Bahari S., Zeighami H., Mirshahabi H., Roudashti S., Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J. Glob. Antimicrob. Resist. 2017;10:21–28. doi: 10.1016/j.jgar.2017.03.006.

Source: PubMed

3
Tilaa