Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation): A Review

Salvatore Paiella, Roberto Salvia, Marco Ramera, Roberto Girelli, Isabella Frigerio, Alessandro Giardino, Valentina Allegrini, Claudio Bassi, Salvatore Paiella, Roberto Salvia, Marco Ramera, Roberto Girelli, Isabella Frigerio, Alessandro Giardino, Valentina Allegrini, Claudio Bassi

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC) accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA) and Irreversible Electroporation (IRE) are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on the use of these techniques have already demonstrated encouraging results in terms of safety and feasibility. Unfortunately, few studies on their efficacy are currently available. Even though some reports on the overall survival are encouraging, randomized studies are still required to corroborate these findings. This study provides an up-to-date overview and a thematic summary of the current available evidence on the application of RFA and IRE on PDAC, together with a comparison of the two procedures.

Figures

Figure 1
Figure 1
US-guided intraoperative application of RFA tip.
Figure 2
Figure 2
Example of a computerized model of the application of a 4-needle IRE technique. The yellow oval represents the tumor. Crossing blue beams represent the energy developed between each couple of probes.
Figure 3
Figure 3
(a) Preoperative CT-scan of a locally advanced pancreatic cancer. (b) Post-RFA perfusion CT-scan, showing a postablative area of decreased perfusion within the head of the pancreas. Copyright Chirurgia del Pancreas Verona.
Figure 4
Figure 4
(a) The tip for RFA is placed inside the tumor under US-guidance. (b) During RFA, the lesion becomes immediately hyperechoic.

References

    1. American Cancer Society. Cancer Facts & Figures 2013. American Cancer Society; 2013.
    1. Smeenk H. G., Tran T. C. K., Erdmann J., van Eijck C. H. J., Jeekel J. Survival after surgical management of pancreatic adenocarcinoma: does curative and radical surgery truly exist? Langenbeck's Archives of Surgery. 2005;390(2):94–103. doi: 10.1007/s00423-004-0476-9.
    1. Kleeff J., Reiser C., Hinz U., et al. Surgery for recurrent pancreatic ductal adenocarcinoma. Annals of Surgery. 2007;245(4):566–572. doi: 10.1097/01.sla.0000245845.06772.7d.
    1. Morganti A. G., Massaccesi M., La Torre G., et al. A systematic review of resectability and survival after concurrent chemoradiation in primarily unresectable pancreatic cancer. Annals of Surgical Oncology. 2010;17(1):194–205. doi: 10.1245/s10434-009-0762-4.
    1. Oettle H., Post S., Neuhaus P., et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. The Journal of the American Medical Association. 2007;297(3):267–277. doi: 10.1001/jama.297.3.267.
    1. Neoptolemos J. P., Stocken D. D., Friess H., et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. The New England Journal of Medicine. 2004;350(12):1200–1210. doi: 10.1056/nejmoa032295.
    1. Regine W. F., Winter K. A., Abrams R. A., et al. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. The Journal of the American Medical Association. 2008;299(9):1019–1026. doi: 10.1001/jama.299.9.1019.
    1. Lima C. M. R., Green M. R., Rotche R., et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. Journal of Clinical Oncology. 2004;22(18):3776–3783. doi: 10.1200/jco.2004.12.082.
    1. Poplin E., Feng Y., Berlin J., et al. Phase III, randomized study of gemcitabine and oxaliplatin versus gemcitabine (fixed-dose rate infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: a trial of the Eastern Cooperative Oncology Group. Journal of Clinical Oncology. 2009;27(23):3778–3785. doi: 10.1200/jco.2008.20.9007.
    1. Louvet C., Labianca R., Hammel P., et al. Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial. Journal of Clinical Oncology. 2005;23(15):3509–3516. doi: 10.1200/jco.2005.06.023.
    1. Heinemann V., Haas M., Boeck S. Neoadjuvant treatment of borderline resectable and non-resectable pancreatic cancer. Annals of Oncology. 2013;24(10):2484–2492. doi: 10.1093/annonc/mdt239.
    1. Huguet F., Girard N., Guerche C. S., Hennequin C., Mornex F., Azria D. Chemoradiotherapy in the management of locally advanced pancreatic carcinoma: a qualitative systematic review. Journal of Clinical Oncology. 2009;27(13):2269–2277. doi: 10.1200/jco.2008.19.7921.
    1. Rombouts S. J. E., Vogel J. A., van Santvoort H. C., et al. Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer. British Journal of Surgery. 2015;102(3):182–193. doi: 10.1002/bjs.9716.
    1. Sonnenberg E. M. W., Solbiati L. Tumor Ablation. New York, NY, USA: Springer; 2005.
    1. Keane M. G., Bramis K., Pereira S. P., Fusai G. K. Systematic review of novel ablative methods in locally advanced pancreatic cancer. World Journal of Gastroenterology. 2014;20(9):2267–2278. doi: 10.3748/wjg.v20.i9.2267.
    1. Girelli R., Frigerio I., Giardino A., et al. Results of 100 pancreatic radiofrequency ablations in the context of a multimodal strategy for stage III ductal adenocarcinoma. Langenbeck's Archives of Surgery. 2013;398(1):63–69. doi: 10.1007/s00423-012-1011-z.
    1. Giardino A., Girelli R., Frigerio I., et al. Triple approach strategy for patients with locally advanced pancreatic carcinoma. HPB. 2013;15(8):623–627. doi: 10.1111/hpb.12027.
    1. Spiliotis J. D., Datsis A. C., Michalopoulos N. V., et al. Radiofrequency ablation combined with palliative surgery may prolong survival of patients with advanced cancer of the pancreas. Langenbeck's Archives of Surgery. 2007;392(1):55–60. doi: 10.1007/s00423-006-0098-5.
    1. Wu Y., Tang Z., Fang H., et al. High operative risk of cool-tip radiofrequency ablation for unresectable pancreatic head cancer 1. Journal of Surgical Oncology. 2006;94(5):392–395. doi: 10.1002/jso.20580.
    1. Fegrachi S., Molenaar I. Q., Klaessens J. H., Besselink M. G., Offerhaus J. A., van Hillegersberg R. Radiofrequency ablation of the pancreas with and without intraluminal duodenal cooling in a porcine model. The Journal of Surgical Research. 2013;184(2):867–872. doi: 10.1016/j.jss.2013.04.068.
    1. Rossi S., Viera F. T., Ghittoni G., et al. Radiofrequency ablation of pancreatic neuroendocrine tumors: a pilot study of feasibility, efficacy, and safety. Pancreas. 2014;43(6):938–945. doi: 10.1097/mpa.0000000000000133.
    1. Song T. J., Seo D. W., Lakhtakia S., et al. Initial experience of EUS-guided radiofrequency ablation of unresectable pancreatic cancer. Gastrointestinal Endoscopy. 2016;83(2):440–443. doi: 10.1016/j.gie.2015.08.048.
    1. Martin R. C. G., II, McFarland K., Ellis S., Velanovich V. Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Annals of Surgical Oncology. 2013;20(supplement 3):S443–S449. doi: 10.1245/s10434-012-2736-1.
    1. Martin R. C., Kwon D., Chalikonda S., et al. Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Annals of Surgery. 2015;262(3):486–494. doi: 10.1097/sla.0000000000001441.
    1. Trueba-Arguiñarena F. J., de Prado-Otero D. S., Poves-Alvarez R. Pancreatic adenocarcinoma treated with irreversible electroporation case report: first experience and outcome. Medicine. 2015;94(26):p. e946. doi: 10.1097/md.0000000000000946.
    1. Narayanan G., Hosein P. J., Lima C. M. S. R., et al. Percutaneous irreversible electroporation (IRE) in the management of pancreatic cancer. Journal of Clinical Oncology. 2014;32(supplement, abstract e15249)
    1. Belfiore M. P., Ronza F. M., Romano F., et al. Percutaneous CT-guided irreversible electroporation followed by chemotherapy as a novel neoadjuvant protocol in locally advanced pancreatic cancer: our preliminary experience. International Journal of Surgery. 2015;21(supplement 1):S34–S39. doi: 10.1016/j.ijsu.2015.06.049.
    1. Pai M., Yang J., Zhang X., et al. PWE-055 Endoscopic ultrasound guided radiofrequency ablation (EUS-RFA) for pancreatic ductal adenocarcinoma. Gut. 2013;62(supplement 1):A153–A153. doi: 10.1136/gutjnl-2013-304907.344.
    1. Paiella S., Butturini G., Frigerio I., et al. Safety and feasibility of Irreversible Electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study. Digestive Surgery. 2015;32(2):90–97. doi: 10.1159/000375323.
    1. Rubinsky B., Onik G., Mikus P. Irreversible electroporation: a new ablation modality—clinical implications. Technology in Cancer Research & Treatment. 2007;6(1):37–48. doi: 10.1177/153303460700600106.
    1. Davalos R. V., Mir L. M., Rubinsky B. Tissue ablation with irreversible electroporation. Annals of Biomedical Engineering. 2005;33(2):223–231. doi: 10.1007/s10439-005-8981-8.
    1. Al-Sakere B., André F., Bernat C., et al. Tumor ablation with irreversible electroporation. PLoS ONE. 2007;2(11) doi: 10.1371/journal.pone.0001135.e1135
    1. Zhang Z., Li W., Procissi D., Tyler P., Omary R. A., Larson A. C. Rapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablation. Nanomedicine. 2014;9(8):1181–1192. doi: 10.2217/nnm.13.72.
    1. Lee E. W., Wong D., Prikhodko S. V., et al. Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes. Journal of Vascular and Interventional Radiology. 2012;23(1):107–113. doi: 10.1016/j.jvir.2011.09.020.
    1. Yarmush M. L., Golberg A., Serša G., Kotnik T., Miklavčič D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annual Review of Biomedical Engineering. 2014;16:295–320. doi: 10.1146/annurev-bioeng-071813-104622.
    1. Golberg A., Yarmush M. L. Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Transactions on Biomedical Engineering. 2013;60(3):707–714. doi: 10.1109/tbme.2013.2238672.
    1. Maor E., Ivorra A., Leor J., Rubinsky B. Irreversible electroporation attenuates neointimal formation after angioplasty. IEEE Transactions on Biomedical Engineering. 2008;55(9):2268–2274. doi: 10.1109/tbme.2008.923909.
    1. Maor E., Ivorra A., Rubinsky B. Intravascular irreversible electroporation: theoretical and experimental feasibility study. Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08); August 2008; Vancouver, Canada. pp. 2051–2054.
    1. Schoellnast H., Monette S., Ezell P. C., et al. Acute and subacute effects of irreversible electroporation on nerves: experimental study in a pig model. Radiology. 2011;260(2):421–427. doi: 10.1148/radiol.11103505.
    1. Narayanan G., Bhatia S., Echenique A., Suthar R., Barbery K., Yrizarry J. Vessel patency post irreversible electroporation. CardioVascular and Interventional Radiology. 2014;37(6):1523–1529. doi: 10.1007/s00270-014-0988-9.
    1. Faroja M., Ahmed M., Appelbaum L., et al. Irreversible electroporation ablation: is all the damage nonthermal? Radiology. 2013;266(2):462–470. doi: 10.1148/radiol.12120609.
    1. Dunki-Jacobs E. M., Philips P., Martin R. C. G., II Evaluation of thermal injury to liver, pancreas and kidney during irreversible electroporation in an in vivo experimental model. The British Journal of Surgery. 2014;101(9):1113–1121. doi: 10.1002/bjs.9536.
    1. Marčan M., Pavliha D., Kos B., Forjanič T., Miklavčič D. Web-based tool for visualization of electric field distribution in deep-seated body structures and planning of electroporation-based treatments. BioMedical Engineering OnLine. 2015;14(supplement 3, article S4) doi: 10.1186/1475-925x-14-s3-s4.
    1. Zupanic A., Kos B., Miklavcic D. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Physics in Medicine and Biology. 2012;57(17):5425–5440. doi: 10.1088/0031-9155/57/17/5425.
    1. Miklavcic D., Davalos R. V. Electrochemotherapy (ECT) and irreversible electroporation (IRE)—advanced techniques for treating deep-seated tumors based on electroporation. BioMedical Engineering OnLine. 2015;14(supplement 3, article I1) doi: 10.1186/1475-925x-14-s3-i1.
    1. Martin R. C. G. Irreversible electroporation of locally advanced pancreatic head adenocarcinoma. Journal of Gastrointestinal Surgery. 2013;17(10):1850–1856. doi: 10.1007/s11605-013-2309-z.
    1. Martin R. C. G., Philips P., Ellis S., Hayes D., Bagla S. Irreversible electroporation of unresectable soft tissue tumors with vascular invasion: effective palliation. BMC Cancer. 2014;14, article 540 doi: 10.1186/1471-2407-14-540.
    1. Tosolini C., Michalski C. W., Kleeff J. Response evaluation following neoadjuvant treatment of pancreatic cancer patients. World Journal of Gastrointestinal Surgery. 2013;5(2):12–15. doi: 10.4240/wjgs.v5.i2.12.
    1. Ferrone C. R., Marchegiani G., Hong T. S., et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Annals of Surgery. 2015;261(1):12–17. doi: 10.1097/SLA.0000000000000867.
    1. Frigerio I., Girelli R., Giardino A., Regi P., Salvia R., Bassi C. Short term chemotherapy followed by radiofrequency ablation in stage III pancreatic cancer: results from a single center. Journal of Hepato-Biliary-Pancreatic Sciences. 2013;20(6):574–577. doi: 10.1007/s00534-013-0613-3.
    1. Girelli R., Frigerio I., Salvia R., Barbi E., Tinazzi Martini P., Bassi C. Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer. British Journal of Surgery. 2010;97(2):220–225. doi: 10.1002/bjs.6800.
    1. Cantore M., Girelli R., Mambrini A., et al. Combined modality treatment for patients with locally advanced pancreatic adenocarcinoma. The British Journal of Surgery. 2012;99(8):1083–1088. doi: 10.1002/bjs.8789.
    1. Siriwardena A. K. Radiofrequency ablation for locally advanced cancer of the pancreas. Journal of the Pancreas. 2006;7(1):1–4.
    1. Steel A. W., Postgate A. J., Khorsandi S., et al. Endoscopically applied radiofrequency ablation appears to be safe in the treatment of malignant biliary obstruction. Gastrointestinal Endoscopy. 2011;73(1):149–153. doi: 10.1016/j.gie.2010.09.031.
    1. Hadjicostas P., Malakounides N., Varianos C., Kitiris E., Lerni F., Symeonides P. Radiofrequency ablation in pancreatic cancer. HPB. 2006;8(1):61–64. doi: 10.1080/13651820500466673.
    1. Figueroa-Barojas P., Bakhru M. R., Habib N. A., et al. Safety and efficacy of radiofrequency ablation in the management of unresectable bile duct and pancreatic cancer: a novel palliation technique. Journal of Oncology. 2013;2013:5. doi: 10.1155/2013/910897.910897
    1. Varshney S., Sewkani A., Sharma S., et al. Radiofrequency ablation of unresectable pancreatic carcinoma: feasibility, efficacy and safety. Journal of the Pancreas. 2006;7(1):74–78.
    1. Casadei R., Ricci C., Pezzilli R., et al. A prospective study on radiofrequency ablation locally advanced pancreatic cancer. Hepatobiliary & Pancreatic Diseases International. 2010;9(3):306–311.
    1. Matsui Y., Nakagawa A., Kamiyama Y., Yamamoto K., Kubo N., Nakase Y. Selective thermocoagulation of unresectable pancreatic cancers by using radiofrequency capacitive heating. Pancreas. 2000;20(1):14–20. doi: 10.1097/00006676-200001000-00002.
    1. Date R. S., Siriwardena A. K. Radiofrequency ablation of the pancreas. II: intra-operative ablation of non-resectable pancreatic cancer. A description of technique and initial outcome. Journal of the Pancreas. 2005;6(6):588–592.
    1. Waitz R., Solomon S. B. Can local radiofrequency ablation of tumors generate systemic immunity against metastatic disease? Radiology. 2009;251(1):1–2. doi: 10.1148/radiol.2511082215.
    1. Tiong L., Maddern G. J. Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. The British Journal of Surgery. 2011;98(9):1210–1224. doi: 10.1002/bjs.7669.
    1. D'Onofrio M., Zamboni G., Faccioli N., Capelli P., Pozzi Mucelli R. Ultrasonography of the pancreas. 4. Contrast-enhanced imaging. Abdominal Imaging. 2007;32(2):171–181. doi: 10.1007/s00261-006-9010-6.
    1. Sweesy M. W., Holland J. L., Smith K. W. Electromagnetic interference in cardiac rhythm management devices. AACN Clinical Issues. 2004;15(3):391–403. doi: 10.1097/00044067-200407000-00007.
    1. Martin R. C. G., II, McFarland K., Ellis S., Velanovich V. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. Journal of the American College of Surgeons. 2012;215(3):361–369. doi: 10.1016/j.jamcollsurg.2012.05.021.
    1. Bagla S., Papadouris D. Percutaneous irreversible electroporation of surgically unresectable pancreatic cancer: a case report. Journal of Vascular and Interventional Radiology. 2012;23(1):142–145. doi: 10.1016/j.jvir.2011.10.002.
    1. Mansson C., Bergenfeldt M., Brahmstaedt R., Karlson B.-M., Nygren P., Nilsson A. Safety and preliminary efficacy of ultrasound-guided percutaneous irreversible electroporation for treatment of localized pancreatic cancer. Anticancer Research. 2014;34(1):289–293.
    1. Weiss M. J., Wolfgang C. L. Irreversible electroporation: a novel pancreatic cancer therapy. Current Problems in Cancer. 2013;37(5):262–265. doi: 10.1016/j.currproblcancer.2013.10.002.
    1. Philips P., Hays D., Martin R. C. G. Irreversible electroporation ablation (IRE) of unresectable soft tissue tumors: learning curve evaluation in the first 150 patients treated. PLoS ONE. 2013;8(11) doi: 10.1371/journal.pone.0076260.e76260
    1. Dunki-Jacobs E. M., Philips P., Martin R. C. G., II Evaluation of resistance as a measure of successful tumor ablation during irreversible electroporation of the pancreas. Journal of the American College of Surgeons. 2014;218(2):179–187. doi: 10.1016/j.jamcollsurg.2013.10.013.
    1. Venkat S., Hosein P. J., Narayanan G. Percutaneous approach to irreversible electroporation of the pancreas: Miami protocol. Techniques in Vascular and Interventional Radiology. 2015;18(3):153–158. doi: 10.1053/j.tvir.2015.06.006.
    1. Narayanan G., Hosein P. J., Arora G., et al. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. Journal of Vascular and Interventional Radiology. 2012;23(12):1613–1621. doi: 10.1016/j.jvir.2012.09.012.
    1. Kwon D., McFarland K., Velanovich V., Martin R. C. G., II Borderline and locally advanced pancreatic adenocarcinoma margin accentuation with intraoperative irreversible electroporation. Surgery. 2014;156(4):910–922. doi: 10.1016/j.surg.2014.06.058.
    1. Narayanan G. Irreversible electroporation for treatment of liver cancer. Gastroenterology & Hepatology. 2011;7(5):313–316.
    1. Deodhar A., Dickfeld T., Single G. W., et al. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. American Journal of Roentgenology. 2011;196(3):W330–W335. doi: 10.2214/ajr.10.4490.
    1. Philips P., Li Y., Li S., St Hill C. R., Martin R. C. Efficacy of irreversible electroporation in human pancreatic adenocarcinoma: advanced murine model. Molecular Therapy—Methods & Clinical Development. 2015;2 doi: 10.1038/mtm.2015.1.15001
    1. Scheffer H. J., Nielsen K., de Jong M. C., et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. Journal of Vascular and Interventional Radiology. 2014;25(7):997–1011. doi: 10.1016/j.jvir.2014.01.028.
    1. Raman S. S., Lu D. S. K., Vodopich D. J., Sayre J., Lassman C. Creation of radiofrequency lesions in a porcine model: correlation with sonography, CT, and histopathology. American Journal of Roentgenology. 2000;175(5):1253–1258. doi: 10.2214/ajr.175.5.1751253.
    1. Kranjc M., Bajd F., Sersa I., Woo E. J., Miklavcic D. Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments. PLoS ONE. 2012;7(9) doi: 10.1371/journal.pone.0045737.e45737
    1. Mahmood F., Hansen R. H., Agerholm-Larsen B., Jensen K. S., Iversen H. K., Gehl J. Diffusion-weighted MRI for verification of electroporation-based treatments. Journal of Membrane Biology. 2011;240(3):131–138. doi: 10.1007/s00232-011-9351-0.
    1. Guo Y., Zhang Y., Nijm G. M., et al. Irreversible electroporation in the liver: contrast-enhanced inversion-recovery MR imaging approaches to differentiate reversibly electroporated penumbra from irreversibly electroporated ablation zones. Radiology. 2011;258(2):461–468. doi: 10.1148/radiol.10100645.
    1. Kranjc M., Markelc B., Bajd F., et al. In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology. 2015;274(1):115–123. doi: 10.1148/radiol.14140311.
    1. Edd J. F., Horowitz L., Davalos R. V., Mir L. M., Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Transactions on Biomedical Engineering. 2006;53(7):1409–1415. doi: 10.1109/tbme.2006.873745.
    1. Lee Y. J., Lu D. S. K., Osuagwu F., Lassman C. Irreversible electroporation in porcine liver: acute computed tomography appearance of ablation zone with histopathologic correlation. Journal of Computer Assisted Tomography. 2013;37(2):154–158. doi: 10.1097/rct.0b013e31827dbf9b.
    1. Appelbaum L., Ben-David E., Sosna J., Nissenbaum Y., Goldberg S. N. US findings after irreversible electroporation ablation: radiologic-pathologic correlation. Radiology. 2012;262(1):117–125. doi: 10.1148/radiol.11110475.
    1. Schmidt C. R., Shires P., Mootoo M. Real-time ultrasound imaging of irreversible electroporation in a porcine liver model adequately characterizes the zone of cellular necrosis. HPB. 2012;14(2):98–102. doi: 10.1111/j.1477-2574.2011.00409.x.
    1. Chu K. F., Dupuy D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Reviews Cancer. 2014;14(3):199–208. doi: 10.1038/nrc3672.
    1. Ali M. Y., Grimm C. F., Ritter M., et al. Activation of dendritic cells by local ablation of hepatocellular carcinoma. Journal of Hepatology. 2005;43(5):817–822. doi: 10.1016/j.jhep.2005.04.016.
    1. Evrard S., Menetrier-Caux C., Biota C., et al. Cytokines pattern after surgical radiofrequency ablation of liver colorectal metastases. Gastroentérologie Clinique et Biologique. 2007;31(2):141–145. doi: 10.1016/s0399-8320(07)89344-4.
    1. Fietta A. M., Morosini M., Passadore I., et al. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Human Immunology. 2009;70(7):477–486. doi: 10.1016/j.humimm.2009.03.012.
    1. Jansen M. C., van Wanrooy S., van Hillegersberg R., et al. Assessment of systemic inflammatory response (SIR) in patients undergoing radiofrequency ablation or partial liver resection for liver tumors. European Journal of Surgical Oncology. 2008;34(6):662–667. doi: 10.1016/j.ejso.2007.06.009.
    1. Zerbini A., Pilli M., Laccabue D., et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology. 2010;138(5):1931.e2–1942.e2. doi: 10.1053/j.gastro.2009.12.051.
    1. Hänsler J., Wissniowski T. T., Schuppan D., et al. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World Journal of Gastroenterology. 2006;12(23):3716–3721.
    1. Napoletano C., Taurino F., Biffoni M., et al. RFA strongly modulates the immune system and anti-tumor immune responses in metastatic liver patients. International Journal of Oncology. 2008;32(2):481–490.
    1. Widenmeyer M., Shebzukhov Y., Haen S. P., et al. Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation. International Journal of Cancer. 2011;128(11):2653–2662. doi: 10.1002/ijc.25601.
    1. Dromi S. A., Walsh M. P., Herby S., et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity. Radiology. 2009;251(1):58–66. doi: 10.1148/radiol.2511072175.
    1. Rovere-Querini P., Manfredi A. A. Tumor destruction and in situ delivery of antigen presenting cells promote anti-neoplastic immune responses: implications for the immunotherapy of pancreatic cancer. Journal of the Pancreas. 2004;5(4):308–314.
    1. Gameiro S. R., Higgins J. P., Dreher M. R., et al. Combination therapy with local radiofrequency ablation and systemic vaccine enhances antitumor immunity and mediates local and distal tumor regression. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0070417.e70417
    1. Al-Sakere B., Bernat C., André F., et al. A study of the immunological response to tumor ablation with irreversible electroporation. Technology in Cancer Research & Treatment. 2007;6(4):301–305. doi: 10.1177/153303460700600406.
    1. Li X., Xu K., Li W., et al. Immunologic response to tumor ablation with irreversible electroporation. PLoS ONE. 2012;7(11)e48749
    1. Neal R. E., II, Rossmeisl J. H., Jr., Robertson J. L., et al. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0064559.e64559
    1. McCulloch P., Altman D. G., Campbell W. B., et al. No surgical innovation without evaluation: the IDEAL recommendations. The Lancet. 2009;374(9695):1105–1112. doi: 10.1016/s0140-6736(09)61116-8.

Source: PubMed

3
Tilaa