Role of the prefrontal cortex in the cognitive control of reaching movements: near-infrared spectroscopy study

Kotaro Goto, Yoko Hoshi, Masashi Sata, Masatoshi Kawahara, Makoto Takahashi, Harumitsu Murohashi, Kotaro Goto, Yoko Hoshi, Masashi Sata, Masatoshi Kawahara, Makoto Takahashi, Harumitsu Murohashi

Abstract

To elucidate the role of the prefrontal cortex in cognitive control of reaching movements, by multichannel near-infrared spectroscopy we examine changes in oxygenated hemoglobin (oxy-Hb) as an indicator of changes in regional cerebral blood flow in the bilateral dorsolateral (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar cortex (FPC) during a reaching task with normal visual feedback (a consistent task) and a reaching task with flipped horizontal visual feedback (an inconsistent task). Subjects first perform 12 trials of the consistent task, and then perform six blocks of the inconsistent task, each of which consists of six trials. During the consistent task, oxy-Hb is increased only in the right VLPFC. During the first block of the inconsistent task, increases in oxy-Hb are observed in the bilateral DLPFC and the right VLPFC, whereas the increased oxy-Hb was gradually reduced as the block proceeded, which was accompanied by an improvement in the task performance. Eventually, there were no differences in the degree of change in oxy-Hb between the consistent and inconsistent tasks in the DLPFC and VLPFC. These findings suggest that the DLPFC is engaged in higher order cognitive control, while the right VLPFC is engaged in both higher and lower order cognitive controls.

Source: PubMed

3
Tilaa