Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children

Jesper Lundbye-Jensen, Kasper Skriver, Jens B Nielsen, Marc Roig, Jesper Lundbye-Jensen, Kasper Skriver, Jens B Nielsen, Marc Roig

Abstract

Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON), high intensity intermittent floorball (FLB) or running (RUN) with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition. Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN. Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running indicates that the observed memory improvements are determined to a larger extent by physiological factors rather than the types of movements performed during the exercise protocol.

Keywords: children; consolidation; exercise; learning; motor memory; retention.

Figures

Figure 1
Figure 1
Schematic overview of the experimental design. FB, Augmented Feedback; CON, control group; FLB, floorball group; RUN, running group.
Figure 2
Figure 2
Motor skill acquisition. Group mean scores in the motor task at baseline (block A), during motor practice (blocks B1, B2, B3) and in the immediate retention test (block C; group mean ± SEM) (Immed. ret.: immediate retention test). *Significantly different (p < 0.05).
Figure 3
Figure 3
Retention of motor skill. Group mean scores in the motor task at block C to G for the three experimental groups (group mean ± SEM). The retention scores are normalized to performance in the immediate retention test (block C). Immed. ret.: immediate retention test; 1 h ret.: 1 h retention test; 24 h ret.: 24 h retention test; 7 d ret. −FB: 7 days retention without augmented feedback (KR); 7 d ret. +FB: 7 days retention with augmented feedback (KR); #significantly different from control group (p < 0.017); *significantly different from immediate retention (p < 0.0125).
Figure 4
Figure 4
Offline Effects. (A) Changes in motor performance between the immediate retention test and the delayed retention tests without feedback (KR) at 24 h and 7 days (Block C, E, F). *Significantly different from control group (p < 0.017) and immediate retention (p < 0.0125). (B) Time-weighed slope measure for offline changes in motor performance between immediate retention, 24 h and 7 days retention (C,E,F), calculated within single subjects. *Significantly different from control group (p < 0.05).

References

    1. Åberg M. A. I., Pedersen N. L., Toren K., Svartengren M., Bäckstrand B., Johnsson T., et al. . (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proc. Natl. Acad. Sci. U S A 106, 20906–20911. 10.1073/pnas.0905307106
    1. Ahamed Y., Macdonald H., Reed K., Naylor P. J., Liu-Ambrose T., McKay H. (2007). School-based physical activity does not compromise children’s academic performance. Med. Sci. Sports Exerc. 39, 371–376. 10.1249/01.mss.0000241654.45500.8e
    1. Alvang D. (2010). Fysisk aktivitet og motion i folkeskolen. Danish Ministry of Education. Available online at:
    1. Angevaren M., Vanhees L., Wendel-Vos W., Verhaar H. J., Aufdemkampe G., Aleman A., et al. . (2007). Intensity, but not duration, of physical activities is related to cognitive function. Eur. J. Cardiovasc. Prev. Rehabil. 14, 825–830. 10.1097/HJR.0b013e3282ef995b
    1. Bendiksen M., Ahler T., Clause H., Wedderkopp N., Krustrup P. (2013). The use of Yo-Yo intermittent recovery level 1 and Andersen testing for fitness and maximal heart rate assessments of 6- to 10-year-old school children. J. Strength Cond. Res. 27, 1583–1590. 10.1519/JSC.0b013e318270fd0b
    1. Booth J. N., Leary S. D., Joinson C., Ness A. R., Tomporowski P. D., Boyle J. M., et al. . (2014). Associations between objectively measured physical activity and academic attainment in adolescents from a UK cohort. Br. J. Sports Med. 48, 265–270. 10.1136/bjsports-2013-092334
    1. Brashers-Krug T., Shadmehr R., Bizzi E. (1996). Consolidation in human motor memory. Nature 382, 252–255. 10.1038/382252a0
    1. Censor N., Sagi D., Cohen L. G. (2012). Common mechanisms of human perceptual and motor learning. Nat. Rev. Neurosci. 13, 658–664. 10.1038/nrn3315
    1. Chang Y. K., Labban J. D., Gapin J. I., Etnier J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 1453, 87–101. 10.1016/j.brainres.2012.02.068
    1. Coe D. P., Pivarnik J. M., Womack C. J., Reeves M. J., Malina R. M. (2006). Effect of physical education and activity levels on academic achievement in children. Med. Sci. Sports Exerc. 38, 1515–1519. 10.1249/01.mss.0000227537.13175.1b
    1. Danish Ministry of Education (2014). Improving the Public School—overview of reform of standards in the Danish public school (primary and lower secondary education). Available online at:
    1. Dudai Y. (2012). The restless engram: consolidations never end. Annu. Rev. Neurosci. 35, 227–247. 10.1146/annurev-neuro-062111-150500
    1. Ellemberg D., St-Louis-Deschênes M. (2010). The effect of acute physical exercise on cognitive function during development. Psychol. Sport. Exerc. 11, 122–126. 10.1016/j.psychsport.2009.09.006
    1. Ericsson I., Karlsson M. K. (2014). Motor skills and school performance in children with daily physical education in school—a 9-year intervention study. Scand. J. Med. Sci. Sports 24, 273–278. 10.1111/j.1600-0838.2012.01458.x
    1. Geertsen S. S., Thomas R., Larsen M. N., Dahn I. M., Andersen J. N., Krause-Jensen M., et al. . (2016). Motor skills and exercise capacity are associated with objective measures of cognitive functions and academic performance in preadolescent children. PLoS One 11:e0161960. 10.1371/journal.pone.0161960
    1. Hillman C. H., Erickson K. I., Kramer A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65. 10.1038/nrn2298
    1. Hillman C. H., Pontifex M. B., Castelli D. M., Khan N. A., Raine L. B., Scudder M. R., et al. . (2014). Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 134, e1063–e1071. 10.1542/peds.2013-3219
    1. Hillman C. H., Pontifex M. B., Raine L. B., Castelli D. M., Hall E. E., Kramer A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159, 1044–1054. 10.1016/j.neuroscience.2009.01.057
    1. Kamijo K., Hayashi Y., Sakai T., Yahiro T., Tanaka K., Nishihira Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 64B, 356–363. 10.1093/geronb/gbp030
    1. Kandel E. R., Dudai Y., Mayford M. R. (2014). The molecular and systems biology of memory. Cell 157, 163–186. 10.1016/j.cell.2014.03.001
    1. Kantak S. S., Winstein C. J. (2012). Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav. Brain Res. 228, 219–231. 10.1016/j.bbr.2011.11.028
    1. Kantomaa M. T., Stamatakis E., Kankaanpää A., Kaakinen M., Rodriguez A., Taanila A., et al. . (2013). Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement. Proc. Natl. Acad. Sci. U S A 110, 1917–1922. 10.1073/pnas.1214574110
    1. Kowalski K. C., Crocker P. R. E., Donen R. M. (2004). The Physical Activity Questionnaire for Older Children (PAQ-C) and Adolescents (PAQ-A) Manual. Saskatoon: Universtiy of Saskatchewan.
    1. Labban J. D., Etnier J. L. (2011). Effects of acute exercise on long-term memory. Res. Q. Exerc. Sport 82, 712–721. 10.5641/027013611x13275192111943
    1. Lambourne K., Hansen D. M., Szabo A. N., Lee J., Herrmann S. D., Donnelly J. E. (2013). Indirect and direct relations between aerobic fitness, physical activity and academic achievement in elementary school students. Ment. Health Phys. Act. 6, 165–171. 10.1016/j.mhpa.2013.06.002
    1. Lieberman M. D. (2000). Intuition: a social cognitive neuroscience approach. Psychol. Bull. 126, 109–137. 10.1037/0033-2909.126.1.109
    1. Lundbye-Jensen J., Petersen T. H., Rothwell J. C., Nielsen J. B. (2011). Interference in ballistic motor learning: specificity and role of sensory error signals. PLoS One 6:e17451. 10.1371/journal.pone.0017451
    1. McGaugh J. L. (2000). Memory—a century of consolidation. Science 287, 248–251. 10.1126/science.287.5451.248
    1. Morgan P. J., Barnett L. M., Cliff D. P., Okely A. D., Scott H. A., Cohen K. E., et al. . (2013). Fundamental movement skill interventions in youth: a systematic review and meta-analysis. Pediatrics 132, e1361–e1383. 10.1542/peds.2013-1167
    1. Ostadan F., Centeno C., Daloze J. F., Frenn M., Lundbye-Jensen J., Roig M. (2016). Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory. Neurobiol. Learn. Mem. 136, 196–203. 10.1016/j.nlm.2016.10.009
    1. Pesce C., Crova C., Cereatti L., Casella R., Bellucci M. (2009). Physical activity and mental performance in preadolescents: effects of acute exercise on free-recall memory. Ment. Health Phys. Act. 2, 16–22. 10.1016/j.mhpa.2009.02.001
    1. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al. . (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U S A 106, 1590–1595. 10.1073/pnas.0805413106
    1. Rhee J., Chen J., Riechman S. M., Handa A., Bhatia S., Wright D. L. (2016). An acute bout of aerobic exercise can protect immediate offline motor sequence gains. Psychol. Res. 80, 518–531. 10.1007/s00426-015-0682-9
    1. Robertson E. M. (2012). New insights in human memory interference and consolidation. Curr. Biol. 22, R66–R71. 10.1016/j.cub.2011.11.051
    1. Roig M., Nordbrandt S., Geertsen S. S., Nielsen J. B. (2013). The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci. Biobehav. Rev. 37, 1645–1666. 10.1016/j.neubiorev.2013.06.012
    1. Roig M., Skriver K., Lundbye-Jensen J., Kiens B., Nielsen J. B. (2012). A single bout of exercise improves motor memory. PLoS One 7:e44594. 10.1371/journal.pone.0044594
    1. Roig M., Thomas R., Mang C. S., Snow N. J., Ostadan F., Boyd L. A., et al. . (2016). Time-dependent effects of cardiovascular exercise on memory. Exerc. Sport Sci. Rev. 44, 81–88. 10.1249/JES.0000000000000078
    1. Sallis J. F., McKenzie T. L., Kolody B., Lewis M., Marshall S., Rosengard P. (1999). Effects of health-related physical education on academic achievement: project SPARK. Res. Q. Exerc. Sport 70, 127–134. 10.1080/02701367.1999.10608030
    1. Salmoni A. W., Schmidt R. A., Walter C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychol. Bull. 95, 355–386. 10.1037/0033-2909.95.3.355
    1. Sibley B. A., Etnier J. L. (2003). The relationship between physical activity and cognition in children: a meta-analysis. Pediatr. Exerc. Sci. 15, 243–256. 10.1123/pes.15.3.243
    1. Singh A., Uijtdewilligen L., Twisk J. W. R., van Mechelen W., Chinapaw M. J. M. (2012). Physical activity and performance in school. Arch. Pediatr. Adolesc. Med. 166, 49–55. 10.1001/archpediatrics.2011.716
    1. Skriver K., Roig M., Lundbye-Jensen J., Pingel J., Kiens B., Nielsen J. B. (2014). Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol. Learn. Mem. 116, 46–58. 10.1016/j.nlm.2014.08.004
    1. Squire L. R. (1992). Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J. Cogn. Neurosci. 4, 232–243. 10.1162/jocn.1992.4.3.232
    1. Statton M. A., Encarnacion M., Celnik P., Bastian A. J. (2015). A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS One 10:e0141393. 10.1371/journal.pone.0141393
    1. Stroth S., Hille K., Spitzer M., Reinhardt R. K. (2009). Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol. Rehabil. 19, 223–243. 10.1080/09602010802091183
    1. Taubert M., Villringer A., Lehmann N. (2015). Endurance exercise as an “endogenous” neuro-enhancement strategy to facilitate motor learning. Front. Hum. Neurosci. 9:692. 10.3389/fnhum.2015.00692
    1. Thomas R., Beck M. M., Lind R. R., Korsgaard Johnsen L. K., Geertsen S. S., Christiansen L., et al. . (2016a). Acute exercise and motor memory consolidation: the role of exercise timing. Neural Plast. 2016:6205452. 10.1155/2016/6205452
    1. Thomas R., Flindtgaard M., Skriver K., Geertsen S. S., Christiansen L., Johnsen L. K., et al. . (2016b). Acute exercise and motor memory consolidation: does exercise type play a role? Scand. J. Med. Sci. Sports [Epub ahead of print]. 10.1111/sms.12791
    1. Thomas R., Johnsen L. K., Geertsen S. S., Christiansen L., Ritz C., Roig M., et al. . (2016c). Acute exercise and motor memory consolidation: the role of exercise intensity. PLoS One 11:e0159589. 10.1371/journal.pone.0159589
    1. Tomkinson G. R., Olds T. S. (2007). Secular changes in aerobic fitness test performance of Australasian children and adolescents. Med. Sport Sci. 50, 168–182. 10.1159/000101361
    1. Ullman M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition 92, 231–270. 10.1016/j.cognition.2003.10.008
    1. Vaynman S., Gomez-Pinilla F. (2005). License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil. Neural Repair 19, 283–295. 10.1177/1545968305280753
    1. Winter B., Breitenstein C., Mooren F., Voelker K., Fobker M., Lechtermann A., et al. . (2007). High impact running improves learning. Neurobiol. Learn. Mem. 87, 597–609. 10.1016/j.nlm.2006.11.003

Source: PubMed

3
Tilaa