Co-causation of reduced newborn size by maternal undernutrition, infections, and inflammation

Per Ashorn, Lotta Hallamaa, Lindsay H Allen, Ulla Ashorn, Upeksha Chandrasiri, Megan Deitchler, Ronan Doyle, Ulla Harjunmaa, Josh M Jorgensen, Steve Kamiza, Nigel Klein, Kenneth Maleta, Minyanga Nkhoma, Brietta M Oaks, Basho Poelman, Stephen J Rogerson, Christine P Stewart, Mamane Zeilani, Kathryn G Dewey, Per Ashorn, Lotta Hallamaa, Lindsay H Allen, Ulla Ashorn, Upeksha Chandrasiri, Megan Deitchler, Ronan Doyle, Ulla Harjunmaa, Josh M Jorgensen, Steve Kamiza, Nigel Klein, Kenneth Maleta, Minyanga Nkhoma, Brietta M Oaks, Basho Poelman, Stephen J Rogerson, Christine P Stewart, Mamane Zeilani, Kathryn G Dewey

Abstract

More than 20 million babies are born with low birthweight annually. Small newborns have an increased risk for mortality, growth failure, and other adverse outcomes. Numerous antenatal risk factors for small newborn size have been identified, but individual interventions addressing them have not markedly improved the health outcomes of interest. We tested a hypothesis that in low-income settings, newborn size is influenced jointly by multiple maternal exposures and characterized pathways associating these exposures with newborn size. This was a prospective cohort study of pregnant women and their offspring nested in an intervention trial in rural Malawi. We collected information on maternal and placental characteristics and used regression analyses, structural equation modelling, and random forest models to build pathway maps for direct and indirect associations between these characteristics and newborn weight-for-age Z-score and length-for-age Z-score. We used multiple imputation to infer values for any missing data. Among 1,179 pregnant women and their babies, newborn weight-for-age Z-score was directly predicted by maternal primiparity, body mass index, and plasma alpha-1-acid glycoprotein concentration before 20 weeks of gestation, gestational weight gain, duration of pregnancy, placental weight, and newborn length-for-age Z-score (p < .05). The latter 5 variables were interconnected and were predicted by several more distal determinants. In low-income conditions like rural Malawi, maternal infections, inflammation, nutrition, and certain constitutional factors jointly influence newborn size. Because of this complex network, comprehensive interventions that concurrently address multiple adverse exposures are more likely to increase mean newborn size than focused interventions targeting only maternal nutrition or specific infections.

Keywords: LAZ; Malawi; WAZ; low-income countries; newborn size; pathways.

Conflict of interest statement

M. Z. works as a director of research for Nutriset S.A.S, a company that produces and sells lipid‐based nutrient supplements and which also prepared the LNS supplements purchased for the current trial. The other authors have no financial relationships relevant to this article to disclose. The findings and conclusions contained within the article are those of the authors and do not necessarily reflect positions or policies of the USAID, the United States Government, the Bill & Melinda Gates Foundation, or the other funders. One of the co‐authors (MD) is employed by FHI 360, which provided USAID funding for the study to UC Davis through the FANTA Project. The other funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The corresponding author (PA) had full access to the data and final responsibility for the decision to submit for publication.

© 2018 The Authors. Maternal & Child Nutrition published by John Wiley & Sons, Ltd.

Figures

Figure 1
Figure 1
Conceptual model of pathways contributing to newborn size. Conceptual model of how maternal characteristics or maternal direct exposures during follow‐up (defined as predictor variables) could contribute to newborn size (outcome variables weight‐for‐age Z‐score [WAZ] and length‐for‐age Z‐score [LAZ]) either directly or through intermediary variables that follow from a direct exposure. Hb = haemoglobin; AGP = α‐1‐acid glycoprotein; BMI = body mass index
Figure 2
Figure 2
Pathway model for the determinants of newborn weight‐for‐age Z‐score (WAZ) and length‐for‐age Z‐score (LAZ). A structural equation model (structural equation modelling [SEM]), using variables that in regression analyses were associated with (p < .05) newborn size (green boxes) or defined intermediary variables (orange boxes). The predictor variables represent maternal nutrition (blue boxes), infections (yellow), or other constitutional variables (grey). The model χ2(36) = 117.92 (p < .001), N = 1,179 participants. Hb = haemoglobin; AGP = α‐1‐acid glycoprotein; BMI = body mass index
Figure 3
Figure 3
Random forest modelling of newborn weight‐for‐age Z‐score (WAZ) and length‐for‐age Z‐score (LAZ). In random forest modelling newborn LAZ, duration of pregnancy and placental weight are immediate predictors of newborn WAZ (Panel A—black bars), and Newborn LAZ was most strongly predicted by the duration of pregnancy and placental weight (Panel B—grey bars). AGP = α‐1‐acid glycoprotein; BMI = body mass index; gw = gestation weeks

References

    1. Alexander, G. R. , Himes, J. H. , Kaufman, R. B. , Mor, J. , & Kogan, M. (1996). A United States national reference for fetal growth. Obstetrics and Gynecology, 87(2), 163–168 10.1016/0029–7844(95)00386-X [pii].
    1. Ashorn, P. , Alho, L. , Ashorn, U. , Cheung, Y. B. , Dewey, K. G. , Gondwe, A. , … Maleta, K. (2015a). Supplementation of maternal diets during pregnancy and for 6 months postpartum and infant diets thereafter with small‐quantity lipid‐based nutrient supplements does not promote child growth by 18 months of age in rural Malawi: A randomized controlled trial. The Journal of Nutrition, 145(6), 1345–1353.
    1. Ashorn, P. , Alho, L. , Ashorn, U. , Cheung, Y. B. , Dewey, K. G. , Harjunmaa, U. , … Maleta, K. (2015b). The impact of lipid‐based nutrient supplement provision to pregnant women on newborn size in rural Malawi: A randomized controlled trial. The American Journal of Clinical Nutrition, 101(2), 387–397. 10.3945/ajcn.114.088617
    1. Ashorn, P. , Vanhala, H. , Pakarinen, O. , Ashorn, U. , & De Costa, A. (2015). Prevention of intrauterine growth restriction and preterm birth with presumptive antibiotic treatment of pregnant women: A literature review. Nestle Nutrition Institute Workshop Series, 81, 37–50. 10.1159/000365802
    1. Bhutta, Z. A. , Das, J. K. , Rizvi, A. , Gaffey, M. F. , Walker, N. , Horton, S. , … Maternal and Child Nutrition Study Group (2013). Evidence‐based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet, 382(9890), 452–477. 10.1016/S0140-6736(13)60996-4
    1. Boeuf, P. , Aitken, E. H. , Chandrasiri, U. , Chua, C. L. , McInerney, B. , McQuade, L. , … Rogerson, S. J. (2013). Plasmodium falciparum malaria elicits inflammatory responses that dysregulate placental amino acid transport. PLoS Pathogens, 9(2), e1003153 10.1371/journal.ppat.1003153
    1. Brodsky, D. , & Christou, H. (2004). Current concepts in intrauterine growth restriction. Journal of Intensive Care Medicine, 19(6), 307–319 doi: [pii].
    1. Challis, J. R. G. , Matthews, S. G. , Gibb, W. , & Lye, S. J. (2000). Endocrine and paracrine regulation of birth at term and preterm. Endocrine Reviews, 21(5), 514–550. 10.1210/edrv.21.5.0407
    1. Cheung, Y. B. (2014). Statistical analysis of human growth and development. Boca Raton: FL.: CRC Press.
    1. Christian, P. , Lee, S. E. , Donahue Angel, M. , Adair, L. S. , Arifeen, S. E. , Ashorn, P. , … Black, R. E. (2013). Risk of childhood undernutrition related to small‐for‐gestational age and preterm birth in low‐ and middle‐income countries. International Journal of Epidemiology, 42(5), 1340–1355. 10.1093/ije/dyt109
    1. Conroy, A. L. , Silver, K. L. , Zhong, K. , Rennie, M. , Ward, P. , Sarma, J. V. , … Kain, K. C. (2013). Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host & Microbe, 13(2), 215–226. 10.1016/j.chom.2013.01.010
    1. de Onis, M. , Dewey, K. G. , Borghi, E. , Onyango, A. W. , Blossner, M. , Daelmans, B. , … Branca, F. (2013). The world health organization's global target for reducing childhood stunting by 2025: Rationale and proposed actions. Maternal & Child Nutrition, 9(Suppl 2), 6–26. 10.1111/mcn.12075
    1. DiLalla, L. F. (2008). A structural equation modeling overview for medical researchers. Journal of Developmental and Behavioral Pediatrics: JDBP, 29(1), 51–54. 10.1097/DBP.0b013e31815f250c
    1. Dimasuay, K. G. , Boeuf, P. , Powell, T. L. , & Jansson, T. (2016). Placental responses to changes in the maternal environment determine fetal growth. Frontiers in Physiology, 7, 12.
    1. Espo, M. , Kulmala, T. , Maleta, K. , Cullinan, T. , Salin, M. L. , & Ashorn, P. (2002). Determinants of linear growth and predictors of severe stunting during infancy in rural Malawi. Acta Paediatrica (Oslo, Norway: 1992), 91(12), 1364–1370.
    1. Fell, D. B. , Savitz, D. A. , Kramer, M. S. , Gessner, B. D. , Katz, M. A. , Knight, M. , … Ortiz, J. R. (2017). Maternal influenza and birth outcomes: Systematic review of comparative studies. BJOG: An International Journal of Obstetrics and Gynaecology, 124(1), 48–59. 10.1111/1471-0528.14143
    1. Goldenberg, R. L. , Culhane, J. F. , Iams, J. D. , & Romero, R. (2008). Epidemiology and causes of preterm birth. Lancet, 371(9606), 75–84. 10.1016/S0140-6736(08)60074-4
    1. Harjunmaa, U. , Jarnstedt, J. , Alho, L. , Dewey, K. G. , Cheung, Y. B. , Deitchler, M. ,… Ashorn, P. (2015). Association between maternal dental periapical infections and pregnancy outcomes: Results from a cross‐sectional study in Malawi. Tropical Medicine & International Health: TM & IH,
    1. Hendrix, N. , & Berghella, V. (2008). Non‐placental causes of intrauterine growth restriction. Seminars in Perinatology, 32(3), 161–165. 10.1053/j.semperi.2008.02.004
    1. Hsiao, E. Y. , & Patterson, P. H. (2011). Activation of the maternal immune system induces endocrine changes in the placenta via IL‐6. Brain, Behavior, and Immunity, 25(4), 604–615.
    1. Hu, L. , & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.
    1. Jones, H. N. , Crombleholme, T. , & Habli, M. (2013). Adenoviral‐mediated placental gene transfer of IGF‐1 corrects placental insufficiency via enhanced placental glucose transport mechanisms. PloS One, 8(9), e74632 10.1371/journal.pone.0074632
    1. Katz, J. , Lee, A. C. , Kozuki, N. , Lawn, J. E. , Cousens, S. , Blencowe, H. , … CHERG Small‐for‐Gestational‐Age‐Preterm Birth Working Group (2013). Mortality risk in preterm and small‐for‐gestational‐age infants in low‐income and middle‐income countries: A pooled country analysis. Lancet, 382(9890), 417–425. 10.1016/S0140-6736(13)60993-9
    1. Keswani, S. G. , Balaji, S. , Katz, A. B. , King, A. , Omar, K. , Habli, M. , … Crombleholme, T. M. (2015). Intraplacental gene therapy with ad‐IGF‐1 corrects naturally occurring rabbit model of intrauterine growth restriction. Human Gene Therapy, 26(3), 172–182. 10.1089/hum.2014.065
    1. Kline, R. (2011). Principles and practice of structural equation modelling (3rd ed.). Guilford Press.
    1. Lawn, J. E. , Cousens, S. , Zupan, J. , & Lancet Neonatal Survival Steering Team (2005). 4 million neonatal deaths: When? Where? Why? Lancet (London, England), 365(9462), 891–900.
    1. Lee, A. C. , Katz, J. , Blencowe, H. , Cousens, S. , Kozuki, N. , Vogel, J. P. , … CHERG SGA‐Preterm Birth Working Group (2013). National and regional estimates of term and preterm babies born small for gestational age in 138 low‐income and middle‐income countries in 2010. The Lancet.Global Health, 1(1), e26–e36. 10.1016/S2214-109X(13)70006-8
    1. Luntamo, M. , Kulmala, T. , Mbewe, B. , Cheung, Y. B. , Maleta, K. , & Ashorn, P. (2010). Effect of repeated treatment of pregnant women with sulfadoxine‐pyrimethamine and azithromycin on preterm delivery in Malawi: A randomized controlled trial. The American Journal of Tropical Medicine and Hygiene, 83(6), 1212–1220. 10.4269/ajtmh.2010.10-0264
    1. Resnik, R. (2002). Intrauterine growth restriction. Obstetrics and Gynecology, 99(3), 490–496 doi:S002978440101780X [pii].
    1. Stewart, C. P. , Oaks, B. M. , Laugero, K. D. , Ashorn, U. , Harjunmaa, U. , Kumwenda, C. , … Dewey, K. G. (2015). Maternal cortisol and stress are associated with birth outcomes, but are not affected by lipid‐based nutrient supplements during pregnancy: An analysis of data from a randomized controlled trial in rural Malawi. BMC Pregnancy and Childbirth, 15, 346–015–0793‐8. doi:10.1186/s12884-015-0793-8
    1. Tellapragada, C. , Eshwara, V. K. , Bhat, P. , Acharya, S. , Kamath, A. , Bhat, S. , … Mukhopadhyay, C. (2016). Risk factors for preterm birth and low birth weight among pregnant Indian women: A hospital‐based prospective study. Journal of Preventive Medicine and Public Health = Yebang Uihakhoe Chi, 49(3), 165–175. 10.3961/jpmph.16.022
    1. UNICEF (2014). State of world's children 2015. New York: United Nations Children's Fund.
    1. Walters, T. D. , & Griffiths, A. M. (2009). Mechanisms of growth impairment in pediatric Crohn's disease. Nature Reviews. Gastroenterology & Hepatology, 6(9), 513–523. 10.1038/nrgastro.2009.124
    1. WHO Multicentre Growth Reference Study Group (2006). WHO child growth standards based on length/height, weight and age. Acta Paediatrica (Oslo, Norway: 1992).Supplement, 450, 76–85.
    1. Woods, K. A. , Camacho‐Hubner, C. , Savage, M. O. , & Clark, A. J. (1996). Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin‐like growth factor I gene. The New England Journal of Medicine, 335(18), 1363–1367. 10.1056/NEJM199610313351805

Source: PubMed

3
Tilaa