PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2

Jeffrey C Weinreb, Jelle O Barentsz, Peter L Choyke, Francois Cornud, Masoom A Haider, Katarzyna J Macura, Daniel Margolis, Mitchell D Schnall, Faina Shtern, Clare M Tempany, Harriet C Thoeny, Sadna Verma, Jeffrey C Weinreb, Jelle O Barentsz, Peter L Choyke, Francois Cornud, Masoom A Haider, Katarzyna J Macura, Daniel Margolis, Mitchell D Schnall, Faina Shtern, Clare M Tempany, Harriet C Thoeny, Sadna Verma

Abstract

The Prostate Imaging - Reporting and Data System Version 2 (PI-RADS™ v2) is the product of an international collaboration of the American College of Radiology (ACR), European Society of Uroradiology (ESUR), and AdMetech Foundation. It is designed to promote global standardization and diminish variation in the acquisition, interpretation, and reporting of prostate multiparametric magnetic resonance imaging (mpMRI) examination, and it is based on the best available evidence and expert consensus opinion. It establishes minimum acceptable technical parameters for prostate mpMRI, simplifies and standardizes terminology and content of reports, and provides assessment categories that summarize levels of suspicion or risk of clinically significant prostate cancer that can be used to assist selection of patients for biopsies and management. It is intended to be used in routine clinical practice and also to facilitate data collection and outcome monitoring for research.

Keywords: Magnetic resonance imaging; Prostate; Prostate MRI; Prostate cancer; Prostate mpMRI.

Copyright © 2015 European Association of Urology. All rights reserved.

Figures

Fig. 1 –. Anatomy of the prostate…
Fig. 1 –. Anatomy of the prostate illustrated on T2-weighted imaging (modified from Bonekamp D, Jacobs MA, El-Khouli R, et al. Advancements in MR maging of the prostate: from diagnosis to interventions. Radiographics 2011;31(3):677; with permission.).
Fig. 2 –. Measurements of the prostate…
Fig. 2 –. Measurements of the prostate on T2-weighted images used for volume assessment with the prolate ellipsoid formula (length × width × height × 0.52).
Fig. 3 –. PI-RADS assessment for peripheral…
Fig. 3 –. PI-RADS assessment for peripheral zone on T2-weighted imaging.
Fig. 4 –. PI-RADS assessment for transition…
Fig. 4 –. PI-RADS assessment for transition zone on T2-weighted imaging.
Fig. 5 –. PI-RADS assessment for peripheral…
Fig. 5 –. PI-RADS assessment for peripheral zone on diffusion weighted imaging.
Fig. 6 –. PI-RADS assessment for transition…
Fig. 6 –. PI-RADS assessment for transition zone on diffusion weighted imaging.
Fig. 7 –. PI-RADS assessment for dynamic…
Fig. 7 –. PI-RADS assessment for dynamic contrast enhanced MRI.

References

Introduction

    1. Thornbury JR, Ornstein DK, Choyke PL, Langlotz CP, Weinreb JC. Prostate Cancer: What is the future for imaging? Am J Roentgenology 2001;176:17–22.
    1. Dickinson L, Ahmed HU, Allen C, Barentsz JO, Carey B, Futterer JJ, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. European Urology.2011;4:477–94.
    1. Eberhardt SC, Carter S, Casalino DD, Merrick G, Frank SJ, et al. ACR Appropriateness Criteria® for Prostate Cancer — pretreatment detection, staging and surveillance. J Am Coll Radiol 2013;10(2);83–92
    1. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. European Radiol 2012;4:746–57.
    1. Moore CM, Kasivisvanathan V, Eggener S, Emberton M, Futterer JJ, et al. Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an international working group. European Urology 2013;64:544–552
    1. Rosenkrantz AB, Kim S, Lim RP, Hindman N, Deng F-M, et al. Prostate cancer localization using multiparametric MR imaging: comparison of Prostate Imaging Reproting and Data System (PI-RADS) and Likert Scales. Radiology 2013:269:482–492
    1. de Rooij M, Hamoen EHJ, Futterer JJ, Barentsz JO, Rovers MM. Accuracy of muliparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenology 2014;202:343–351
    1. Arumainayagam N, Ahmed HU, Moore CM, Freeman A, Allen C, et al. Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard. Radiology 2013:268:761–769
    1. Dickinson L, Ahmed HU, allen C, Barentsz JO, Carey B, et al. Scoring systems used for the interpretation and reporting of mulitparametric MRI for prostate cancer detection, localization and chanarcterization: could standardization lead to improved utilization of imaging within the diagnostic pathway? J Magn Reson imaging 2013:37;48–58
    1. Cornelis F, Rigou G, Le Bras Y, Coutouly X, Hubrecht R, et al. Real-time contast-enhanced transprectal US-guided prostate biopsy: diagnostic accuracy in men with previously negative biopsy results and positive MR imaging findings. Radiology 2013;269:159–166
    1. Puech P, Rouviere O, renard-Penna R, Villers A, Devos P, et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal U-MR fusion guidance versus systemic biopsy-prospective mulitcenter study. Radiology 2013:268;461–469
    1. Pokorny MR, de Rooij M, Duncan E, Schroder FH, Parkinson R, et al. Prospective study of diagnostic accuracy comparing proastate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. European Urology 2014. (In press)
    1. Hamoen EHJ, de Rooij M, Witjes JA, Barentsz J. Use of the Prostate Imaging Reporting and Data System (PI-RADS) for prostate cancer detection with mulitparametric magnetic resonance imaging: a diagnostic meta-analysis. European Urology 2014. (In press)
Section I: Clinical Considerations and Technical Specifications
    1. Wagner M, Rief M, Busch, Scheuring C, Taupitz M, et al. Effect of butylscopolamine on image quality in MRI of the prostate. Clin radiol 2012;65:460–465
    1. Rosenkrantz AB, Kopec M, Kong X, Melamed J, Dakwar G, Babb JS, et al. Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging 2010. June;31(6): 1387–94.
    1. Rosenkrantz AB, Mussi TC, Hindman N, Lim RP, Knong MX, et al. Impact of dealy after biopsy and post-biopsy haemorrhage on prostate cancer tumor detection using mulit-parametric MRI: a multi-reader study. Clin Radiol 2012;67:83–90
    1. Tamada T, Sone T, Jo Y, Yamamoto A, Yamashita T, Egashira N, et al. Prostate cancer: relationships between postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology 2008;248:531–539
    1. Barrett T, Vargas HA, Akin O, Goldman DA, Hricak H. Value of the hemorrhage exclusion sign on T1-weighted prostate MR images for the detection of prostate cancer. Radiology 2012;263:751–757
    1. Park KK, Lee SH, LIm BJ, Kim JH, Chung BH. The effects of the period between biopsy and diffusion- weighted magnetic resonance imaging on cancer staging in localized prostate cancer. BJU Int 2010;106:1148–1151
    1. Medved M, Sammet S, Yousuf A, Oto A. MR imaging of the prostate and adjacent anatomic structures before, during, and after ejaculation: qualitative and quantitative evaluation. Radiology 2014;271(2):452–60.
    1. Rouviere O, Hartman RP, Lyonnet D. Prostate MR imaging at high-field strength: evolution or revolution? European Radiol 2006;16(2):276–84.
    1. Johnston R, Wong L-M, Warren A, Shah N, Neal D. Therole of 1.5T Tesla magnetic resonance imaging in staging prostate cancer. ANZ J Surg 2013. (83);234–238
    1. Kim BS, Kim TH, Kwon TG, Yoo ES. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer. Yonsei Med J 2012;53(3):550–6.
    1. Turkbey B, Merinio MJ, Gallardo EC, Shah V, Aras O, et al. Comparison of endorectal and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: comparison with whole- mount histopathollogy. J Magn Reson Imaging 2014:39;1443–1448
    1. Haider MA, krieger A, Elliot C, Da Rosa MR, Milot L. Prostate imaging: evaluation of reusable two- channel endorectal receiver coil for MR imaging at 1.5T. Radiology 2014:270;556–565
    1. Leake JL, Hardman R, Vijayanadh O, Thompson I, Shanbhogue A, et al. prostate MRI: access to the current practice of prostate MRI in the United States. J Am Coll Radiol 2014:11;156–160
    1. Rosen Y, Bloch N, Lenkinski RE, Greenman RL, Marquis RP, Rofsky NM. 3T MR of the prostate: reducing susceptibility gradients by inflating the endorectal coil with barium sulfate suspension. Magn Reson Med 2007;57:898–904
    1. Roethke MC, Kuru TH, Schultze S, Tichy D, Kopp-Schneider A, Fenchel M, et al. Evaluation of the ESUR PI-RADS scoring system for multiparametric MRI of the prostate with targeted MR/TRUS fusion-guided biopsy at 3.0 Tesla. European Radiol 2014. February;24(2): 344–52.
    1. Niaf E, Lartizien C, Bratan F, Roche L, Babilloud M, et al. Prostate focal peripheral zone lesions; characterization at multiparametric MR imaging-influence of computer-aided diagnosis system. Radiology 2014;271:761–769
    1. Hambrock T, Vos PC, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ. Prostate cancer: computer-aided diagnosis with mulitparametric 3-T MR imaging effect on observer performance. Radiology 2013;266:521–530
Section II: Normal Anatomy and Benign Findings
    1. McNeal JE. The Zonal anatomy of the prostate. The Prostate 1981;2:35–49
    2. McNeal JE. Normal histology of the prostate. Am J Surg Pathol 1988;12:619–33
    1. Villers A, Lemaitre L, Haffner J, Puech P. Current status of MRI for the diagnosis, staging and prognosis of prostate cancer: implications for focal therapy and active surveillance. Curr Opin Urol 2009;19:274–82
    1. Vargas HA, Akin O, Franiel T, Goldman DA, Udo K, et al. Normal cnetal s zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications. Radiology 2012;262:894–902
    1. Shebel HM, Farg HM, Kolokythas O, El-Diasty T. Cysts of the lower male genitourinary tract: embryologic and anatomic considerations and differential diagnosis. Radiographics 2013. Jul- Aug;33(4):1125–43.
    1. Krieger JN, Lee SWH, Jeon J, Cheah PY, Liong ML, et al. Epidemiology of prostatitis. Int J Antimicrob Agents 2008:31 (Suppl 1): 85–90
    1. Nagel NNA, Schouten MG, Hambrock T, Litjens GJS, Hoeks CMA, et al. Differentiation of prostatitis and prostate cancer by using diffusion-weighted MR imaging and MR-guided biopsy at 3T. Radiology 2013;267:164–172
    1. Engelhard K, Hollenback HP, Deimiing M, Kerckel M, Riedi C. Combination of signal intensity measurements of lesions in the peripheral zone of prostate with MRI and serum PSA level for differentiating benign disease from prostate cancer. Eur Radiol 2000;10(12);1947–1953
Section III: Assessment and Reporting
    1. Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1994. February 2;271(5):368–74.
    1. Goto Y, Ohori M, Arakawa A, Kattan MW, Wheeler TM, Scardino PT. Distinguishing clinically important from unimportant prostate cancers before treatment: value of systematic biopsies. J Urol 1996. September;156(3): 1059–63.
    1. Harnden P, Naylor B, Shelley MD, Clements H, Coles B, Mason MD. The clinical management of patients with a small volume of prostatic cancer on biopsy: what are the risks of progression? A systematic review and meta-analysis. Cancer 2008. March 1;112(5):971–81.
    1. Wolters T, Roobol MJ, van Leeuwen PJ, van den Bergh RC, Hoedemaeker RF, van Leenders GJ, et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial. J Urol 2011. January;185(1): 121–5.
    1. Vargas HA, Akin O, Shukla-Dave A, Zhang J, Zakian KL, et al. Performance characteristics of MR imaging in the evaluation of clinically low-risk prostate cancer: a prospective study. Radiology 2012;265:478–487
    1. Ren J, Yang Y, Zhang J, Xu J, Liu Y, Wei M, et al. T(2)-weighted combined with diffusion-weighted images for evaluating prostatic transition zone tumors at 3 Tesla. Future Oncol 2013. April;9(4):585–93.
    1. Delongchamps NB, Rouanne M, Flam T, Beuvon F, Liberatore M, Zerbib M, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2- weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU international. 2011. May;107(9):1411–8.
    1. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 2010. April;255(1):89–99.
    1. Rosenkrantz AB, Mussi TC, Borofsky MS, Scionti SS, Grasso M, Taneja SS. 3.0 T multi-parametric prostate MRI using pelvic phased-array coil: utility for tumor detection prior to biopsy. Urologic Oncology 2013. November;31(8):1430–5.
    1. Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 2011. May;259(2):453–61.
    1. Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, Kruecker J, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 2011. February;258(2):488–95.
    1. Tamada T, Kanomata N, Sone T, Jo Y, Miyaji Y, Higashi H, et al. High b value (2,000 s/mm2) diffusion- weighted magnetic resonance imaging in prostate cancer at 3 Tesla: comparison with 1,000 s/mm2 for tumor conspicuity and discrimination of aggressiveness. PLOS ONE 2014;9(5):e96619.
    1. Kitajima K, Takahashi S, Ueno Y, Yoshikawa T, Ohno Y, Obara M, et al. Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm(2)) and standard high b-value (1000 s/mm(2)). J Magn Reson Imaging 2012. July;36(1):198–205.
    1. Grant KB, Agarwal HK, Shih JH, Bernardo M, Pang Y, Daar D, et al. Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging 2014. September 16.
    1. Bittencourt LK, Attenberger UI, Lima D, Strecker R, de Oliveira A, Schoenberg SO, et al. Feasibility study of computed vs measured high b-value (1400 s/mm(2)) diffusion-weighted MR images of the prostate. World J Radiol 2014. June 28;6(6):374–80.
    1. Rosenkrantz AB, Mannelli L, Kong X, Niver BE, Berkman DS, Babb JS, et al. Prostate cancer: utility of fusion of T2-weighted and high b-value diffusion-weighted images for peripheral zone tumor detection and localization. J Magn Reson Imaging 2011. July;34(1):95–100.
    1. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009. February;11(2):102–25.
    1. Maas MC, Futterer JJ, Scheenen TW. Quantitative evaluation of computed high B value diffusion weighted magnetic resonance imaging of the prostate. Invest Radiol 2013. November;48(11):779–86.
    1. Metens T, Miranda D, Absil J, Matos C. What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? European Radiol 2012. March;22(3):703–9.
    1. Rosenkrantz AB, Hindman N, Lim RP, Das K, Babb JS, et al. Diffusion-weighted imaign of the prostate: comparison ofb1000andb2000imagesetsforindexlesiondetection. J Magn Reson Imaging 2013;38:694–700
    1. Bieencourt LK, Attenberger UI, Lima D, Strecker R, deOliveira A, et al. World J Radiol 2014. (6):374–380
    1. Medved M, Soylu-Boy FN, Karademir I, Sthei I, Yousef A,et al. High-resolution diffusion-weighted imaging of the prostate. AJR 2014:203:85–90
    1. Iwazawa J, Mitani T, Sassa S, Ohue S. Prostate cancer detection with MRI: is dynamic contrast- enhanced imaging necessary in addition to diffusion-weighted imaging? Diagn Interv Radiol 2011. September;17(3):243–8.
    1. Hoeks CM, Somford DM, van Oort IM, Vergunst H, Oddens JR, Smits GA, et al. Value of 3-T multiparametric magnetic resonance imaging and magnetic resonance-guided biopsy for early risk restratification in active surveillance of low-risk prostate cancer: a prospective multicenter cohort study. Invest Radiol 2014. March;49(3):165–72.
    1. Vourganti S, Rastinehad A, Yerram NK, Nix J, Volkin D, Hoang A, et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transracial ultrasound biopsies. J Urol 2012. December;188(6):2152–7.
    1. Hegde JV, Chen MH, Mulkern RV, Fennessy FM, D’Amico AV, Tempany CM. Preoperative 3-Tesla multiparametric endorectal magnetic resonance imaging findingsand the odds of upgrading and upstaging at radical prostatectomy in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2013. February 1;85(2):e101–7.
    1. Cornud F, Khoury G, Bouazza N, Beuvon F, Peyromaure M, Flam T, et al. Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation? J Urol 2014. May;191(5):1272–9.
    1. Kuru TH, Roethke MC, Rieker P, Roth W, Fenchel M, Hohenfellner M, et al. Histology core-specific evaluation of the European Society of Urogenital Radiology (ESUR) standardized scoring system of multiparametric magnetic resonance imaging (mpMRI) of the prostate. BJU international 2013. December;112(8):1080–7.
    1. Somford DM, Hamoen EH, Futterer JJ, van Basten JP, Hulsbergen-van de Kaa CA, Vreuls W, et al. The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol 2013. November;190(5):1728–34.
    1. Tamada T, Sone T, Higashi H, Jo Y, Yamamoto A, Kanki A, et al. Prostate cancer detection in patients with total serum prostate-specific antigen levels of 4–10 ng/mL: diagnostic efficacy of diffusion- weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging. Am J Roentgenology 2011. September;197(3):664–70.
    1. Miller GJ, Cygan JM. Morphology of prostate cancer: the effects of multifocality on histological grade, tumor volume and capsule penetration. JURO 1994. November;152(5 Pt 2):1709–13.
    1. Arora R, Koch MO, Eble JN, Ulbright TM, Li L, Cheng L. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer 2004;100(11):2362–6.
    1. Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH. Margin status after laparoscopic radical prostatectomy and the index lesion: implications for preoperative evaluation of tumor focality in prostate cancer. Journal of Endourology 2012. May;26(5):503–8.
    1. Algaba F, Montironi R. Impact of prostate cancer multifocality on its biology and treatment. Journal of Endourology 2010. May;24(5):799–804.
    1. Wise AM, Stamey TA, McNeal JE, Clayton JL. Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology 2002. August;60(2):264–9.
    1. Epstein JI. Prognostic significance of tumor volume in radical prostatectomy and needle biopsy specimens. The Journal of Urology. 2011. September;186(3):790–7.
    1. van der Kwast TH, Amin MB, Billis A, Epstein JI, Griffiths D, Humphrey PA, et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 2: T2 substaging and prostate cancer volume. Modern Pathology Nature Publishing Group; 2010. September 3;24(1):16–25.
    1. Rud E, Klotz D, Rennesund K, Baco E, Berge V, Lien D, Svindland A, Lunde by E, Berg RE, Eri LM, Eggesbø HB. Detection of the Index Tumor and Tumor Volume in Prostate Cancer using T2w and DW MRI alone. BJU Int 2014. January 21 10.1111/bju.12637.
Section V: Staging
    1. Engelbrecht MR, Jager GJ, Laheij RJ, Verbeek AL, van Lier HJ, Barentsz JO. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. European Radiol 2002. September;12(9):2294–302.
    1. Johnston R, Wong LM, Warren A, Shah N, Neal D. The role of 1.5 Tesla magnetic resonance imaging in staging prostate cancer. ANZ J Surg 2013. April;83(4):234–8.
    1. Wang L, Mullerad M, Chen HN, Eberhardt SC, Kattan MW, Scardino PT, Hricak H. Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology 2004;232:133–9.
    1. Renard-Penna R, Roupret M, Comperat E, Ayed A, Coudert M, Mozer P, et al. Accuracy of high resolution (1.5 tesla) pelvic phased array magnetic resonance imaging (MRI) in staging prostate cancer in candidates for radical prostatectomy: results from a prospective study. Urologic Oncology 2013. May;31(4):448–54.
    1. Thoeny HC, Froeliich JM, Triantafyllou M, Huesler J, Bains LJ, et al. Metastases in norma-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 2014;273:125–135
    1. Baco E, Rud E, Vlatkovic L, Svindland A, Eggesbø HB, Hung AJ, et al. Predictive value of Magnetic Resonance Imaging Determined Tumor Contact Length for Extra-capsular Extension of Prostate cancer. J Urol 2014. August 20 pii: S0022–5347(14)04257–8. 10.1016/j.juro.2014.08.084.
    1. Akin O, Sala E, Moskowitz CS, Kuroiwa K, Ishill NM, Pucar D, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 2006. June;239(3):784–792.

Source: PubMed

3
Tilaa