Electroencephalographic signatures of the binge drinking pattern during adolescence and young adulthood: A PRISMA-driven systematic review

Natália Almeida-Antunes, Alberto Crego, Carina Carbia, Sónia S Sousa, Rui Rodrigues, Adriana Sampaio, Eduardo López-Caneda, Natália Almeida-Antunes, Alberto Crego, Carina Carbia, Sónia S Sousa, Rui Rodrigues, Adriana Sampaio, Eduardo López-Caneda

Abstract

Research on neurophysiological impairments associated with binge drinking (BD), an excessive but episodic alcohol use pattern, has significantly increased over the last decade. This work is the first to systematically review -following PRISMA guidelines- the empirical evidence regarding the effects of BD on neural activity -assessed by electroencephalography- of adolescents and young adults. A systematic review was conducted in 34 studies (N = 1723). Results indicated that binge drinkers (BDs) showed similar behavioral performance as non/low drinkers. The most solid electrophysiological finding was an augmented P3 amplitude during attention, working memory and inhibition tasks. This increased neural activity suggests the recruitment of additional resources to perform the task at adequate/successful levels, which supports the neurocompensation hypothesis. Similar to alcoholics, BDs also displayed increased reactivity to alcohol-related cues, augmented resting-state electrophysiological signal and reduced activity during error detection -which gives support to the continuum hypothesis. Evidence does not seem to support greater vulnerability to BD in females. Replication and longitudinal studies are required to account for mixed results and to elucidate the extent/direction of the neural impairments associated with BD.

Keywords: Adolescents; Binge drinking; EEG; Electroencephalography; Event-related potentials; Systematic review; Young adults.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram of the study selection process.
Fig. 2
Fig. 2
Number of EEG studies exploring the neurofunctional impairments associated with BD conducted per year.
Fig. 3
Fig. 3
Number of articles included in the systematic review and the type of cognitive process analyzed.
Fig. 4
Fig. 4
Number of studies exploring the amplitude and latency of each ERP component. Note. VPP: Vertex Positive Potential; ERN: Error-Related Negativity; FRN: Feedback-Related Negativity; LPC: Late Positive Component; Pe: Error Positivity.
Fig. 5
Fig. 5
Number of studies, for each ERP component, that found increased (BDs > Cs), decreased (BDs 

Fig. 6

Schematic depiction of the similarities…

Fig. 6

Schematic depiction of the similarities and differences in the electroencephalographic (EEG) profile of…

Fig. 6
Schematic depiction of the similarities and differences in the electroencephalographic (EEG) profile of binge drinkers (BDs) and alcohol-dependent individuals. Young BDs seem to display a similar profile as that of alcohol-dependent subjects during (A) resting state, and (B) visualization of alcohol-related pictures. Bottom left (C), representation of the brain overactivation observed in BDs during some cognitive tasks –accompanied by a satisfactory level of performance- presumably related to a neurocompensatory mechanism. Bottom right (D), illustration of how BDs’ electrophysiological activity resembles that of alcoholics as the severity of alcohol use is sustained and/or increases over time.
Fig. 6
Fig. 6
Schematic depiction of the similarities and differences in the electroencephalographic (EEG) profile of binge drinkers (BDs) and alcohol-dependent individuals. Young BDs seem to display a similar profile as that of alcohol-dependent subjects during (A) resting state, and (B) visualization of alcohol-related pictures. Bottom left (C), representation of the brain overactivation observed in BDs during some cognitive tasks –accompanied by a satisfactory level of performance- presumably related to a neurocompensatory mechanism. Bottom right (D), illustration of how BDs’ electrophysiological activity resembles that of alcoholics as the severity of alcohol use is sustained and/or increases over time.

References

    1. Abrahao K.P., Salinas A.G., Lovinger D.M. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron. 2017;96:1223–1238. doi: 10.1016/j.neuron.2017.10.032.
    1. Affan R.O., Huang S., Cruz S.M., Holcomb L.A., Nguyen E., Marinkovic K. High-intensity binge drinking is associated with alterations in spontaneous neural oscillations in young adults. Alcohol. 2018;70:51–60. doi: 10.1016/j.alcohol.2018.01.002.
    1. Ahmed K.M., Al Dhubaib B. Zotero: A bibliographic assistant to researcher. J. Pharm. Pharmacol. 2011;2:303–305. doi: 10.4103/0976-500X.85940.
    1. Allom V., Mullan B., Hagger M. Does inhibitory control training improve health behavior? A meta-analysis. Health Psychol. Rev. 2016;10:168–186. doi: 10.1080/17437199.2015.1051078.
    1. Baddeley A., Chincotta D., Adlam A. Working memory and the control of action: Evidence from task switching. J. Exp. Psychol. Gen. 2001;130:641. doi: 10.1037//0096-3445.130.4.641.
    1. Bailey K., Bartholow B.D., Saults J.S., Lust S.A. Give me just a little more time: Effects of alcohol on the failure and recovery of cognitive control. J. Abnorm. Psychol. 2014;123:152–167. doi: 10.1037/a0035662.
    1. Bauer L.O., Ceballos N.A. Neural and genetic correlates of binge drinking among college women. Biol. Psychol. 2014;97:43–48. doi: 10.1016/j.biopsycho.2014.01.005.
    1. Bartholow B.D., Henry E.A., Lust S.A. Effects of alcohol sensitivity on P3 event-related potential reactivity to alcohol cues. Psychol. Addict. Behav. 2007;21:555. doi: 10.1037/0893-164X.21.4.555.
    1. Bartholow B.D., Henry E.A., Lust S.A., Saults J.S., Wood P.K. Alcohol effects on performance monitoring and adjustment: Affect modulation and impairment of evaluative cognitive control. J. Abnorm. Psychol. 2012;121:173–186. doi: 10.1037/a0023664.
    1. Bava S., Tapert S.F. Adolescent brain development and the risk for alcohol and other drug problems. Neuropsychol. Rev. 2010;20:398–413. doi: 10.1007/s11065-010-9146-6.
    1. Becker H.C. Kindling in alcohol withdrawal. Alcohol Health Res. World. 1998;22:25.
    1. Bernardin F., Maheut-Bosser A., Paille F. Cognitive impairments in alcohol-dependent subjects. Front. Psychiatry. 2014;5:78. doi: 10.3389/fpsyt.2014.00078.
    1. Blakemore S.J. Imaging brain development: the adolescent brain. Neuroimage. 2012;61:397–406. doi: 10.1016/j.neuroimage.2011.11.080.
    1. Blanco-Ramos J., Cadaveira F., Folgueira-Ares R., Corral M., Rodríguez Holguín S. Electrophysiological correlates of an alcohol-cued go/nogo task: a dual-process approach to binge drinking in university students. Int. J. Environ. Res. Public Health. 2019;16:4550. doi: 10.3390/ijerph16224550.
    1. Bledowski C., Prvulovic D., Goebel R., Zanella F.E., Linden D.E. Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage. 2004;22:530–540. doi: 10.1016/j.neuroimage.2003.12.034.
    1. Boelema S.R., Harakeh Z., Ormel J., Hartman C.A., Vollebergh W.A., van Zandvoort M.J. Executive functioning shows differential maturation from early to late adolescence: Longitudinal findings from a TRAILS study. Neuropsychology. 2014;28:177. doi: 10.1037/neu0000049.
    1. Bø R., Billieux J., Landrø N.I. Which facets of impulsivity predict binge drinking? Addict. Behav. Rep. 2016;3:43–47. doi: 10.1016/j.abrep.2016.03.001.
    1. Bollen Z., Masson N., Salvaggio S., D’Hondt F., Maurage P. Craving is everything: An eye-tracking exploration of attentional bias in binge drinking. J. Psychopharmacol. 2020;34:636–647. doi: 10.1177/0269881120913131.
    1. Bonomo Y.A., Bowes G., Coffey C., Carlin J.B., Patton G.C. Teenage drinking and the onset of alcohol dependence: a cohort study over seven years. Addict. 2004;99:1520–1528. doi: 10.1111/j.1360-0443.2004.00846.x.
    1. Brion M., Pitel A.L., D’Hondt F. New Perspectives in the Exploration of Korsakoff’s Syndrome: The Usefulness of Neurophysiological Markers. Front. Psychol. 2016;7:168. doi: 10.3389/fpsyg.2016.00168.
    1. Brumback T., Squeglia L.M., Jacobus J., Pulido C., Tapert S.F., Brown S.A. Adolescent heavy drinkers' amplified brain responses to alcohol cues decrease over one month of abstinence. Addict. Behav. 2015;46:45–52. doi: 10.1016/j.addbeh.2015.03.001.
    1. Campanella S. Why it is time to develop the use of cognitive event-related potentials in the treatment of psychiatric diseases. Neuropsychiatr. Dis. Treat. 2013;9:1835. doi: 10.2147/NDT.S53687.
    1. Campanella S., Peigneux P., Petit G., Lallemand F., Saeremans M., Noël X., Ward R. Increased cortical activity in binge drinkers during working memory task: a preliminary assessment through a functional magnetic resonance imaging study. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0062260.
    1. Campanella S., Petit G., Maurage P., Kornreich C., Verbanck P., Noël X. Chronic alcoholism: insights from neurophysiology. Clin. Neurophysiol. 2009;39:191–207. doi: 10.1016/j.neucli.2009.08.002.
    1. Campanella S., Schroder E., Kajosch H., Hanak C., Veeser J., Amiot M., Kornreich C. Neurophysiological markers of cue reactivity and inhibition subtend a three-month period of complete alcohol abstinence. Clin. Neurophysiol. 2020;131:555–565. doi: 10.1016/j.clinph.2019.10.020.
    1. Campanella S., Schroder E., Kajosch H., Noel X., Kornreich C. Why cognitive event-related potentials (ERPs) should have a role in the management of alcohol disorders. Neurosci. Biobehav. Rev. 2019;106:234–244. doi: 10.1016/j.neubiorev.2018.06.016.
    1. Carbia C., Cadaveira F., Caamano-Isorna F., Rodriguez-Holguin S., Corral M. Binge drinking during adolescence and young adulthood is associated with deficits in verbal episodic memory. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0171393.
    1. Carbia C., Cadaveira F., López-Caneda E., Caamaño-Isorna F., Holguín S.R., Corral M. Working memory over a six-year period in young binge drinkers. Alcohol. 2017;61:17–23. doi: 10.1016/j.alcohol.2017.01.013.
    1. Carbia C., López-Caneda E., Corral M., Cadaveira F. A systematic review of neuropsychological studies involving young binge drinkers. Neurosci. Biobehav. Rev. 2018;90:332–349. doi: 10.1016/j.neubiorev.2018.04.013.
    1. Chanraud, S., Sullivan, E.V., 2014. Compensatory recruitment of neural resources in chronic alcoholism. In Handbook of clinical neurology (Vol. 125, pp. 369-380). Elsevier.
    1. Chevrier A.D., Noseworthy M.D., Schachar R. Dissociation of response inhibition and performance monitoring in the stop signal task using event-related fMRI. Hum. Brain Mapp. 2007;28:1347–1358.
    1. Colrain I.M., Sullivan E.V., Ford J.M., Mathalon D.H., McPherson S.L., Roach B.J., Pfefferbaum A. Frontally mediated inhibitory processing and white matter microstructure: age and alcoholism effects. Psychopharmacology. 2011;213:669–679. doi: 10.1007/s00213-010-2073-7.
    1. Cornblatt B.A., Risch N.J., Faris G., Friedman D., Erlenmeyer-Kimling L. The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res. 1988;26:223–238. doi: 10.1016/0165-1781(88)90076-5.
    1. Courtney K.E., Polich J. Binge drinking effects on EEG in young adult humans. Int. J. Environ. Res. Public Health. 2010;7:2325–2336. doi: 10.3390/ijerph7052325.
    1. Correas A., Cuesta P., Rosen B.Q., Maestu F., Marinkovic K. Compensatory neuroadaptation to binge drinking: Human evidence for allostasis. Addict. Biol. 2020;e12960 doi: 10.1111/adb.12960.
    1. Correas Á., López-Caneda E., Beaton L., Rodríguez Holguín S., García-Moreno L.M., Antón-Toro L.F., Marinkovic K. Decreased event-related theta power and phase-synchrony in young binge drinkers during target detection: An anatomically-constrained MEG approach. J. Psychopharmacol. 2019;33:335–346. doi: 10.1177/0269881118805498.
    1. Crean R.D., Crane N.A., Mason B.J. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addiction Medicine. 2011;5:1. doi: 10.1097/ADM.0b013e31820c23fa.
    1. Crego A., Cadaveira F., Parada M., Corral M., Caamaño-Isorna F., Holguín S.R. Increased amplitude of P3 event-related potential in young binge drinkers. Alcohol. 2012;46:415–425. doi: 10.1016/j.alcohol.2011.10.002.
    1. Crego A., Holguín S.R., Parada M., Mota N., Corral M., Cadaveira F. Binge drinking affects attentional and visual working memory processing in young university students. Alcohol. Clin. Exp. Res. 2009;33:1870–1879. doi: 10.1111/j.1530-0277.2009.01025.x.
    1. Crego A., Rodriguez-Holguín S., Parada M., Mota N., Corral M., Cadaveira F. Reduced anterior prefrontal cortex activation in young binge drinkers during a visual working memory task. Drug Alcohol Depend. 2010;109:45–56. doi: 10.1016/j.drugalcdep.2009.11.020.
    1. Crone E.A., Ridderinkhof K.R. The developing brain: from theory to neuroimaging and back. Dev. Cogn. Neurosci. 2011;1:101–109.
    1. Cservenka A., Brumback T. The burden of binge and heavy drinking on the brain: effects on adolescent and young adult neural structure and function. Front. Psychol. 2017;8:1111. doi: 10.3389/fpsyg.2017.01111.
    1. Czapla M., Simon J.J., Friederich H.C., Herpertz S.C., Zimmermann P., Loeber S. Is binge drinking in young adults associated with an alcohol-specific impairment of response inhibition? Eur. Addict. Res. 2015;21:105–113. doi: 10.1159/000367939.
    1. Dager A.D., Anderson B.M., Stevens M.C., Pulido C., Rosen R., Jiantonio-Kelly R.E., Wood R.M. Influence of alcohol use and family history of alcoholism on neural response to alcohol cues in college drinkers. Alcohol.: Clin. Exp. Res. 2013;37:E161–E171. doi: 10.1111/j.1530-0277.2012.01879.x.
    1. Diamond A. Executive functions. Annual Rev. of. Psychology. 2013;64:135–168.
    1. Di Lemma L.C., Stancak A., Soto V., Fallon N., Field M. Event-related and readiness potentials when preparing to approach and avoid alcohol cues following cue avoidance training in heavy drinkers. Psychopharmacology. 2020;1–16 doi: 10.1007/s00213-020-05462-7.
    1. Doallo S., Cadaveira F., Corral M., Mota N., López-Caneda E., Holguín S.R. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0096380.
    1. Dormal V., Lannoy S., Bollen Z., D’Hondt F., Maurage P. Can we boost attention and inhibition in binge drinking? Electrophysiological impact of neurocognitive stimulation. Psychopharmacology. 2020;1–13 doi: 10.1007/s00213-020-05475-2.
    1. Dormal V., Lannoy S., Maurage P. Impact of exchange stay on alcohol consumption: longitudinal exploration in a large sample of European students. Alcohol. Clin. Exp. Res. 2019;43:1220–1224. doi: 10.1111/acer.14028.
    1. Easdon C., Izenberg A., Armilio M.L., Yu H., Alain C. Alcohol consumption impairs stimulus-and error-related processing during a Go/No-Go Task. Cogn. Brain Res. 2005;25:873–883. doi: 10.1016/j.cogbrainres.2005.09.009.
    1. Enoch M.A. Genetic and environmental influences on the development of alcoholism: resilience vs. risk. Ann. N. Y. Acad. Sci. 2006;1094:193–201. doi: 10.1196/annals.1376.019.
    1. Eurobarometer, S., 2010. EU Citizens’ Attitudes Towards Alcohol. Brussels: European Commission. Retrieved from 331_en.pdf.
    1. Fein G., Chang M. Visual P300s in long-term abstinent chronic alcoholics. Alcohol.: Clin. Exp. Res. 2006;30:2000–2007. doi: 10.1111/j.1530-0277.2006.00246.x.
    1. Fein G., Chang M. Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment-naive alcoholics. Drug Alcohol Depend. 2008;92:141–148. doi: 10.1016/j.drugalcdep.2007.07.017.
    1. Field M., Eastwood B. Experimental manipulation of attentional bias increases the motivation to drink alcohol. Psychopharmacology. 2005;183:350–357. doi: 10.1007/s00213-005-0202-5.
    1. Field M., Wiers R.W., Christiansen P., Fillmore M.T., Verster J.C. Acute alcohol effects on inhibitory control and implicit cognition: implications for loss of control over drinking. Alcohol. Clin. Exp. Res. 2010;34:1346–1352. doi: 10.1111/j.1530-0277.2010.01218.x.
    1. Flaudias V., Heeren A., Brousse G., Maurage P. Toward a triadic approach to craving in addictive disorders: the metacognitive Hub Model. Harvard Rev. Psychiatry. 2019;27:326–331. doi: 10.1097/HRP.0000000000000225.
    1. Folgueira-Ares R., Cadaveira F., Rodríguez Holguín S., López-Caneda E., Crego A., Pazo-Álvarez P. electrophysiological anomalies in Face–name Memory encoding in Young Binge Drinkers. Front. Psychiatry. 2017;8:216. doi: 10.3389/fpsyt.2017.00216.
    1. Folstein J.R., Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 2008;45:152–170. doi: 10.1111/j.1469-8986.2007.00602.x.
    1. Fuhrmann D., Knoll L.J., Blakemore S.J. Adolescence as a sensitive period of brain development. Trends Cogn. Sci. 2015;19:558–566. doi: 10.1016/j.tics.2015.07.008.
    1. Herrmann M.J., Weijers H.G., Wiesbeck G.A., Aranda D., Böning J., Fallgatter A.J. Event-related potentials and cue-reactivity in alcoholism. Alcohol.: Clin. Exp. Res. 2000;24:1724–1729. doi: 10.1111/j.1530-0277.2000.tb01974.x.
    1. Herrmann M.J., Weijers H.G., Wiesbeck G.A., Böning J., Fallgatter A.J. Alcohol cue-reactivity in heavy and light social drinkers as revealed by event-related potentials. Alcohol Alcohol. 2001;36:588–593. doi: 10.1093/alcalc/36.6.588.
    1. Holcomb L.A., Huang S., Cruz S.M., Marinkovic K. Neural oscillatory dynamics of inhibitory control in young adult binge drinkers. Biol. Psychol. 2019;146 doi: 10.1016/j.biopsycho.2019.107732.
    1. Holguín, S.R., Porjesz, B., Chorlian, D. B., Polich, J., Begleiter, H., 1999. Visual P3a in male subjects at high risk for alcoholism. Biological Psychiatry. 46, 281–291. Biol. Psychiatry. .
    1. Howell N.A., Worbe Y., Lange I., Tait R., Irvine M., Banca P., Voon V. Increased ventral striatal volume in college-aged binge drinkers. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0074164.
    1. Houston R.J., Schlienz N.J. Event-related potentials as biomarkers of behavior change mechanisms in substance use disorder treatment. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:30–40. doi: 10.1016/j.bpsc.2017.09.006.
    1. Huang S., Holcomb L.A., Cruz S.M., Marinkovic K. Altered oscillatory brain dynamics of emotional processing in young binge drinkers. Cogn. Affect. Behav. Neurosci. 2018;18:43–57. doi: 10.3758/s13415-017-0551-7.
    1. Jones S.A., Cservenka A., Nagel B.J. Binge drinking impacts dorsal striatal response during decision making in adolescents. Neuroimage. 2016;129:378–388. doi: 10.1016/j.neuroimage.2016.01.044.
    1. Jones S.A., Lueras J.M., Nagel B.J. Effects of binge drinking on the developing brain: studies in humans. Alcohol Res. Health. 2018;39:87.
    1. Jurado-Barba R., Sion A., Martínez-Maldonado A., Domínguez-Centeno I., Prieto-Montalvo J., Navarrete F., Rubio G. Neuropsychophysiological Measures of Alcohol Dependence: Can We Use EEG in the Clinical Assessment? Front. Psychiatry. 2020;11 doi: 10.3389/fpsyt.2020.00676.
    1. Kamarajan C. Academic Press; 2019. Brain Electrophysiological Signatures in Human Alcoholism and Risk. Neuroscience of Alcohol; pp. 119–130.
    1. Kamarajan C., Porjesz B., Jones K.A., Choi K., Chorlian D.B., Padmanabhapillai A., Begleiter H. The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism. Int. J. Psychophysiol. 2004;51:155–180. doi: 10.1016/j.ijpsycho.2003.09.004.
    1. Kamarajan C., Rangaswamy M., Tang Y., Chorlian D.B., Pandey A.K., Roopesh B.N., Porjesz B. Dysfunctional reward processing in male alcoholics: an ERP study during a gambling task. J. Psychiatr. Res. 2010;44:576–590. doi: 10.1016/j.jpsychires.2009.11.019.
    1. Katsuki F., Constantinidis C. Bottom-up and top-down attention: different processes and overlapping neural systems. Neuroscientist. 2013;20:509–521. doi: 10.1177/1073858413514136.
    1. Kiat J.E., Cheadle J.E. Tick–tock goes the croc: a high-density EEG study of risk-reactivity and binge-drinking. Soc. Cogn. Affect. Neurosci. 2018;13:656–663. doi: 10.1093/scan/nsy038.
    1. Kim E.H., Kim M.S. An event-related potential study of error-monitoring deficits in female college students who participate in binge drinking. Clin. Psychopharmacol Neurosci. 2019;17:80. doi: 10.9758/cpn.2019.17.1.80.
    1. Kraus, L., Guttormsson, U., Leifman, H., Arpa, S., Molinaro, S., Monshouwer, K., et al., 2016. ESPAD Report 2015. Results from the European School Survey Project on Alcohol and Other Drugs. Lisbon: European Monitoring Centre for Drugs and Drug Addiction and the European School Survey Project on Alcohol and Other Drugs. Available online at: files/ESPAD_report_2015.pdf.
    1. Kvamme T.L., Schmidt C., Strelchuk D., Chang-Webb Y.C., Baek K., Voon V. Sexually dimorphic brain volume interaction in college-aged binge drinkers. Neuroimage Clin. 2015;10:310–317. doi: 10.1016/j.nicl.2015.12.004.
    1. Lannoy S., Billieux J., Dormal V., Maurage P. Behavioral and cerebral impairments associated with binge drinking in youth: A critical review. Psychol. Belg. 2019;59:116. doi: 10.5334/pb.476.
    1. Lannoy S., Billieux J., Maurage P. Beyond inhibition: A dual-process perspective to renew the exploration of binge drinking. Front. Hum. Neurosci. 2014;8:405. doi: 10.3389/fnhum.2014.00405.
    1. Lannoy S., Dormal V., Billieux J., Brion M., D'Hondt F., Maurage P. A dual-process exploration of binge drinking: Evidence through behavioral and electrophysiological findings. Addict. Biol. 2020;25:1–10. doi: 10.1111/adb.12685.
    1. Lannoy S., D’hondt F., Dormal V., Billieux J., Maurage P. Electrophysiological correlates of performance monitoring in binge drinking: Impaired error-related but preserved feedback processing. Clin. Neurophysiol. 2017;128:2110–2121. doi: 10.1016/j.clinph.2017.08.005.
    1. Lannoy S., D’Hondt F., Dormal V., Blanco M., Brion M., Billieux J., Maurage P. Electrophysiological correlates of emotional crossmodal processing in binge drinking. Cogn. Affect. Behav. Neurosci. 2018;18:1076–1088. doi: 10.3758/s13415-018-0623-3.
    1. Larson M.J., Clayson P.E., Clawson A. Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int. J. Psychophysiol. 2014;93:283–297. doi: 10.1016/j.ijpsycho.2014.06.007.
    1. Lees B., Mewton L., Stapinski L.A., Squeglia L.M., Rae C.D., Teesson M. Neurobiological and cognitive profile of young binge drinkers: a systematic review and meta-analysis. Neuropsychol. Rev. 2019;1–29 doi: 10.1007/s11065-019-09411-w.
    1. López-Caneda E., Cadaveira F., Campanella S. Binge drinking in the adolescent and young brain. Front. Psychol. 2019;9:2724. doi: 10.3389/fpsyg.2018.02724.
    1. López-Caneda E., Cadaveira F., Correas A., Crego A., Maestú F., Rodríguez Holguín S. The brain of binge drinkers at rest: alterations in theta and beta oscillations in first-year college students with a binge drinking pattern. Front. Behav. Neurosci. 2017;11:168. doi: 10.3389/fnbeh.2017.00168.
    1. López-Caneda E., Cadaveira F., Crego A., Doallo S., Corral M., Gómez-Suárez A., Rodríguez Holguín S. Effects of a persistent binge drinking pattern of alcohol consumption in young people: a follow-up study using event-related potentials. Alcohol and Alcohol. 2013;48:464–471. doi: 10.1093/alcalc/agt046.
    1. López-Caneda E., Cadaveira F., Crego A., Gómez-Suárez A., Corral M., Parada M., Rodríguez Holguín S. Hyperactivation of right inferior frontal cortex in young binge drinkers during response inhibition: a follow-up study. Addiction. 2012;107:1796–1808. doi: 10.1111/j.1360-0443.2012.03908.x.
    1. López-Caneda E., Crego A., Campos A.D., González-Villar A., Sampaio A. The Think/No-Think Alcohol Task: A New Paradigm for Assessing Memory Suppression in Alcohol-Related Contexts. (2019b) Alcohol. Clin. Exp. Res. 2019;43:36–47. doi: 10.1111/acer.13916.
    1. López-Caneda E., Holguín S.R., Cadaveira F., Corral M., Doallo S. Impact of alcohol use on inhibitory control (and vice versa) during adolescence and young adulthood: a review. Alcohol and Alcohol. 2014;49:173–181. doi: 10.1093/alcalc/agt168.
    1. López-Caneda E., Holguín S.R., Corral M., Doallo S., Cadaveira F. Evolution of the binge drinking pattern in college students: Neurophysiological correlates. Alcohol. 2014;48:407–418. doi: 10.1016/j.alcohol.2014.01.009.
    1. López-Caneda E., Holguín S.R., Correas Á., Carbia C., González-Villar A., Maestú F., Cadaveira F. Binge drinking affects brain oscillations linked to motor inhibition and execution. J. Psychopharmacol. 2017;31:873–882. doi: 10.1177/0269881116689258.
    1. Luck S.J. MIT press; 2014. An introduction to the event-related potential technique.
    1. Luna B., Marek S., Larsen B., Tervo-Clemmens B., Chahal R. An integrative model of the maturation of cognitive control. Annu. Rev. Neurosci. 2015;38:151–170.
    1. Manchery L., Yarmush D.E., Luehring-Jones P., Erblich J. Attentional bias to alcohol stimuli predicts elevated cue-induced craving in young adult social drinkers. Addict. Behav. 2017;70:14–17. doi: 10.1016/j.addbeh.2017.01.035.
    1. Maurage P., Joassin F., Speth A., Modave J., Philippot P., Campanella S. Cerebral effects of binge drinking: respective influences of global alcohol intake and consumption pattern. Clin. Neurophysiol. 2012;123:892–901. doi: 10.1016/j.clinph.2011.09.018.
    1. Maurage P., Lannoy S., Mange J., Grynberg D., Beaunieux H., Banovic I., Gierski F., Naassila M. What We Talk About When We Talk About Binge Drinking: Towards an Integrated Conceptualization and Evaluation. Alcohol Alcohol. 2020;55:468–479. doi: 10.1093/alcalc/agaa041.
    1. Maurage P., Pesenti M., Philippot P., Joassin F., Campanella S. Latent deleterious effects of binge drinking over a short period of time revealed only by electrophysiological measures. J. Psychiatry Neurosci. 2009;34:111.
    1. McHugh, M.L., 2012. Interrater reliability: the kappa statistic. Biochem. Med. 22, 276–282. Retrieved from .
    1. McCambridge J., McAlaney J., Rowe R. Adult consequences of late adolescent alcohol consumption: a systematic review of cohort studies. PLoS Med. 2011;8 doi: 10.1371/journal.pmed.1000413.
    1. McCarty C.A., Ebel B.E., Garrison M.M., DiGiuseppe D.L., Christakis D.A., Rivara F.P. Continuity of binge and harmful drinking from late adolescence to early adulthood. Pediatrics. 2004;114:714–719. doi: 10.1542/peds.2003-0864-L.
    1. Miller E.K. The prefontral cortex and cognitive control. Nat. Rev. Neurosci. 2000;1:59–65. doi: 10.1038/35036228.
    1. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4. . 1186/2046-4053-4-1.
    1. Molnar S.M., Beaton L.E., Happer J.P., Holcomb L.A., Huang S., Arienzo D., Marinkovic K. Behavioral and brain activity indices of cognitive control deficits in binge drinkers. Brain Sci. 2018;8:9. doi: 10.3390/brainsci8010009.
    1. Mota N., Parada M., Crego A., Doallo S., Caamaño-Isorna F., Holguín S.R., Corral M. Binge drinking trajectory and neuropsychological functioning among university students: a longitudinal study. Drug Alcohol Depend. 2013;133:108–114. doi: 10.1016/j.drugalcdep.2013.05.024.
    1. Morris L.S., Dowell N.G., Cercignani M., Harrison N.A., Voon V. Binge drinking differentially affects cortical and subcortical microstructure. Addict. Biol. 2018;23:403–411. doi: 10.1111/adb.12493.
    1. Mumtaz W., Vuong P.L., Xia L., Malik A.S., Rashid R.B.A. An EEG-based machine learning method to screen alcohol use disorder. Cogn. Neurodyn. 2017;11:161–171. doi: 10.1007/s11571-016-9416-y.
    1. Na E., Jang K.M., Kim M.S. An event-related potential study of decision-making and feedback utilization in female college students who binge drink. Front. Psychol. 2019;10 doi: 10.3389/fpsyg.2019.02606.
    1. Namkoong K., Lee E., Lee C.H., Lee B.O., An S.K. Increased P3 amplitudes induced by alcohol-related pictures in patients with alcohol dependence. Alcohol.: Clin. Exp. Res. 2004;28:1317–1323. doi: 10.1097/01.ALC.0000139828.78099.69.
    1. National Heart, Lung, and Blood Institute (NHLBI), 2014. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Available at: National Heart, Lung, and Blood Institute, Bethesda, MD. .
    1. National Institute of Alcohol Abuse and Alcoholism, 2004. NIAAA Council Approves Definition of Binge Drinking. NIAAA Newsletter, 3. Available online at: .
    1. National Institute of Alcohol Abuse and Alcoholism, 2020. College Drinking [Fact Sheet]. Available online at: .
    1. Norman A.L., Pulido C., Squeglia L.M., Spadoni A.D., Paulus M.P., Tapert S.F. Neural activation during inhibition predicts initiation of substance use in adolescence. Drug Alcohol Depend. 2011;119:216–223. doi: 10.1016/j.drugalcdep.2011.06.019.
    1. Paller K.A., Wagner A.D. Observing the transformation of experience into memory. Trends Cogn. Sci. 2002;6:93–102. doi: 10.1016/S1364-6613(00)01845-3.
    1. Pandey A.K., Kamarajan C., Manz N., Chorlian D.B., Stimus A., Porjesz B. Delta, theta, and alpha event-related oscillations in alcoholics during Go/NoGo task: Neurocognitive deficits in execution, inhibition, and attention processing. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;65:158–171. doi: 10.1016/j.pnpbp.2015.10.002.
    1. Park S., Kim M.S. An event-related potential study of spatial working memory in binge drinking college students. PLoS ONE. 2018;13 doi: 10.1371/journal.pone.0203696.
    1. Park S., Schepp K.G. A systematic review of research on children of alcoholics: Their inherent resilience and vulnerability. J. Child Fam. Stud. 2015;24:1222–1231. doi: 10.1007/s10826-014-9930-7.
    1. Parsons O.A. Neurocognitive deficits in alcoholics and social drinkers: a continuum? Alcohol. Clin. Exp. Res. 1998;22:954–961. doi: 10.1111/j.1530-0277.1998.tb03895.x.
    1. Patrick M.E., Terry-McElrath Y.M., Kloska D.D., Schulenberg J.E. High-intensity drinking among young adults in the United States: Prevalence, frequency, and developmental change. Alcohol. Clin. Exp. Res. 2016;40:1905–1912. doi: 10.1111/acer.13164.
    1. Peeters M., Wiers R.W., Monshouwer K., van de Schoot R., Janssen T., Vollebergh W.A. Automatic processes in at-risk adolescents: the role of alcohol-approach tendencies and response inhibition in drinking behavior. Addiction. 2012;107:1939–1946. doi: 10.1111/j.1360-0443.2012.03948.x.
    1. Perlman G., Johnson W., Iacono W.G. The heritability of P300 amplitude in 18-year-olds is robust to adolescent alcohol use. Psychophysiology. 2009;46:962–969. doi: 10.1111/j.1469-8986.2009.00850.x.
    1. Peterburs J., Thürling M., Rustemeier M., Göricke S., Suchan B., Timmann D., Bellebaum C. A cerebellar role in performance monitoring–Evidence from EEG and voxel-based morphometry in patients with cerebellar degenerative disease. Neuropsychologia. 2015;68:139–147. doi: 10.1016/j.neuropsychologia.2015.01.017.
    1. Petit G., Cimochowska A., Cevallos C., Cheron G., Kornreich C., Hanak C., Campanella S. Reduced processing of alcohol cues predicts abstinence in recently detoxified alcoholic patients in a three-month follow up period: An ERP study. Behav. Brain Res. 2015;282:84–94. doi: 10.1016/j.bbr.2014.12.057.
    1. Petit G., Maurage P., Kornreich C., Verbanck P., Campanella S. Binge drinking in adolescents: a review of neurophysiological and neuroimaging research. Alcohol and Alcohol. 2014;49:198–206. doi: 10.1093/alcalc/agt172.
    1. Petit G., Kornreich C., Dan B., Verbanck P., Campanella S. Electrophysiological correlates of alcohol-and non-alcohol-related stimuli processing in binge drinkers: A follow-up study. J. Psychopharmacol. 2014;28:1041–1052. doi: 10.1177/0269881114545663.
    1. Petit G., Kornreich C., Maurage P., Noël X., Letesson C., Verbanck P., Campanella S. Early attentional modulation by alcohol-related cues in young binge drinkers: an event-related potentials study. Clin. Neurophysiol. 2012;123:925–936. doi: 10.1016/j.clinph.2011.10.042.
    1. Petit G., Kornreich C., Verbanck P., Campanella S. Gender differences in reactivity to alcohol cues in binge drinkers: A preliminary assessment of event-related potentials. Psychiatry Res. 2013;209:494–503. doi: 10.1016/j.psychres.2013.04.005.
    1. Pfurtscheller G., Da Silva F.L. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 1999;110:1842–1857. doi: 10.1016/S1388-2457(99)00141-8.
    1. Porjesz B., Begleiter H. Alcoholism and human electrophysiology. Alcohol Res Health. 2003;27:153.
    1. Porjesz B., Rangaswamy M., Kamarajan C., Jones K.A., Padmanabhapillai A., Begleiter H. The utility of neurophysiological markers in the study of alcoholism. Clin. Neurophysiol. 2005;116:993–1018. doi: 10.1016/j.clinph.2004.12.016.
    1. Rangaswamy M., Jones K.A., Porjesz B., Chorlian D.B., Padmanabhapillai A., Kamarajan C., Schuckit M.A. Delta and theta oscillations as risk markers in adolescent offspring of alcoholics. Int. J. Psychophysiol. 2007;63:3–15. doi: 10.1016/j.ijpsycho.2006.10.003.
    1. Rangaswamy, M., Porjesz, B., 2014. Understanding alcohol use disorders with neuroelectrophysiology. In Handbook of clinical neurology (Vol. 125, pp. 383-414). Elsevier. .
    1. Rangaswamy M., Porjesz B., Chorlian D.B., Wang K., Jones K.A., Bauer L.O., Begleiter H. Beta power in the EEG of alcoholics. Biol. Psychiatry. 2002;52:831–842. doi: 10.1016/S0006-3223(02)01362-8.
    1. Rangaswamy M., Porjesz B., Chorlian D.B., Wang K., Jones K.A., Kuperman S., Begleiter H. Resting EEG in offspring of male alcoholics: beta frequencies. Int. J. Psychophysiol. 2004;51:239–251. doi: 10.1016/j.ijpsycho.2003.09.003.
    1. Rangaswamy M., Porjesz B., Chorlian D.B., Choi K., Jones K.A., Wang K., Begleiter H. Theta power in the EEG of alcoholics. Alcohol. Clin. Exp. Res. 2003;27:607–615. doi: 10.1111/j.1530-0277.2003.tb04397.x.
    1. Ridderinkhof K.R., Van Den Wildenberg W.P., Segalowitz S.J., Carter C.S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004;56:129–140. doi: 10.1016/j.bandc.2004.09.016.
    1. Roberto M., Varodayan F.P. Synaptic targets: chronic alcohol actions. Neuropharmacology. 2017;122:85–99. doi: 10.1016/j.neuropharm.2017.01.013.
    1. Rugg M.D., Curran T. Event-related potentials and recognition memory. Trends Cogn. Sci. 2007;11:251–257. doi: 10.1016/j.tics.2007.04.004.
    1. Ryerson N.C., Neal L.B., Gable P.A. Attenuating the alcohol allure: attentional broadening reduces rapid motivational response to alcohol pictures. Psychopharmacology. 2017;234:1247–1254. doi: 10.1007/s00213-017-4557-1.
    1. Sanhueza C., Moreno L.M.G., Expósito J. Weekend alcoholism in youth and neurocognitive aging. Psicothema. 2011;23:209–214.
    1. Schacht J.P., Anton R.F., Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict. Biol. 2012;18:121–133. doi: 10.1111/j.1369-1600.2012.00464.x.
    1. Schulenberg, J., Johnston, L., O'Malley, P., Bachman, J., Miech, R., Patrick, M., 2019. Monitoring the Future national survey results on drug use, 1975-2018: Volume II, college students and adults ages 19-60.
    1. Schroder E., Dousset C., Noel X., Kornreich C., Campanella S. Increased neural activity in hazardous drinkers during high workload in a visual working memory task: a preliminary assessment through event-related potentials. Front. Psychiatry. 2019;10:248. doi: 10.3389/fpsyt.2019.00248.
    1. Shalev L., Ben-Simon A., Mevorach C., Cohen Y., Tsal Y. Conjunctive Continuous Performance Task (CCPT)—A pure measure of sustained attention. Neuropsychologia. 2011;49:2584–2591. doi: 10.1016/j.neuropsychologia.2011.05.006.
    1. Sousa S.S., Sampaio A., López-Caneda E., Bec C., Gonçalves Ó.F., Crego A. Increased Nucleus Accumbens Volume in College Binge Drinkers-Preliminary Evidence From Manually Segmented MRI Analysis. Front. Psychiatry. 2020;10:1005. doi: 10.3389/fpsyt.2019.01005.
    1. Smith J.L., De Blasio F.M., Iredale J.M., Matthews A.J., Bruno R., Dwyer M., Mattick R.P. Verbal learning and memory in cannabis and alcohol users: An event-related potential investigation. Front. Psychol. 2017;8:2129. doi: 10.3389/fpsyg.2017.02129.
    1. Smith J.L., Iredale J.M., Mattick R.P. Sex differences in the relationship between heavy alcohol use, inhibition and performance monitoring: Disconnect between behavioral and brain functional measures. Psychiatry Res. Neuroimaging. 2016;254:103–111. doi: 10.1016/j.pscychresns.2016.06.012.
    1. Smith J.L., Mattick R.P. Evidence of deficits in behavioral inhibition and performance monitoring in young female heavy drinkers. Drug Alcohol Depend. 2013;133:398–404. doi: 10.1016/j.drugalcdep.2013.06.020.
    1. Smith J.L., Mattick R.P., Jamadar S.D., Iredale J.M. Deficits in behavioral inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend. 2014;145:1–33. doi: 10.1016/j.drugalcdep.2014.08.009.
    1. Smith J.L., Mattick R.P., Sufani C. Female but not male young heavy drinkers display altered performance monitoring. Psychiatry Res. Neuroimaging. 2015;233:424–435. doi: 10.1016/j.pscychresns.2015.07.014.
    1. Smith J.L., Mattick R.P., Sufani C. Error detection and behavioral inhibition in young heavy drinkers. Drug Alcohol Depend. 2017;171:20–30. doi: 10.1016/j.drugalcdep.2016.11.016.
    1. Squeglia L.M., Schweinsburg A.D., Pulido C., Tapert S.F. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol. Clin. Exp. Res. 2011;35:1831–1841. doi: 10.1111/j.1530-0277.2011.01527.x.
    1. Squeglia L.M., Sorg S.F., Schweinsburg A.D., Wetherill R.R., Pulido C., Tapert S.F. Binge drinking differentially affects adolescent male and female brain morphometry. Psychopharmacology. 2012;220:529–539. doi: 10.1007/s00213-011-2500-4.
    1. Squeglia L.M., Tapert S.F., Sullivan E.V., Jacobus J., Meloy M.J., Rohlfing T., Pfefferbaum A. Brain development in heavy-drinking adolescents. Am. J. Psychiatry. 2015;172:531–542. doi: 10.1176/appi.ajp.2015.14101249.
    1. Stephens D.N., Duka T. Cognitive and emotional consequences of binge drinking: role of amygdala and prefrontal cortex. Philos. Trans. R. Soc. Lond., B. Biol. Sci. 2008;363:3169–3179. doi: 10.1098/rstb.2008.0097.
    1. Suárez-Suárez S., Doallo S., Pérez-García J.M., Corral M., Rodríguez Holguín S., Cadaveira F. Response Inhibition and Binge Drinking During Transition to University: An fMRI Study. Front. Psychiatry. 2020;11:535. doi: 10.3389/fpsyt.2020.00535.
    1. Substance Abuse and Mental Health Services Administration (SAMHSA), 2018. National Survey on Drug Use and Health (NSDUH). Table 2.20B - Binge Alcohol Use in Past Month among Persons Aged 12 or Older, by Age Group and Demographic Characteristics: Percentages, 2017 and 2018. Available at: .
    1. Tapert S.F., Schweinsburg A.D., Barlett V.C., Brown S.A., Frank L.R., Brown G.G., Meloy M.J. Blood oxygen level dependent response and spatial working memory in adolescents with alcohol use disorders. Alcohol.: Clin. Exp. Res. 2004;28:1577–1586. doi: 10.1097/01.ALC.0000141812.81234.A6.
    1. Ullsperger M., von Cramon D.Y. Decision making, performance and outcome monitoring in frontal cortical areas. Nat. Neurosci. 2004;7:1173–1174. doi: 10.1038/nn1104-1173.
    1. Ullsperger M., Danielmeier C., Jocham G. Neurophysiology of performance monitoring and adaptive behavior. Physiol. Rev. 2014;94:35–79. doi: 10.1152/physrev.00041.2012.
    1. Verbruggen F., Logan G.D. Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 2008;12:418–424. doi: 10.1016/j.tics.2008.07.005.
    1. Veritas Health Innovation, 2016. Covidence systematic review software. Melbourne, Australia. .
    1. Voon, V., Grodin, E., Mandali, A., Morris, L., Weidacker, K., Kwako, L., ... & Momenan, R., 2020. Addictions NeuroImaging Assessment (ANIA): towards an integrative framework for alcohol use disorder. Neurosci. Biobehav. Rev. .
    1. Ward R.J., Lallemand F., De Witte P. Biochemical and neurotransmitter changes implicated in alcohol-induced brain damage in chronic or ‘binge drinking’alcohol abuse. Alcohol Alcohol. 2009;44:128–135. doi: 10.1093/alcalc/agn100.
    1. Wetherill R.R., Squeglia L.M., Yang T.T., Tapert S.F. A longitudinal examination of adolescent response inhibition: Neural differences before and after the initiation of heavy drinking. Psychopharmacology. 2013;230:663–671. doi: 10.1007/s00213-013-3198-2.
    1. Wiers R.W., Rinck M., Kordts R., Houben K., Strack F. Retraining automatic action-tendencies to approach alcohol in hazardous drinkers. Addiction. 2010;105:279–287. doi: 10.1111/j.1360-0443.2009.02775.x.
    1. Wiers C.E., Stelzel C., Gladwin T.E., Park S.Q., Pawelczack S., Gawron C.K., Lindenmeyer J. Effects of cognitive bias modification training on neural alcohol cue reactivity in alcohol dependence. Am. J. Psychiatry. 2015;172:335–343. doi: 10.1176/appi.ajp.2014.13111495.
    1. Winward J.L., Bekman N.M., Hanson K.L., Lejuez C.W., Brown S.A. Changes in emotional reactivity and distress tolerance among heavy drinking adolescents during sustained abstinence. Alcohol. Clin. Exp. Res. 2014;38:1761–1769. doi: 10.1111/acer.12415.
    1. Winward J.L., Hanson K.L., Bekman N.M., Tapert S.F., Brown S.A. Adolescent heavy episodic drinking: neurocognitive functioning during early abstinence. J. Int. Neuropsychol. Soc. 2014;20:218–229. doi: 10.1017/S1355617713001410.
    1. World Health Organization . World Health Organization; Geneva: 2011. Global status report on alcohol and health.

Source: PubMed

3
Tilaa