Altered expression of SARS-CoV-2 entry and processing genes by Porphyromonas gingivalis-derived lipopolysaccharide, inflammatory cytokines and prostaglandin E2 in human gingival fibroblasts

Kotaro Sena, Kirara Furue, Fumiaki Setoguchi, Kazuyuki Noguchi, Kotaro Sena, Kirara Furue, Fumiaki Setoguchi, Kazuyuki Noguchi

Abstract

Objective: The aim of this in vitro study was to investigate the expression of SARS-CoV-2 entry and processing genes in human gingival fibroblasts (HGnF) following treatment with Porphyromonas gingivalis-derived lipopolysaccharide (PgLPS) or inflammatory cytokines/mediators.

Design: We assessed the expression of SARS-CoV-2 entry and processing genes; angiotensin-converting enzyme 2 (ACE2), cellular serine proteases transmembrane serine protease 2 (TMPRSS2), Furin, and basigin (BSG) in HGnF by real-time PCR. To further asses the contribution of PgLPS and inflammatory cytokines/mediators to proliferation and SARS-CoV-2 entry and processing gene expression, HGnF were treated with PgLPS, IL1β, TNFα, and PGE2.

Results: The expression for ACE2 in HGnF was significantly elevated after PgLPS or IL1β, TNFα, PGE2 treatment. The expression of TMPRSS2 was increased by PgLPS, IL1β, or PGE2 while BSG was elevated by PgLPS and IL1β. The expression of BSG and FURIN decreased after TNFα treatment.

Conclusion: SARS-CoV-2 entry and processing genes are expressed in human gingival fibroblasts and their expressions are altered by PgLPS, IL1β, TNFα and PGE2 treatment.

Keywords: Angiotensin-converting enzyme 2; Basigin; COVID-19; Furin; Transmembrane serine protease 2.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Effect of PgLPS, IL1β, TNFα and PGE2 on HGnF cell proliferation. Cell numbers were analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown as mean ± SD. n = 5. O.D., optical density.
Fig. 2
Fig. 2
Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of ACE2. Expression level of ACE2 mRNA was analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown as mean ± SD. n = 3-8. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
Fig. 3
Fig. 3
Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of TMPRSS2. Expression level of TMPRSS2 mRNA was analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown as mean ± SD. n = 3-4. **P < 0.01, ***P < 0.001, ****P < 0.0001.
Fig. 4
Fig. 4
Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of BSG. Expression level of BSG mRNA was analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown as mean ± SD. n = 3. *P < 0.05, **P < 0.01, ****P < 0.0001.
Fig. 5
Fig. 5
Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of FURIN. Expression level of FURIN mRNA was analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown as mean ± SD. n = 3. ****P < 0.0001.

References

    1. Agis H., Collins A., Taut A.D., Jin Q., Kruger L., Görlach C., Giannobile W.v. Cell population kinetics of collagen scaffolds in Ex Vivo oral wound repair. PloS One. 2014;9(11) doi: 10.1371/journal.pone.0112680.
    1. Ahmetaj-Shala B., Vaja R., Atanur S.S., George P.M., Kirkby N.S., Mitchell J.A. Cardiorenal tissues express SARS-CoV-2 entry genes and basigin (BSG/CD147) increases with age in endothelial cells. JACC: Basic to Translational Science. 2020;5(11) doi: 10.1016/j.jacbts.2020.09.010.
    1. Amorim dos Santos J., Normando A.G.C., Carvalho da Silva R.L., Acevedo A.C., de Luca Canto G., Sugaya N.…Guerra E.N.S. Oral manifestations in patients with COVID-19: A living systematic review. Journal of Dental Research. 2021;100(2):141–154. doi: 10.1177/0022034520957289.
    1. Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M.…Soboleva A. NCBI GEO: Archive for functional genomics data sets - Update. Nucleic Acids Research. 2013;41(D1) doi: 10.1093/nar/gks1193.
    1. Beck J.D., Papapanou P.N., Philips K.H., Offenbacher S. Periodontal medicine: 100 years of progress. Journal of Dental Research. 2019;98(10):1053–1062. doi: 10.1177/0022034519846113.
    1. Cekici A., Kantarci A., Hasturk H., van Dyke T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000. 2014;64(1) doi: 10.1111/prd.12002.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y.…Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Corchuelo J., Ulloa F.C. Oral manifestations in a patient with a history of asymptomatic COVID-19: Case report. International Journal of Infectious Diseases. 2020;100:154–157. doi: 10.1016/j.ijid.2020.08.071.
    1. Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research. 2020;176 doi: 10.1016/j.antiviral.2020.104742.
    1. Dong W., Xiang J., Li C., Cao Z., Huang Z. Increased expression of extracellular matrix metalloproteinase inducer is associated with matrix metalloproteinase-1 and -2 in gingival tissues from patients with periodontitis. Journal of Periodontal Research. 2009;44(1):125–132. doi: 10.1111/j.1600-0765.2008.01105.x.
    1. Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 2002;30(1):207–210. doi: 10.1093/nar/30.1.207.
    1. Eke P.I., Wei L., Borgnakke W.S., Thornton-Evans G., Zhang X., Lu H.…Genco R.J. Periodontitis prevalence in adults ≥ 65 years of age, in the USA. Periodontology 2000. 2016;72(1) doi: 10.1111/prd.12145.
    1. Emingil G., Tervahartiala T., Mãntylã P., Määttä M., Sorsa T., Atilla G. Gingival crevicular fluid matrix metalloproteinase (MMP)-7, extracellular MMP inducer, and tissue inhibitor of MMP-1 levels in periodontal disease. The Journal of Periodontology. 2006;77(12):2040–2050. doi: 10.1902/jop.2006.060144.
    1. Ender S.A., Dallmer A., Lässig F., Lendeckel U., Wolke C. Expression and function of the ACE2/angiotensin(1–7)/Mas axis in osteosarcoma cell lines U-2 OS and MNNG-HOS. Molecular Medicine Reports. 2014;10(2) doi: 10.3892/mmr.2014.2266.
    1. Fernandes L.L., Pacheco V.B., Borges L., Athwal H.K., de Paula Eduardo F., Bezinelli L.…Heller D. Saliva in the diagnosis of COVID-19: A review and new research directions. Journal of Dental Research. 2020;99(13):1435–1443. doi: 10.1177/0022034520960070.
    1. Foda H.D., Rollo E.E., Drews M., Conner C., Appelt K., Shalinsky D.R., Zucker S. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: Attenuation by the synthetic matrix metalloproteinase inhibitor, prinomastat (AG3340) American Journal of Respiratory Cell and Molecular Biology. 2001;25(6):717–724. doi: 10.1165/ajrcmb.25.6.4558f.
    1. Furue K., Sena K., Sakoda K., Nakamura T., Noguchi K. Involvement of the phosphoinositide 3-kinase/Akt signaling pathway in bone morphogenetic protein 9-stimulated osteogenic differentiation and stromal cell-derived factor 1 production in human periodontal ligament fibroblasts. European Journal of Oral Sciences. 2017;125(2):119–126. doi: 10.1111/eos.12336.
    1. Gabison E.E., Hoang-Xuan T., Mauviel A., Menashi S. EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair. Biochimie. 2005;87(3–4 SPEC. ISS):361–368. doi: 10.1016/j.biochi.2004.09.023.
    1. Garibaldi B.T., Fiksel J., Muschelli J., Robinson M.L., Rouhizadeh M., Perin J.…Gupta A. Patient trajectories among persons hospitalized for COVID-19. Annals of Internal Medicine. 2020 doi: 10.7326/M20-3905.
    1. Gupta S., Mohindra R., Chauhan P.K., Singla V., Goyal K., Sahni V.…Singh M.P. SARS-CoV-2 detection in gingival crevicular fluid. Journal of Dental Research. 2021;100(2):187–193. doi: 10.1177/0022034520970536.
    1. Halboub E., Al-Maweri S.A., Alanazi R.H., Qaid N.M., Abdulrab S. Orofacial manifestations of COVID-19: A brief review of the published literature. Brazilian Oral Research. 2020;34 doi: 10.1590/1807-3107bor-2020.vol34.0124.
    1. Halepas S., Lee K.C., Myers A., Yoon R.K., Chung W., Peters S.M. Oral manifestations of COVID-19 related multi-system inflammatory syndrome in children: A review of 47 pediatric patients. Journal of the American Dental Association. 2020;152(3):202–208. doi: 10.1016/j.adaj.2020.11.014.
    1. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology. 2004;203(2):631–637. doi: 10.1002/path.1570.
    1. Heurich A., Hofmann-Winkler H., Gierer S., Liepold T., Jahn O., Pohlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. Journal of Virology. 2014;88(2):1293–1307. doi: 10.1128/jvi.02202-13.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S.…Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2) doi: 10.1016/j.cell.2020.02.052. 271-280.e8.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M.…Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223) doi: 10.1016/S0140-6736(20)30183-5.
    1. Huang N., Pérez P., Kato T., Mikami Y., Okuda K., Gilmore R.C.…Byrd K.M. SARS-CoV-2 infection of the oral cavity and saliva. Nature Medicine. 2021;27(5):892–903. doi: 10.1038/s41591-021-01296-8.
    1. Izaguirre G. The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses. 2019;11(9) doi: 10.3390/v11090837.
    1. Kara C., Çelen K., Dede F.Ö., Gökmenoğlu C., Kara N.B. Is periodontal disease a risk factor for developing severe Covid-19 infection? The potential role of Galectin-3. Experimental Biology and Medicine. 2020;245(16) doi: 10.1177/1535370220953771.
    1. Kim J., Amar S. Periodontal disease and systemic conditions: A bidirectional relationship. Odontology. 2006;94(1):10–21. doi: 10.1007/s10266-006-0060-6.
    1. Kuk H., Hutchenreuther J., Murphy-Marshman H., Carter D., Leask A. 5z-7-oxozeanol inhibits the effects of TGFβ1 on human gingival fibroblasts. PloS One. 2015;10(4) doi: 10.1371/journal.pone.0123689.
    1. La Rosa G.R.M., Libra M., De Pasquale R., Ferlito S., Pedullà E. Association of viral infections with oral cavity lesions: Role of SARS-CoV-2 infection. Frontiers of Medicine. 2021;7 doi: 10.3389/fmed.2020.571214.
    1. Lai T.M., Kuo P.J., Lin C.Y., Chin Y.T., Lin H.L., Chiu H.C.…Fu E. CD147 self-regulates matrix metalloproteinase-2 release in gingival fibroblasts after coculturing with U937 monocytic cells. The Journal of Periodontology. 2020;91(5):651–660. doi: 10.1002/JPER.19-0278.
    1. Li Y., Zhou W., Yang L., You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacological Research. 2020;157 doi: 10.1016/j.phrs.2020.104833.
    1. Marouf N., Cai W., Said K.N., Daas H., Diab H., Chinta V.R.…Tamimi F. Association between periodontitis and severity of COVID‐19 infection: A case–control study. Journal of Clinical Periodontology. 2021 doi: 10.1111/jcpe.13435. jcpe.13435.
    1. Mortazavi H., Rezaeifar K., Nasrabadi N. Oral manifestations of coronavirus disease-19: A mini-review. Journal of Medical Sciences. 2020;8(T1):286–289. doi: 10.3889/oamjms.2020.4999.
    1. Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. Journal of Biochemistry. 2016;159(5):481–490. doi: 10.1093/jb/mvv127.
    1. Noguchi K., Shitashige M., Endo H., Kondo H., Ishikawa I. Binary regulation of interleukin (IL)-6 production by EP1 and EP2/EP4 subtypes of PGE2 receptors in IL-1beta-stimulated human gingival fibroblasts. Journal of Periodontal Research. 2002;37(1):29–36. doi: 10.1034/j.1600-0765.2002.00641.x.
    1. Patel J., Woolley J. Necrotizing periodontal disease: Oral manifestation of COVID-19. Oral Diseases. 2020;27(Suppl. 3) doi: 10.1111/odi.13462.
    1. Pihlstrom B.L., Michalowicz B.S., Johnson N.W. Periodontal diseases. Lancet. 2005;366(9499):1809–1820. doi: 10.1016/S0140-6736(05)67728-8.
    1. Sahni V., Gupta S. COVID-19 & periodontitis: The cytokine connection. Medical Hypotheses. 2020;144 doi: 10.1016/j.mehy.2020.109908.
    1. Sakaguchi W., Kubota N., Shimizu T., Saruta J., Fuchida S., Kawata A.…Tsukinoki K. Existence of SARS-CoV-2 entry molecules in the oral cavity. International Journal of Molecular Sciences. 2020;21(17):1–16. doi: 10.3390/ijms21176000.
    1. Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M.…Greene A.S. Functional local renin-angiotensin system in human and rat periodontal tissue. PloS One. 2015;10(8) doi: 10.1371/journal.pone.0134601.
    1. Takata T., Donath K. The mechanism of pocket formation. The Journal of Periodontology. 1988;59(4):215–221. doi: 10.1902/jop.1988.59.4.215.
    1. Thomas G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nature Reviews Molecular Cell Biology. 2002;3(10):753–766. doi: 10.1038/nrm934.
    1. To K.K.W., Tsang O.T.Y., Yip C.C.Y., Chan K.H., Wu T.C., Chan J.M.C.…Yuen K.Y. Consistent detection of 2019 novel coronavirus in saliva. Clinical Infectious Diseases. 2020;71(15):841–843. doi: 10.1093/cid/ciaa149.
    1. Ulrich H., Pillat M.M. CD147 as a target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports. 2020;16(3):434–440. doi: 10.1007/s12015-020-09976-7.
    1. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2) doi: 10.1016/j.cell.2020.02.058. 281-292.e6.
    1. Wang J., Yang D., Li C., Shang S., Xiang J. Expression of extracellular matrix metalloproteinase inducer glycosylation and caveolin-1 in healthy and inflamed human gingiva. Journal of Periodontal Research. 2014;49(2):197–204. doi: 10.1111/jre.12095.
    1. Wang K., Chen W., Zhang Z., Deng Y., Lian J.Q., Du P.…Chen Z.N. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduction and Targeted Therapy. 2020;5(1):1–10. doi: 10.1038/s41392-020-00426-x.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J.…Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585.
    1. Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843–1844. doi: 10.1001/jama.2020.3786.
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S.…Song Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine. 2020;180(7):934–943. doi: 10.1001/jamainternmed.2020.0994.
    1. Xu Z., Li S., Tian S., Li H., Kong L. Full spectrum of COVID-19 severity still being depicted. Lancet. 2020;395(10228):947–948. doi: 10.1016/S0140-6736(20)30308-1.
    1. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X.…Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science. 2020;12(1) doi: 10.1038/s41368-020-0074-x.
    1. Zhong M., Lin B., Pathak J.L., Gao H., Young A.J., Wang X.…Wang L. ACE2 and furin expressions in oral epithelial cells possibly facilitate COVID-19 infection via respiratory and fecal–oral routes. Frontiers of Medicine. 2020;7 doi: 10.3389/fmed.2020.580796.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J.…Tan W. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine. 2020;382(8):727–733. doi: 10.1056/nejmoa2001017.

Source: PubMed

3
Tilaa