Inequity in access to personalized medicine in France: Evidences from analysis of geo variations in the access to molecular profiling among advanced non-small-cell lung cancer patients: Results from the IFCT Biomarkers France Study

Samuel Kembou Nzale, William B Weeks, L'Houcine Ouafik, Isabelle Rouquette, Michèle Beau-Faller, Antoinette Lemoine, Pierre-Paul Bringuier, Anne-Gaëlle Le Coroller Soriano, Fabrice Barlesi, Bruno Ventelou, Samuel Kembou Nzale, William B Weeks, L'Houcine Ouafik, Isabelle Rouquette, Michèle Beau-Faller, Antoinette Lemoine, Pierre-Paul Bringuier, Anne-Gaëlle Le Coroller Soriano, Fabrice Barlesi, Bruno Ventelou

Abstract

In this article, we studied geographic variation in the use of personalized genetic testing for advanced non-small cell lung cancer (NSCLC) and we evaluated the relationship between genetic testing rates and local socioeconomic and ecological variables. We used data on all advanced NSCLC patients who had a genetic test between April 2012 and April 2013 in France in the frame of the IFCT Biomarqueurs-France study (n = 15814). We computed four established measures of geographic variation of the sex-adjusted rates of genetic testing utilization at the "départment" (the French territory is divided into 94 administrative units called 'départements') level. We also performed a spatial regression model to determine the relationship between département-level sex-adjusted rates of genetic testing utilization and economic and ecological variables. Our results are the following: (i) Overall, 46.87% lung cancer admission patients obtained genetic testing for NSCLC; département-level utilization rates varied over 3.2-fold. Measures of geographic variation indicated a relatively high degree of geographic variation. (ii) there was a statistically significant relationship between genetic testing rates and per capita supply of general practitioners, radiotherapists and surgeons (negative correlation for the latter); lower genetic testing rates were also associated with higher local poverty rates. French policymakers should pursue effort toward deprived areas to obtain equal access to personalized medicine for advanced NSCLC patients.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Département-level quintiles of rates of…
Fig 1. Département-level quintiles of rates of genetic testing for NSCLC in France among inhabitants aged 20–99 (left) and those aged 60–99 (right), April 2012 –April 2013.
For each département, we know where unique patients living in that département were admitted for lung cancer. Using that information, we calculated the département-specific proportion of hospital stays (for males and females, separately) that were provided to patients who lived in that département and in any other département. For instance, during the study’s period, among males, there were 68 lung cancer admissions in Loir-et-Cher (department 41): 96% of those admissions were for patients who lived in Loir-et-Cher, but 2.5% were for patients who lived in Indre-et-Loire (department 36) and 1.5% were for patients who lived in Loiret (department 45). To estimate the number of genetic tests done on patients who lived in a particular département, we then allocated tests obtained in a département according to how patients had been admitted for lung cancer. Therefore, continuing our example, we allocated the 30 genetic tests that were ordered on males by physicians working in Loir-et-Cher accordingly: 28.78 (96%) to Loir-et-Cher, 0.77 (2.5%) to Indre-et-Loire, and 0.44 (1.5%) to Loiret. We then added all allocated tests expected to have been received by males and females, separately, who lived in each département. Data from the départements ‘Somme’ and ‘Corsica (North and South)’ are missing.
Fig 2
Fig 2
Bivariate Moran scatterplots between poverty rate and genetic testing rates for NSCLC in France among inhabitants aged 20–99 (left) and those aged 60–99 (right), April 2012 –April 2013.
Fig 3
Fig 3
Bivariate LISA maps between poverty rate and genetic testing rates for NSCLC in France among inhabitants aged 20–99 (left) and those aged 60–99 (right), April 2012 –April 2013.

References

    1. Whitcomb D. C., « What is personalized medicine and what should it replace? », Nat. Rev. Gastroenterol. Hepatol., vol. 9, no 7, p. 418‑424, Mai 2012, 10.1038/nrgastro.2012.100
    1. Institut National du Cancer, « Plateformes hospitalières de génétique moléculaire des cancers: faits marquants et synthèse d’activité 2013. », Collection Bilans d’activité et d’évaluation, Boulogne-Billancourt, Ouvrage collectif édité par l’INCa, nov. 2014.
    1. Alexandrov L. B. et al., « Signatures of mutational processes in human cancer », Nature, vol. 500, no 7463, p. 415–421, 2013. 10.1038/nature12477
    1. Barlesi F. et al., « Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT) », The Lancet, vol. 387, no 10026, p. 1415–1426, 2016.
    1. Institut National du Cancer, « Synthèse de l’activité des plateformes hospitalières de génétique moléculaire des cancers en 2012, en vue d’optimiser leur évolution », Institut National du Cancer, Boulogne-Billancourt, Collection Bilans d’activité et d’évaluation, janv. 2014.
    1. ATIH, « ATIH: Agence technique de l’information sur l’hospitalisation », 2012. [En ligne]. Disponible sur: . [Consulté le: 22-janv-2018].
    1. ICD-10 CM Codes, « 2018 ICD-10-CM Codes C34*: Malignant neoplasm of bronchus and lung », 2015. [En ligne]. Disponible sur: . [Consulté le: 22-janv-2018].
    1. Dartmouth Institute, « An Example of Indirect Adjustment », Indirect Adjustment: The Dartmouth Atlas of Health Care, janv-2018. [En ligne]. Disponible sur: . [Consulté le: 22-janv-2018].
    1. Wennberg J. et Gittelsohn A., « Small area variations in health care delivery: a population-based health information system can guide planning and regulatory decision-making », Science, vol. 182, no 4117, p. 1102–1108, 1973. 10.1126/science.182.4117.1102
    1. Weeks W. B., Paraponaris A., et Ventelou B., « Geographic variation in rates of common surgical procedures in France in 2008–2010, and comparison to the US and Britain », Health Policy, vol. 118, no 2, p. 215–221, 2014. 10.1016/j.healthpol.2014.08.015
    1. Weeks W. B., Ventelou B., et Paraponaris A., « Rates of admission for ambulatory care sensitive conditions in France in 2009–2010: trends, geographic variation, costs, and an international comparison », Eur. J. Health Econ., vol. 17, no 4, p. 453–470, 2016. 10.1007/s10198-015-0692-y
    1. « Populations légales 2013 − Populations légales 2013 | Insee », 2013. [En ligne]. Disponible sur: . [Consulté le: 22-janv-2018].
    1. SNIIRAM, « - Sniiram », Système National d’Information Interrégimes de l’Assurance Maladie, nov-2016. [En ligne]. Disponible sur: . [Consulté le: 06-févr-2018].
    1. Lejeune C. et al., « Socio-economic disparities in access to treatment and their impact on colorectal cancer survival », Int. J. Epidemiol., vol. 39, no 3, p. 710–717, 2010. 10.1093/ije/dyq048
    1. Woods L. M., Rachet B., et Coleman M. P., « Origins of socio-economic inequalities in cancer survival: a review », Ann. Oncol., vol. 17, no 1, p. 5–19, 2005. 10.1093/annonc/mdj007
    1. Greenwald H. P., Polissar N. L., Borgatta E. F., McCorkle R., et Goodman G., « Social factors, treatment, and survival in early-stage non-small cell lung cancer. », Am. J. Public Health, vol. 88, no 11, p. 1681–1684, 1998. 10.2105/ajph.88.11.1681
    1. Jiang X., Lin G., et Islam K. M. M., « Socioeconomic factors related to surgical treatment for localized, non-small cell lung cancer », Soc. Sci. Med., vol. 175, p. 52‑57, févr. 2017, 10.1016/j.socscimed.2016.12.042
    1. Pollock A. M. et Vickers N., « Deprivation and emergency admissions for cancers of colorectum, lung, and breast in south east England: ecological study », BMJ, vol. 317, no 7153, p. 245‑252, Juill 1998, 10.1136/bmj.317.7153.245
    1. Yorio J. T., Yan J., Xie Y., et Gerber D. E., « Socioeconomic Disparities in Lung Cancer Treatment and Outcomes Persist Within a Single Academic Medical Center », Clin. Lung Cancer, vol. 13, no 6, p. 448‑457, November 2012, 10.1016/j.cllc.2012.03.002
    1. McPherson K., Wennberg J. E., Hovind O. B., et Clifford P., « Small-area variations in the use of common surgical procedures: an international comparison of New England, England, and Norway », N. Engl. J. Med., vol. 307, no 21, p. 1310–1314, 1982. 10.1056/NEJM198211183072104
    1. Robertson C., Mazzetta C., et D’Onofrio A., « Regional variation and spatial correlation », Chapter 5 P Boyle M Smans Eds Atlas Cancer Mortal. Eur. Union Eur. Econ. Area 1993–1997, p. 91–113, 2008.
    1. d’Onofrio A., Mazzetta C., Robertson C., Smans M., Boyle P., et Boniol M., « Maps and atlases of cancer mortality: a review of a useful tool to trigger new questions », ecancermedicalscience, vol. 10, 2016.
    1. Anselin L., « Local indicators of spatial association—LISA », Geogr. Anal., vol. 27, no 2, p. 93–115, 1995.
    1. Nay O., Béjean S., Benamouzig D., Bergeron H., Castel P., et B. Ventelou, « Achieving universal health coverage in France: policy reforms and the challenge of inequalities », Lancet Lond. Engl., vol. 387, no 10034, p. 2236‑2249, mai 2016, 10.1016/S0140-6736(16)00580-8

Source: PubMed

3
Tilaa