Systematic comparative validation of self-report measures of sedentary time against an objective measure of postural sitting (activPAL)

S F M Chastin, M L Dontje, D A Skelton, I Čukić, R J Shaw, J M R Gill, C A Greig, C R Gale, I J Deary, G Der, P M Dall, Seniors USP team, Dawn A Skelton, Sebastien Chastin, Simon Cox, Elaine Coulter, Iva Čukić, Philippa Dall, Ian Deary, Geoff Der, Manon Dontje, Claire Fitzsimons, Catharine Gale, Jason Gill, Malcolm Granat, Cindy Gray, Carolyn Greig, Elaine Hindle, Karen Laird, Gillian Mead, Nanette Mutrie, Victoria Palmer, Ratko Radakovic, Naveed Sattar, Richard Shaw, John Starr, Sally Stewart, Sally Wyke, S F M Chastin, M L Dontje, D A Skelton, I Čukić, R J Shaw, J M R Gill, C A Greig, C R Gale, I J Deary, G Der, P M Dall, Seniors USP team, Dawn A Skelton, Sebastien Chastin, Simon Cox, Elaine Coulter, Iva Čukić, Philippa Dall, Ian Deary, Geoff Der, Manon Dontje, Claire Fitzsimons, Catharine Gale, Jason Gill, Malcolm Granat, Cindy Gray, Carolyn Greig, Elaine Hindle, Karen Laird, Gillian Mead, Nanette Mutrie, Victoria Palmer, Ratko Radakovic, Naveed Sattar, Richard Shaw, John Starr, Sally Stewart, Sally Wyke

Abstract

Background: Sedentary behaviour is a public health concern that requires surveillance and epidemiological research. For such large scale studies, self-report tools are a pragmatic measurement solution. A large number of self-report tools are currently in use, but few have been validated against an objective measure of sedentary time and there is no comparative information between tools to guide choice or to enable comparison between studies. The aim of this study was to provide a systematic comparison, generalisable to all tools, of the validity of self-report measures of sedentary time against a gold standard sedentary time objective monitor.

Methods: Cross sectional data from three cohorts (N = 700) were used in this validation study. Eighteen self-report measures of sedentary time, based on the TAxonomy of Self-report SB Tools (TASST) framework, were compared against an objective measure of postural sitting (activPAL) to provide information, generalizable to all existing tools, on agreement and precision using Bland-Altman statistics, on criterion validity using Pearson correlation, and on data loss.

Results: All self-report measures showed poor accuracy compared with the objective measure of sedentary time, with very wide limits of agreement and poor precision (random error > 2.5 h). Most tools under-reported total sedentary time and demonstrated low correlations with objective data. The type of assessment used by the tool, whether direct, proxy, or a composite measure, influenced the measurement characteristics. Proxy measures (TV time) and single item direct measures using a visual analogue scale to assess the proportion of the day spent sitting, showed the best combination of precision and data loss. The recall period (e.g. previous week) had little influence on measurement characteristics.

Conclusion: Self-report measures of sedentary time result in large bias, poor precision and low correlation with an objective measure of sedentary time. Choice of tool depends on the research context, design and question. Choice can be guided by this systematic comparative validation and, in the case of population surveillance, it recommends to use a visual analog scale and a 7 day recall period. Comparison between studies and improving population estimates of average sedentary time, is possible with the comparative correction factors provided.

Keywords: Measurement; Physical activity; Questionnaires; Sedentary behaviour; Sitting; Surveillance; Validation; activPAL.

Conflict of interest statement

Ethics approval and consent to participate

The Seniors USP project was approved by the Scotland A NHS research ethics committee (for LBC1936 participants) and the University of Glasgow Ethics Committee (for T07 participants). All participants gave written informed consent.

Consent for publication

Not applicable.

Competing interests

Philippa M. Dall has received funding from PAL technologies (who produce the activPAL monitor) for an unrelated study. The other authors have no competing interests to declare.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The TASTT taxonomy (reproduced from [8])
Fig. 2
Fig. 2
Example of self-report assessment of the proportion of the day spent sitting using a visual analogue scale (VAS)
Fig. 3
Fig. 3
Bland and Altman plot comparing: a direct measure of total sitting time, b direct measure using a visual analogue scale, c direct measure using a proxy measure (TV time) and d composite measure based on sum of behaviours for a previous day recall with the average recorded daily sitting time recorded with activPAL
Fig. 4
Fig. 4
Comparative plot of data loss and random error in sedentary time for eighteen self-report measures
Fig. 5
Fig. 5
Decision flow chart for choice of self-report instrument to measure sedentary time

References

    1. Ng SW, Popkin BM. Time use and physical activity: a shift away from movement across the globe. Obes Rev. 2012;13:659–680. doi: 10.1111/j.1467-789X.2011.00982.x.
    1. SBRN Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–542. doi: 10.1139/h2012-024.
    1. Chastin SFM, Schwarz U, Skelton DA. Correction: Development of a Consensus Taxonomy of Sedentary Behaviors (SIT): Report of Delphi Round 1. PLos One. 2014;9(1). 10.1371/annotation/40e70c58-2067-4211-a152-22c3ab5534f5.
    1. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults. Ann Intern Med. 2015;162:123. doi: 10.7326/M14-1651.
    1. Department of Health . Start active, stay active: a report on physical activity from the four home countries’ chief medical officers. 2011.
    1. The Australian Government. Australia’s physical activity and sedentary behaviour guidelines. Dep Heal. 2014. website. Available from: .
    1. Healy GN, Clark BK, Winkler EAH, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults’ sedentary time in population-based studies. Am J Prev Med. 2011;41:216–227. doi: 10.1016/j.amepre.2011.05.005.
    1. Dall P, Coulter E, Fitzsimons C, Skelton D, Chastin S. The TAxonomy of self-reported sedentary behaviour tools (TASST) framework for development, comparison and evaluation of self-report tools: content analysis and systematic review. BMJ Open. 2017;7:e013844. doi: 10.1136/bmjopen-2016-013844.
    1. Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: the lothian birth cohorts of 1921 and 1936. Int J Epidemiol. 2012;41:1576–1584. doi: 10.1093/ije/dyr197.
    1. Benzeval M, Der G, Ellaway A, Hunt K, Sweeting H, West P, et al. Cohort profile: west of Scotland twenty-07 study: health in the community. Int J Epidemiol. 2009;38:1215–1223. doi: 10.1093/ije/dyn213.
    1. Chastin SFM, Granat MH. Methods for objective measure, quantification and analysis of sedentary behaviour and inactivity. Gait Posture. 2010;31:82–6. Elsevier B.V. Available from: .
    1. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43:1561–1567. doi: 10.1249/MSS.0b013e31820ce174.
    1. Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40:992–997. doi: 10.1136/bjsm.2006.030262.
    1. Sellers C, Dall P, Grant M, Stansfield B. Validity and reliability of the activPAL3 for measuring posture and stepping in adults and young people. Gait Posture. 2016;43:42–47. doi: 10.1016/j.gaitpost.2015.10.020.
    1. Krouwer JS. Why Bland–Altman plots should useX, not (Y+X)/2 whenX is a reference method. Stat Med. 2008;27:778–780. doi: 10.1002/sim.3086.
    1. Matthews CE, Keadle SK, Sampson J, Lyden K, Bowles HR, Moore SC, et al. Validation of a previous-day recall measure of active and sedentary behaviors. Med Sci Sports Exerc. 2013;45:1629–1638. doi: 10.1249/MSS.0b013e3182897690.
    1. Keadle S, Matthews C. Validation and application of previous day recalls for measuring active and sedentary behaviour. ISBNPA 2015 Symp. 2015.
    1. Clark BK, Winkler E, Healy GN, Gardiner PG, Dunstan DW, Owen N, et al. Adults’ past-day recall of sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc. 2013;45:1198–1207. doi: 10.1249/MSS.0b013e3182837f57.
    1. ESFM Chastin, Egerton T, Leask C, Stamatakis E. Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity (Silver Spring). 2015;23:1800–10. [cited 2015 Nov 4]. Available from:
    1. Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32:590–597. doi: 10.1093/eurheartj/ehq451.
    1. Kelly P, Fitzsimons C, Baker G. Should we reframe how we think about physical activity and sedentary behaviour measurement? Validity and reliability reconsidered. Int J Behav Nutr Phys Act. 2016;13:32. doi: 10.1186/s12966-016-0351-4.
    1. Dogra S, Ashe M, Biddle SJ, Brown W, Buman M, Chastin S, et al. Sedentary time in older men and women: an international consensus statement and research priorities. Br J Sports Med. 2017. Online First.
    1. Edwardson CL, Winkler EAH, Bodicoat DH, Yates T, Davies MJ, Dunstan DW, et al. Considerations when using the activPAL monitor in field based research with adult populations. J Sport Heal Sci. 2016:13–24. Available from: .
    1. Lyden K, Dall P, John D, Granat M. Differentiating sitting and lying using a thigh-worn accelerometer. Med Sci Sport Exerc. 2015;48(4):742-7. 10.1249/MSS.0000000000000804.
    1. Winkler EAH, Bodicoat DH, Healy GN, Bakrania K, Yates T, Owen N, et al. Identifying adults’ valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiol Meas. 2016;37:1653–1668. doi: 10.1088/0967-3334/37/10/1653.
    1. Gupta N, Christiansen CS, Hanisch C, Bay H, Burr H, Holtermann A, et al. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time. BMJ Open. 2017;7:e013251. doi: 10.1136/bmjopen-2016-013251.
    1. Busschaert C, De Bourdeaudhuij I, Van Holle V, Chastin SFM, Cardon G, De Cocker K. Reliability and validity of three questionnaires measuring context-specific sedentary behaviour and associated correlates in adolescents, adults and older adults. Int J Behav Nutr Phys Act. 2015;12:117. doi: 10.1186/s12966-015-0277-2.

Source: PubMed

3
Tilaa