Prevalence of spine degeneration diagnosis by type, age, gender, and obesity using Medicare data

Chantal S Parenteau, Edmund C Lau, Ian C Campbell, Amy Courtney, Chantal S Parenteau, Edmund C Lau, Ian C Campbell, Amy Courtney

Abstract

Identifying the prevalence of degenerative spinal pathologies and relevant demographic risk factors is important for understanding spine injury risk, prevention, treatment, and outcome, and for distinguishing acute injuries from degenerative pathologies. Prevalence data in the literature are often based on small-scale studies focused on a single type of pathology. This study evaluates the prevalence of diagnosis of selected degenerative spinal pathology diagnoses using Medicare insurance claim data in the context of published smaller-scale studies. In addition, the data are used to evaluate whether the prevalence is affected by age, sex, diagnosed obesity, and the use of medical imaging. The Medicare Claims 5% Limited Data Set was queried to identify diagnoses of degenerative spinal pathologies. Unique patient diagnoses per year were further evaluated as a function of age, gender, and obesity diagnosis. Participants were also stratified by coding for radiological imaging accompanying each diagnosis. The overall prevalence of diagnosed spinal degenerative disease was 27.3% and increased with age. The prevalence of diagnosed disc disease was 2.7 times greater in those with radiology. The results demonstrate that degenerative findings in the spine are common, and, since asymptomatic individuals may not receive a diagnosis of degenerative conditions, this analysis likely underestimates the general prevalence of these conditions.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Spine degeneration diagnosis prevalence by age group and sex.
Figure 2
Figure 2
Spine degeneration diagnosis prevalence by type, calendar year, and sex. Pearson’s Correlation coefficients and p values are indicated.
Figure 3
Figure 3
Spine degeneration diagnosis prevalence by type, age, and obesity coding.
Figure 4
Figure 4
Prevalence of degenerative spine diagnoses by type and age in overall sample and in radiology subsample.

References

    1. Cheng JS, Forbes J, Wong C, Perry E. The epidemiology of adult spinal deformity and the aging population. In: Wang M, Lu Y, Anderson D, Mummaneni P, editors. Minimally Invasive Spinal Deformity Surgery. Berlin: Springer; 2014.
    1. Ogden, C. L., Carroll, M. D., Fryar, C. D. & Flegal, K. M. Prevalence of obesity among adults and youth: United States, 2011–2014. U.S. Department of Health and Human Services, NCHS Data Brief No. 219. (2015).
    1. Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH) Radiology. 1976;119:559–568. doi: 10.1148/119.3.559.
    1. Boachie-Adjei O, Bullough PG. Incidence of ankylosing hyperostosis of the spine (Forestier’s disease) at autopsy. Spine. 1987;12:739–743. doi: 10.1097/00007632-198710000-00004.
    1. Resnick D, Shaul SR, Robins JM. Diffuse idiopathic skeletal hyperostosis (DISH): Forestier’s Disease with extraspinal manifestations. Radiology. 1975;115:513–524. doi: 10.1148/15.3.513.
    1. Myers ER, Wilson SE. Biomechanics of osteoporosis and vertebral fracture. Spine. 1997;22(24):25S–31S. doi: 10.1097/00007632-199712151-00005.
    1. Brinjikji W, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am. J. Neuroradiol. 2015;36(4):811–816. doi: 10.3174/ajnr.a4173.
    1. Theodore N. Degenerative cervical spondylosis. NEJM. 2020;383:159–168. doi: 10.1056/nejmra2003558.
    1. Nachemson A, Schultz AB, Berkson MH. Mechanical properties of human lumbar spine motion segments: Influences of age, sex, disc level, and degeneration. Spine. 1979;4(1):1–8. doi: 10.1097/00007632-197901000-00001.
    1. Greaves LL, et al. Pediatric and adult three-dimensional cervical spine kinematics: Effect of age and sex through overall motion. Spine. 2009;34(16):1650–1657. doi: 10.1097/brs.0b013e3181ab65c6.
    1. Wong HK, Hui JH, Rajan U, Chia HP. Idiopathic scoliosis in Singapore schoolchildren: A prevalence study 15 years into the screening program. Spine. 2005;30(10):1188–1196. doi: 10.1097/.
    1. Benoist M. Natural history of the aging spine. Eur. Spine J. 2003;12(Suppl 2):S86–S89. doi: 10.1007/s00586-003-0593-0.
    1. Ailon T, Shaffrey CI, Lenke LG, Harrop JS, Smith JS. Progressive spinal kyphosis in the aging population. Neurosurgery. 2015;77(Suppl 4):S164–S172. doi: 10.1227/neu.0000000000000944.
    1. Holcombe SA, Wang S, Grotberg JB. Age-related changes in thoracic skeletal geometry of elderly females. Traffic Inj. Prev. 2017;18(sup1):S122–S128. doi: 10.1080/15389588.2017.1309526.
    1. Parenteau, C., Caird, M., Kohoyda-Inglis, C., Holcombe, S. & Wang, S. Characterization of thoracic spinal development by age and sex with a focus on occupant safety. SAE Technical Paper 2020-01-0520. 10.4271/2020-01-0520 (2020).
    1. Milne JS, Williamson J. A longitudinal study of kyphosis in older people. Age Ageing. 1983;12(3):225–233. doi: 10.1093/ageing/12.3.225.
    1. Parenteau, C. S., Holcombe, S., Zhang, P., Kokoyda-Inglis, C. & Wang, S. The effect of age on fat and bone properties along the vertebral spine. SAE Technical Paper 2013-01-1244. 10.4271/2013-01-1244 (2013).
    1. Agnusdei D, et al. Age-related decline of bone mass and intestinal calcium absorption in normal males. Calc Tiss Int. 1998;63(3):197–201. doi: 10.1007/s002239900514.
    1. Looker AC, Isfahani NS, Fan B, Shepherd JA. Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014. Osteoporos Int. 2017;28(6):1979–1988. doi: 10.1007/s00198-017-3996-1.
    1. Cassim B, Mody GM, Rubin DL. The prevalence of diffuse idoiopathic skeletal hyperostosis in African blacks. Rheumatology. 1990;29(2):131–132. doi: 10.1093/rheumatology/29.2.131.
    1. Weinfeld R, Olson P, Maki D, Griffiths HJ. The prevalence of diffuse idiopathic skeletal hyperostosis (DISH) in two large American Midwest metropolitan hospital populations. Skelet. Radiol. 1997;26:222–225. doi: 10.1007/s002560050225.
    1. Kiss CS, O'Neill TW, Mituszova M, Szilágyi M, Poór G. The prevalence of diffuse idiopathic skeletal hyperostosis in a population-based study in Hungary. Scand. J. Rheumatol. 2002;31(4):226–229. doi: 10.1080/030097402320318422.
    1. Kim SI, Ha KY, Lee JW, Kim YH. Prevalence and related clinical factors of thoracic ossification of the ligamentum flavum—A computed tomography-based cross-sectional study. Spine J. 2018;18(4):551–557. doi: 10.1016/j.spinee.2017.08.240.
    1. Uehara M, et al. Prevalence of diffuse idiopathic skeletal hyperostosis in the general elderly population: A Japanese cohort survey randomly sampled from a basic resident registry. Clin. Spine Surg. 2020;33(3):123–127. doi: 10.1097/bsd.0000000000000919.
    1. Boden SD, et al. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J. Bone Jt. Surg. Am. 1990;72:1178–1184. doi: 10.2106/00004623-199072080-00008.
    1. Shim JH, et al. A comparison of angled sagittal MRI and conventional MRI in the diagnosis of herniated disc and stenosis in the cervical foramen. Eur. Spine J. 2009;18(8):1109–1116. doi: 10.1007/s00586-009-0932-x.
    1. Wang MC, Kreuter W, Wolfla CE, Maiman DJ, Deyo RA. Trends and variations in cervical spine surgery in the United States: Medicare beneficiaries, 1992 to 2005. Spine. 2009;34(9):955–961. doi: 10.1097/brs.0b013e31819e2fd5.
    1. Yabuki S, et al. Prevalence of lumbar spinal stenosis, using the diagnostic support tool, and correlated factors in Japan: A population-based study. J. Orthop Sci. 2013;18(6):893–900. doi: 10.1007/s00776-013-0455-5.
    1. Kalichman L, Guermazi A, Li L, Hunter DJ. Association between age, sex, BMI and CT-evaluated spinal degeneration features. J. Back Musculoskelet. Rehabil. 2009;22:189–195. doi: 10.3233/bmr-2009-0232.
    1. Kalichman L, Kim DH, Li L, Guermazi A, Hunter DJ. Computed tomography-evaluated features of spinal degeneration: prevalence, intercorrelation, and association with self-reported low back pain. Spine J. 2010;10:200–208. doi: 10.1016/j.spinee.2009.10.018.
    1. Ishimoto Y, et al. Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: The Wakayama Spine Study. Osteoarthr. Cartil. 2012;20(10):1103–1108. doi: 10.1016/j.joca.2012.06.018.
    1. Torg JS, et al. Neurapraxia of the cervical spinal cord with transient quadriplegia. J. Bone Jt. Surg. Am. 1986;68(9):1354–1370. doi: 10.2106/00004623-198668090-00008.
    1. Torg JS, et al. The relationship of developmental narrowing of the cervical spinal canal to reversible and irreversible injury of the cervical spinal cord in football players. J. Bone Jt. Surg. Am. 1996;78:1308–1314. doi: 10.2106/00004623-199609000-00003.
    1. Pavlov H, Torg JS, Robie B, Jahre C. Cervical spinal stenosis: Determination with vertebral body ratio method. Radiology. 1987;164(3):771–775. doi: 10.1148/radiology.164.3.3615879.
    1. Bertram H, et al. Accelerated intervertebral disc degeneration in scoliosis versus physiological ageing develops against a background of enhanced anabolic gene expression. Biochem. Biophys. Res. Commun. 2006;342:963–972. doi: 10.1016/j.bbrc.2006.02.048.
    1. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in the cervical spine: A biomechanical investigation. J. Orthop. Res. 2001;19(5):977–984. doi: 10.1016/s0736-0266(01)00010-9.
    1. Nathan H. Osteophytes of the vertebral column: an anatomical study of their development according to age, race, and sex with considerations as to their etiology and significance. J. Bone Jt. Surg. 1962;44(2):243–268. doi: 10.2106/00004623-196244020-00003.
    1. Viano, D., Parenteau, C. & White, S. Influence of DISH, ankylosis, spondylosis and osteophytes on serious-to-fatal spinal fractures and cord injury in rear impacts. SAE Technical Paper 2019-01-1028. 10.4271/2019-01-1028 (2019).
    1. Davis, M. S., Isaacs, J. L., Graber, M. A. & Fisher, J. L. Thoracic spine extension injuries in occupants with pre-existing conditions during rear end collisions. SAE Technical Paper 2019-01-1222. 10.4271/2019-01-1222 (2019).
    1. Pouchot J, Watts CS, Esdaile JM, Hill RO. Sudden quadriplegia complicating ossification of the posterior longitudinal ligament and diffuse idiopathic skeletal hyperostosis. Arthr. Rheum. 1987;30(9):1069–1072. doi: 10.1002/art.1780300917.
    1. Oostveen JC, Van de Laar MA, Tuynman FH. Anterior atlantoaxial subluxation in a patient with diffuse idiopathic skeletal hyperostosis. J. Rheumatol. 1996;23(8):1441.
    1. Takao T, et al. Clinical relationship between cervical spinal canal stenosis and traumatic cervical spinal cord injury without major fracture or dislocation. Eur. Spine J. 2013;22(10):2228–2231. doi: 10.1007/s00586-013-2865-7.
    1. Bey T, et al. Spinal cord injury with a narrow spinal canal: Utilizing Torg’s Ratio method of analyzing cervical spine radiographs. J. Emerg. Med. 1998;16(1):79–82. doi: 10.1016/s0736-4679(97)00243-6.
    1. Bailes JE. Experience with cervical stenosis and temporary paralysis in athletes. J. Neurosurg. Spine. 2005;2:11–16. doi: 10.3171/spi.2005.2.1.0011.
    1. Zhang L, et al. Cervical spinal canal narrowing and cervical neurological injuries. Chin. J. Traumatol. 2012;15(1):36–41. doi: 10.3760/cma.j.issn.1008-1275.2012.01.008.
    1. Bruno AG, Anderson DE, D'Agostino J, Bouxsein ML. The effect of thoracic kyphosis and sagittal plane alignment on vertebral compressive loading. J. Bone Miner. Res. 2012;27(10):2144–2151. doi: 10.1002/jbmr.1658.
    1. Poncelet AN, Rose-Innes AP. Neurologic disorders associated with bone and joint disease. In: Aminoff M, Josephson SA, editors. Aminoff's Neurology and General Medicine. 5. Boston: Academic Press; 2014. pp. 433–457.
    1. Hendrix RW, Melany M, Miller F, Rogers LF. Fracture of the spine in patients with ankylosis due to diffuse skeletal hyperostosis: Clinical and imaging findings. Am. J. Roentgen. 1994;162(4):899–904. doi: 10.2214/ajr.162.4.8141015.
    1. Yoganandan N, Ray G, Pintar FA, Myklebust J, Sances A. Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. J. Biomech. 1989;22:135–142. doi: 10.1016/0021-9290(89)90036-5.
    1. Li Y, et al. The prevalence and under-diagnosis of vertebral fractures on chest radiograph. BMC Musculoskelet. Disord. 2018;19(1):235. doi: 10.1186/s12891-018-2171-y.

Source: PubMed

3
Tilaa