Respiratory mechanics of patients with morbid obesity

Mauricio de Sant'Anna Jr, Renata Ferreira Carvalhal, Fernando da Franca Bastos de Oliveira, Walter Araújo Zin, Agnaldo José Lopes, Jocemir Ronaldo Lugon, Fernando Silva Guimarães, Mauricio de Sant'Anna Jr, Renata Ferreira Carvalhal, Fernando da Franca Bastos de Oliveira, Walter Araújo Zin, Agnaldo José Lopes, Jocemir Ronaldo Lugon, Fernando Silva Guimarães

Abstract

Objective: To evaluate the different components of the resistance of the respiratory system, respiratory muscle strength and to investigate the occurrence of expiratory flow limitation (EFL) in patients with morbid obesity (MO) when seated.

Methods: The sample was composed of MO (BMI≥40 kg/m2) and non-obese individuals (NO) with a BMI between 18 and 30 kg/m2. The protocol consisted of the anthropometric assessment and the following measures of respiratory function: spirometry, maximal inspiratory and expiratory pressures (MIP and MEP, respectively) and impulse oscillometry. The group comparison was performed using T-test for unpaired samples. The correlations were evaluated by the Pearson test with a significance level of 5%.

Results: Fifty MO (age 40±10.4 years, 1.64±0.09 m, 138.8±33.6 kg and 50.7±8.9 kg/m2), and 30 NO (age 37.6±11.5 years, 1.67±0.09 m, 65.2±10.3 kg and 23.2±22 kg/m2) were evaluated. The MO showed higher values of total, peripheral, airways, tissue and central resistance when compared to the NO. No patient showed EFL. The waist circumference was associated with spirometric variables, MIP, and MEP. The waist-to-hip ratio was correlated to respiratory mechanics and spirometric variables, MIP, and MEP.

Conclusion: Morbidly obese patients with no obstructive spirometric pattern show increased total, airway, peripheral, and tissue respiratory system resistance when compared to nonobese. These individuals, however, do not present with expiratory flow limitation and reduced respiratory muscles strength.

Figures

Figure 1. Flowchart for selection of the…
Figure 1. Flowchart for selection of the patients included in the study. FAS: Antiphospholipid Antibody Syndrome; FEV1/FVC: forced expiratory volume in the first second-forced vital capacity ratio; BMI: body mass index.

References

    1. Lobato JC, Kale PL, Velarde LG, Szklo M, Costa AJ. Correlation between mean body mass index in the population and prevalence of obesity in Brazilian capitals: empirical evidence for a population-based approach of obesity. BMC Public Health. 2015;15(322):1–6.
    1. Huang H, Yan Z, Chen Y, Liu F. A social contagious model of the obesity epidemic. Sci Rep. 2016;28(6):1–9. doi: 10.1038/srep37961.
    1. WHO: World Health Organization . Obesity: preventing and managing the global epidemic. Geneva: World Health Organization; 2000. (WHO Obesity Technical Report Series).
    1. Teucher B, Rohrmann S, Kaaks R. Obesity: focus on all-cause mortality and cancer. Maturitas. 2010;65(2):112–116. doi: 10.1016/j.maturitas.2009.11.018.
    1. Renquist K. Obesity classification. Obes Surg. 1997;7(6):523. doi: 10.1381/096089297765555331.
    1. Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med. 2016;11(28):1–11.
    1. Albuquerque CG, Andrade FMD, Rocha MAA, Oliveira AFF, Ladosky W, Victor EG, et al. Determining respiratory system resistence and reactance by impulse oscillometry in obese individuals. J Bras Pneumol. 2015;41(5):422–426. doi: 10.1590/S1806-37132015000004517.
    1. Kopelman PG. Clinical complications of obesity. Clin Endocrinol Metab. 1984;13(3):613–634. doi: 10.1016/S0300-595X(84)80041-9.
    1. Jones R, Nzekwu M. The effects of body mass index on lung volumes. Chest. 2006;130(3):827–833. doi: 10.1378/chest.130.3.827.
    1. Oostveen E, MacLeod D, Lorino H, Farré R, Hantos Z, Desager K, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22(6):1026–1041. doi: 10.1183/09031936.03.00089403.
    1. Bickel S, Popler J, Lesnick B, Eid N. Impulse oscillometry: interpretation and practical applications. Chest. 2014;146(3):841–847. doi: 10.1378/chest.13-1875.
    1. de Mesquita JA, Júnior, Lopes AJ, Jansen JM, de Melo PL. Using the forced oscillation technique to evaluate respiratory resistance in individuals with silicosis. J Bras Pneumol. 2006;32(3):213–220.
    1. WHO: World Health Organization . Physical Status: the use and interpretation of anthropometry. Geneva: World Health Organization; 1995. (Technical Report Series).
    1. Standardization of Spirometry 1994 Update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):1107–1136. doi: 10.1164/ajrccm.152.3.7663792.
    1. Sociedade Brasileira de Pneumologia e Tisiologia Diretrizes para testes de função pulmonar. J Bras Pneumol. 2002;28(3):1–238.
    1. American Thoracic Society/European Respiratory Society ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518–624.
    1. Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719–727. doi: 10.1590/S0100-879X1999000600007.
    1. Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G. Effects of obesity on respiratory resistance. Chest. 1993;103(5):1470–1476. doi: 10.1378/chest.103.5.1470.
    1. Yap JC, Watson RA, Gilbey S, Pride NB. Effects of posture on respiratory mechanics in obesity. J Appl Physiol. 1995;79(4):1199–1205. doi: 10.1152/jappl.1995.79.4.1199.
    1. Mahadev S, Salome CM, Berend N, King GG. The effect of low lung volume on airway function in obesity. Respir Physiol Neurobiol. 2013;188(2):192–199. doi: 10.1016/j.resp.2013.05.021.
    1. Santana AN, Souza R, Martins AP, Macedo F, Rascovski A, Salge JM. The effect of massive weight loss on pulmonary function of morbid obese patients. Respir Med. 2006;100(6):1100–1104. doi: 10.1016/j.rmed.2005.09.021.
    1. Lin CK, Lin CC. Work of breathing and respiratory drive in obesity. Respirology. 2012;17(3):402–411. doi: 10.1111/j.1440-1843.2011.02124.x.
    1. Ferretti A, Giampiccolo P, Cavalli A, Milic-Emili J, Tantucci C. Expiratory flow limitation and orthopnea in massively obese subjects. Chest. 2001;119(5):1401–1408. doi: 10.1378/chest.119.5.1401.
    1. Dellacà RL, Santus P, Aliverti A, Stevenson N, Centanni S, Macklem PT, et al. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004;23(2):232–240. doi: 10.1183/09031936.04.00046804.
    1. Pankow W, Podszus T, Gutheil T, Penzel T, Peter J, Von Wichert P. Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity. J Appl Physiol (1985) 1998;85(4):1236–1243.
    1. Steier J, Lunt A, Hart N, Polkey MI, Moxham J. Observational study of the effect of obesity on lung volumes. Thorax. 2014;69(8):752–759. doi: 10.1136/thoraxjnl-2014-205148.
    1. Chen Y, Rennie D, Cormier YF, Dosman J. Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am J Clin Nutr. 2007;85(1):35–39. doi: 10.1093/ajcn/85.1.35.
    1. Canoy D, Luben R, Welch A, Bingham S, Wareham N, Day N, et al. Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk Study, United Kingdom. Am J Epidemiol. 2004;159(12):1140–1149. doi: 10.1093/aje/kwh155.
    1. Marinho CL, Maioli MCP, do Amaral JLM, Lopes AJ, Melo PL. Respiratory resistance and reactance in adults with sickle cell anemia: correlation with functional exercise capacity and diagnostic use. PLoS One. 2017;12(12):1–26. doi: 10.1371/journal.pone.0187833.

Source: PubMed

3
Tilaa