Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth

Yorinobu Maeda, Teruo Murakami, Yorinobu Maeda, Teruo Murakami

Abstract

Small intestinal bacterial overgrowth (SIBO) is characterized as the increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract and accompanies various bowel symptoms such as abdominal pain, bloating, gases, diarrhea, and so on. Clinically, SIBO is diagnosed by microbial culture in duodenum/jejunum fluid aspirates and/or the breath tests (BT) of hydrogen/methane gases after ingestion of carbohydrates such as glucose. The cultural analysis of aspirates is regarded as the golden standard for the diagnosis of SIBO; however, this is invasive and is not without risk to the patients. BT is an inexpensive and safe diagnostic test but lacks diagnostic sensitivity and specificity depending on the disease states of patients. Additionally, the urinary excretion tests are used for the SIBO diagnosis using chemically synthesized bile acid conjugates such as cholic acid (CA) conjugated with para-aminobenzoic acid (PABA-CA), ursodeoxycholic acid (UDCA) conjugated with PABA (PABA-UDCA) or conjugated with 5-aminosalicylic acid (5-ASA-UDCA). These conjugates are split by bacterial bile acid (cholylglycine) hydrolase. In the tests, the time courses of the urinary excretion rates of PABA or 5-ASA, including their metabolites, are determined as the measure of hydrolytic activity of intestinal bacteria. Although the number of clinical trials with this urinary excretion tests is small, results demonstrated the usefulness of bile acid conjugates as SIBO diagnostic substrates. PABA-UDCA disulfate, a single-pass type unabsorbable compound without the hydrolysis of conjugates, was likely to offer a simple and rapid method for the evaluation of SIBO without the use of radioisotopes or expensive special apparatus. Treatments of SIBO with antibiotics, probiotics, therapeutic diets, herbal medicines, and/or fecal microbiota transplantation are also reviewed.

Keywords: 5-aminosalicylic acid; conjugated bile acids; diagnosis of SIBO; para-aminobenzoic acid; small intestinal bacterial overgrowth; treatments of SIBO; ursodeoxycholic acid.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structures of (A) ursodeoxycholic acid (UDCA), (B) UDCA conju gated with para-aminobenzoic acid (PABA-UDCA), (C) UDCA disulfate conjugated with PABA (PABA-UDCA disulfate), and (D) UDCA monophosphate conjugated with 5-aminosalycilic acid (5-ASAUDCA monophosphate.
Figure 2
Figure 2
Schematic representation for the fate of (A) PABA-UDCA and (B) 5-ASA-UDCA mono-phosphate in the proximal small intestine. (A): A part of orally ingested PABA-UDPA is deconjugated by intestinal bacterial bile salt (cholylglycine) hydrolase. The released PABA and UDCA are absorbed by passive diffusion. A part of PABA is metabolized to N-acetyl-PABA (Ac-PABA) by N-acetyltransferase in the intestine and liver. These PABA and Ac-PABA are efficiently excreted into the urine. UDCA and a part of intact PABA-UDPA are absorbed by passive diffusion in the proximal intestine and UDCA is conjugated with taurine and/or glycine in the liver. These UDCA, UDCA-amino acids conjugates and PABA-UDCA are subjected to enterohepatic circulation. (B): A part of orally ingested 5-ASA-UDPA monophosphate (5-ASA-UDCA-mP) is deconjugated by intestinal bacterial bile salt (cholylglycine) hydrolase. The released 5-ASA is absorbed by carrier-mediated transport at a low concentration and passive diffusion at a higher concentration and is metabolized to N-acetyl-5-ASA (Ac-5ASA) by N-acetyltransferase. Ac-5ASA is effluxed into the intestinal lumen by apical MRP2 or into a portal vein by basolateral MRP3. Un-metabolized, 5-ASA and Ac-5ASA absorbed into blood circulation are excreted into the urine. Intact 5-ASA-UDCA monophosphate (5-ASA-mP) and UDCA-monophosphate (UDCA-mP) are hardly absorbed in the small intestine (single-pass type substance). Solid arrows represent the transport and/or metabolism of the compound in the intestinal membrane. The dotted arrows represent small transport in the membrane. Open arrows represent the metabolism and/or migration toward the distal intestinal lumen.

References

    1. Mitsuoka T. Intestinal flora and human health. Asia Pac. J. Clin. Nutr. 1996;5:2–9. doi: 10.1248/jhs1956.28.2_43.
    1. Evaldson G., Heimdahl A., Kager L., Nord C.E. The normal human anaerobic microflora. Scand. J. Infect. Dis. Suppl. 1982;35:9–15.
    1. Finegold S.M. Intestinal bacteria. The role they play in normal physiology, pathologic physiology, and infection. Calif. Med. 1969;110:455–459.
    1. Hao W.L., Lee Y.K. Microflora of the gastrointestinal tract: A review. Methods Mol. Biol. 2004;268:491–502.
    1. Bures J., Cyrany J., Kohoutova D., Förstl M., Rejchrt S., Kvetina J., Vorisek V., Kopacova M. Small intestinal bacterial overgrowth syndrome. World J. Gastroenterol. 2010;16:2978–2990. doi: 10.3748/wjg.v16.i24.2978.
    1. Quigley E.M.M. The spectrum of small intestinal bacterial overgrowth (SIBO) Curr. Gastroenterol. Rep. 2019;21:3. doi: 10.1007/s11894-019-0671-z.
    1. Pimentel M., Saad R.J., Long M.D., Rao S.S.C. ACG Clinical guideline: Small intestinal bacterial overgrowth. Am. J. Gastroenterol. 2020;115:165–178. doi: 10.14309/ajg.0000000000000501.
    1. Guzior D.V., Quinn R.A. Review: Microbial transformations of human bile acids. Microbiome. 2021;9:140. doi: 10.1186/s40168-021-01101-1.
    1. Rana S.V., Malik A. Breath tests and irritable bowel syndrome. World J. Gastroenterol. 2014;20:7587–7601. doi: 10.3748/wjg.v20.i24.7587.
    1. Rezaie A., Buresi M., Lembo A., Lin H., McCallum R., Rao S., Schmulson M., Valdovinos M., Zakko S., Pimentel M. Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American consensus. Am J. Gastroenterol. 2017;112:775–784. doi: 10.1038/ajg.2017.46.
    1. Di Stefano M., Quigley E.M.M. The diagnosis of small intestinal bacterial overgrowth: Two steps forward, one step backwards? Neurogastroenterol. Motil. 2018;30:e13494. doi: 10.1111/nmo.13494.
    1. Takakura W., Pimentel M. Small intestinal bacterial overgrowth and irritable bowel syndrome—An update. Front. Psychiatry. 2020;11:664. doi: 10.3389/fpsyt.2020.00664.
    1. Li T., Chiang J.Y. Bile acids as metabolic regulators. Curr. Opin. Gastroenterol. 2015;31:159–165. doi: 10.1097/MOG.0000000000000156.
    1. Tiratterra E., Franco P., Porru E., Katsanos K.H., Christodoulou D.K., Roda G. Role of bile acids in inflammatory bowel disease. Ann. Gastroenterol. 2018;31:266–272. doi: 10.20524/aog.2018.0239.
    1. Wei W., Wang H.F., Zhang Y., Zhang Y.L., Niu B.Y., Yao S.K. Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome. World J. Gastroenterol. 2020;26:7153–7172. doi: 10.3748/wjg.v26.i45.7153.
    1. Li N., Zhan S., Tian Z., Liu C., Xie Z., Zhang S., Chen M., Zeng Z., Zhuang X. Alterations in bile acid metabolism associated with inflammatory bowel disease. Inflamm. Bowel Dis. 2021;27:1525–1540. doi: 10.1093/ibd/izaa342.
    1. Garcia C.J., Kosek V., Beltrán D., Tomás-Barberán F.A., Hajslova J. Production of new microbially conjugated bile acids by human gut microbiota. Biomolecules. 2022;12:687. doi: 10.3390/biom12050687.
    1. Mahmoudiandehkordi S., Bhattacharyya S., Brydges C.R., Jia W., Fiehn O., Rush A.J., Dunlop B.W., Kaddurah-Daouk R. Gut microbiome-linked metabolites in the pathobiology of major depression with or without anxiety—A role for bile acids. Front. Neurosci. 2022;16:937906. doi: 10.3389/fnins.2022.937906.
    1. Gasbarrini A., Corazza G.R., Gasbarrini G., Montalto M., Di Stefano M., Basilisco G., Parodi A., Usai-Satta P., Vernia P., Anania C., et al. Methodology and indications of H2-breath testing in gastrointestinal diseases: The Rome Consensus Conference. Aliment. Pharmacol. Ther. 2009;29((Suppl. S1)):1–49.
    1. Massey B.T., Wald A. Small intestinal bacterial overgrowth syndrome: A guide for the appropriate use of breath testing. Dig. Dis. Sci. 2021;66:338–347. doi: 10.1007/s10620-020-06623-6.
    1. Ghoshal U.C., Sachdeva S., Ghoshal U., Misra A., Puri A.S., Pratap N., Shah A., Rahman M.M., Gwee K.A., Tan V.P.Y., et al. Asian-Pacific consensus on small intestinal bacterial overgrowth in gastrointestinal disorders: An initiative of the Indian Neurogastroenterology and Motility Association. Indian J. Gastroenterol. 2022;10:1–25. doi: 10.1007/s12664-022-01292-x.
    1. Hammer H.F., Fox M.R., Keller J., Salvatore S., Basilisco G., Hammer J., Lopetuso L., Benninga M., Borrelli O. European guideline on indications, performance, and clinical impact of hydrogen and methane breath tests in adult and pediatric patients: European Association for Gastroenterology, Endoscopy and Nutrition, European Society of Neurogastroenterology and Motility, and European Society for Paediatric Gastroenterology Hepatology and Nutrition consensus. United Eur. Gastroenterol. J. 2022;10:15–40.
    1. Noh K., Kang Y.R., Nepal M.R., Shakya R., Kang M.J., Kang W., Lee S., Jeong H.G., Jeong T.C. Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Arch. Pharm. Res. 2017;40:1345–1355. doi: 10.1007/s12272-017-0986-y.
    1. Wilson I.D., Nicholson J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017;179:204–222. doi: 10.1016/j.trsl.2016.08.002.
    1. Murakami T., Bodor E., Bodor N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Exp. Opin. Drug Metab. Toxicol. 2020;16:59–78. doi: 10.1080/17425255.2020.1701653.
    1. Murakami T., Bodor E., Bodor N. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Exp. Opin. Drug Metab. Toxicol. 2021;17:555–580. doi: 10.1080/17425255.2021.1902986.
    1. Saitta K.S., Zhang C., Lee K.K., Fujimoto K., Redinbo M.R., Boelsterli U.A. Bacterial β- glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: Mode of action and pharmacokinetics. Xenobiotica. 2014;44:28–35. doi: 10.3109/00498254.2013.811314.
    1. Murota K., Nakamura Y., Uehara M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem. 2018;82:600–610. doi: 10.1080/09168451.2018.1444467.
    1. Zhang J., Zhang J., Wang R. Gut microbiota modulates drug pharmacokinetics. Drug Metab. Rev. 2018;50:357–368. doi: 10.1080/03602532.2018.1497647.
    1. Kawabata K., Yoshioka Y., Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24:370. doi: 10.3390/molecules24020370.
    1. Zhang F., He F., Li L., Guo L., Zhang B., Yu S., Zhao W. Bioavailability Based on the Gut Microbiota: A New Perspective. Microbiol. Mol. Biol. Rev. 2020;84:e00072-19. doi: 10.1128/MMBR.00072-19.
    1. Zhang X., Han Y., Huang W., Jin M., Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B. 2021;11:1789–1812. doi: 10.1016/j.apsb.2020.09.013.
    1. Chiang J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013;3:1191–1212.
    1. Murakami T., Sasaki Y., Yamajo R., Yata N. Effect of bile salts on the rectal absorption of sodium ampicillin in rats. Chem. Pharm. Bull. 1984;32:1948–1955. doi: 10.1248/cpb.32.1948.
    1. Tian Y., Gui W., Koo I., Smith P.B., Allman E.L., Nichols R.G., Rimal B., Cai J., Liu Q., Patterson A.D. The microbiome modulating activity of bile acids. Gut Microbes. 2020;11:979–996. doi: 10.1080/19490976.2020.1732268.
    1. Shah A., Talley N.J., Holtmann G.J. Current and future approaches for diagnosing small intestinal dysbiosis in patients with symptoms of functional dyspepsia. Front. Neurosci. 2022;16:830356. doi: 10.3389/fnins.2022.830356.
    1. Khoshini R., Dai S.C., Lezcano S., Pimentel M. A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig. Dis. Sci. 2008;53:1443–1454. doi: 10.1007/s10620-007-0065-1.
    1. Vanner S. The small intestinal bacterial overgrowth. Irritable bowel syndrome hypothesis: Implications for treatment. Gut. 2008;57:1315–1321. doi: 10.1136/gut.2007.133629.
    1. Siniewicz-Luzeńczyk K., Bik-Gawin A., Zeman K., Bąk-Romaniszyn L. Small intestinal bacterial overgrowth syndrome in children. Prz. Gastroenterol. 2015;10:28–32. doi: 10.5114/pg.2014.47494.
    1. Cangemi D.J., Lacy B.E., Wise J. Diagnosing small intestinal bacterial overgrowth: A comparison of lactulose breath tests to small bowel aspirates. Dig. Dis. Sci. 2021;66:2042–2050. doi: 10.1007/s10620-020-06484-z.
    1. Leite G., Morales W., Weitsman S., Celly S., Parodi G., Mathur R., Barlow G.M., Sedighi R., Millan M.J.V., Rezaie A., et al. The duodenal microbiome is altered in small intestinal bacterial overgrowth. PLoS ONE. 2020;15:e0234906. doi: 10.1371/journal.pone.0234906.
    1. Bamba S., Imai T., Sasaki M., Ohno M., Yoshida S., Nishida A., Takahashi K., Inatomi O., Andoh A. Altered gut microbiota in patients with small intestinal bacterial overgrowth. J. Gastroenterol. Hepatol. 2023;38:61–69. doi: 10.1111/jgh.16013.
    1. Gabrielli M., D’Angelo G., Di Rienzo T., Scarpellini E., Ojetti V. Diagnosis of small intestinal bacterial overgrowth in the clinical practice. Eur. Rev. Med. Pharmacol. Sci. 2013;17:30–35.
    1. Sundin O.H., Mendoza-Ladd A., Zeng M., Diaz-Arévalo D., Morales E., Fagan B.M., Ordoñez J., Velez P., Antony N., McCallum R.W. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol. 2017;17:160. doi: 10.1186/s12866-017-1059-6.
    1. Rao S.S.C., Bhagatwala J. Small intestinal bacterial overgrowth: Clinical features and therapeutic management. Clin. Transl. Gastroenterol. 2019;10:e00078. doi: 10.14309/ctg.0000000000000078.
    1. Ginnebaugh B., Chey W.D., Saad R. Small intestinal bacterial overgrowth: How to diagnose and treat (and then treat again) Gastroenterol. Clin. N. Am. 2020;49:571–587. doi: 10.1016/j.gtc.2020.04.010.
    1. Shin A.S., Gao X., Bohm M., Lin H., Gupta A., Nelson D.E., Toh E., Teagarden S., Siwiec R., Dong Q., et al. Characterization of proximal small intestinal microbiota in patients with suspected small intestinal bacterial overgrowth: A cross-sectional study. Clin. Transl. Gastroenterol. 2019;10:e00073. doi: 10.14309/ctg.0000000000000073.
    1. Fida M., Wolf M.J., Hamdi A., Vijayvargiya P., Esquer Garrigos Z., Khalil S., Greenwood-Quaintance K.E., Thoendel M.J., Patel R. Detection of Pathogenic Bacteria From Septic Patients Using 16S Ribosomal RNA Gene-Targeted Metagenomic Sequencing. Clin. Infect. Dis. 2021;73:1165–1172. doi: 10.1093/cid/ciab349.
    1. Jiang W, A protocol for quantizing total bacterial 16S rDNA in plasma as a marker of microbial translocation in vivo. Cell Mol. Immunol. 2018;15:937–939. doi: 10.1038/cmi.2018.3.
    1. Mello C.S., Rodrigues M.S.D.C., Filho H.B.A., Melli L.C.F.L., Tahan S., Pignatari A.C.C., de Morais M.B. Fecal microbiota analysis of children with small intestinal bacterial overgrowth among residents of an urban slum in Brazil. J. Pediatr. 2018;94:483–490. doi: 10.1016/j.jped.2017.09.003.
    1. Donowitz J.R., Parikh H.I., Taniuchi M., Gilchrist C.A., Haque R., Kirkpatrick B.D., Alam M., Kakon S.H., Islam B.Z., Afreen S., et al. Increased fecal Lactobacillus is associated with a positive glucose hydrogen breath test in Bangladeshi children. Open Forum Infect. Dis. 2019;6:ofz266. doi: 10.1093/ofid/ofz266.
    1. Sundin J., Aziz I., Nordlander S., Polster A., Hu Y., Hugerth L.W., Pennhag A.A.L., Engstrand L., Törnblom H., Simrén M., et al. Evidence of altered mucosa-associated and fecal microbiota composition in patients with Irritable Bowel Syndrome. Sci. Rep. 2020;10:593. doi: 10.1038/s41598-020-57468-y.
    1. Noh C.K., Lee K.J. Fecal microbiota alterations and small intestinal bacterial overgrowth in functional abdominal bloating/distention. J. Neurogastroenterol. Motil. 2020;26:539–549. doi: 10.5056/jnm20080.
    1. Levin D., De Palma G., Zou H., Bazzaz A.H.Z., Verdu E., Baker B., Pinto-Sanchez M.I., Khalidi N., Larché M.J., Beattie K.A., et al. Fecal microbiome differs between patients with systemic sclerosis with and without small intestinal bacterial overgrowth. J. Scleroderma. Relat. Disord. 2021;6:290–298. doi: 10.1177/23971983211032808.
    1. Li J., Xu Y., Cai Y., Zhang M., Sun Z., Ban Y., Zgai S., Hao Y., Ouyang Q., Wu B., et al. Association of differential metabolites with small intestinal microflora and maternal outcomes in subclinical hypothyroidism during pregnancy. Front. Cell Infect. Microbiol. 2021;11:779659. doi: 10.3389/fcimb.2021.779659.
    1. Bonfrate L., Grattagliano I., Palasciano G., Portincasa P. Dynamic carbon 13 breath tests for the study of liver function and gastric emptying. Gastroenterol. Rep. 2015;3:12–21. doi: 10.1093/gastro/gou068.
    1. Saltzman J.R., Kowdley K.V., Pedrosa M.C., Sepe T., Golner B., Perrone G., Russell R.M. Bacterial overgrowth without clinical malabsorption in elderly hypochlorhydric subjects. Gastroenterology. 1994;106:615–623. doi: 10.1016/0016-5085(94)90693-9.
    1. Geboes K.P., Luypaerts A., Rutgeerts P., Verbeke K. Inulin is an ideal substrate for a hydrogen breath test to measure the orocaecal transit time. Aliment. Pharmacol. Ther. 2003;18:721–729. doi: 10.1046/j.1365-2036.2003.01750.x.
    1. Schneider A.R., Jepp K., Murczynski L., Biniek U., Stein J. The inulin hydrogen breath test accurately reflects orocaecal transit time. Eur. J. Clin. Invest. 2007;37:802–807. doi: 10.1111/j.1365-2362.2007.01862.x.
    1. Yu D., Cheeseman F., Vanner S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut. 2011;60:334–340. doi: 10.1136/gut.2009.205476.
    1. Houben E., De Preter V., Billen J., Van Ranst M., Verbeke K. Additional value of CH2 measurement in a combined (13)C/H4 lactose malabsorption breath test: A retrospective analysis. Nutrients. 2015;7:7469–7485. doi: 10.3390/nu7095348.
    1. Watkins J.B., Klein P.D., Schoeller D.A., Kirschner B.S., Park R., Perman J.A. Diagnosis and differentiation of fat malabsorption in children using 13C-labeled lipids: Trioctanoin, triolein, and palmitic acid breath tests. Pt 1Gastroenterology. 1982;82:911–917. doi: 10.1016/S0016-5085(82)80255-2.
    1. Gunnarsson M., Leide-Svegborn S., Stenström K., Skog G., Nilsson L.E., Thorsson O., Hellborg R., Mattsson S. Long-term biokinetics and radiation exposure of patients undergoing 14C-glycocholic acid and 14C-xylose breath tests. Cancer Biother. Radiopharm. 2007;22:762–771.
    1. Berthold H.K., Schober P., Scheurlen C., Marklein G., Horré R., Gouni-Berthold I., Sauerbruch T. Use of the lactose-[13C]ureide breath test for diagnosis of small bowel bacterial overgrowth: Comparison to the glucose hydrogen breath test. J. Gastroenterol. 2009;44:944–951. doi: 10.1007/s00535-009-0097-8.
    1. Keller J., Hammer H.F., Afolabi P.R., Benninga M., Borrelli O., Dominguez-Munoz E., Dumitrascu D., Goetze O., Haas S.L., Hauser B., et al. European guideline on indications, performance and clinical impact of 13 C-breath tests in adult and pediatric patients: An EAGEN, ESNM, and ESPGHAN consensus, supported by EPC. United Eur. Gastroenterol. J. 2021;9:598–625. doi: 10.1002/ueg2.12099.
    1. King C.E., Toskes P.P., Guilarte T.R., Lorenz E., Welkos S.L. Comparison of the one-gram d- [14C]xylose breath test to the [14C]bile acid breath test in patients with small-intestine bacterial overgrowth. Dig. Dis. Sci. 1980;25:53–58. doi: 10.1007/BF01312733.
    1. Riordan S.M., McIver C.J., Duncombe V.M., Bolin T.D., Thomas M.C. Factors influencing the 1-g 14C-D-xylose breath test for bacterial overgrowth. Am. J. Gastroenterol. 1995;90:1455–1460.
    1. Chang C.S., Chen G.H., Kao C.H., Wang S.J., Peng S.N., Huang C.K., Poon S.K. Increased accuracy of the carbon-14 D-xylose breath test in detecting small-intestinal bacterial overgrowth by correction with the gastric emptying rate. Eur. J. Nucl. Med. 1995;22:1118–1122. doi: 10.1007/BF00800592.
    1. Stotzer P.O., Kilander A.F. Comparison of the 1-g (14)C-D-xylose breath test and the 50-g hydrogen glucose breath test for diagnosis of small intestinal bacterial overgrowth. Digestion. 2000;61:165–171. doi: 10.1159/000007753.
    1. Schoeller D.A., Klein P.D., MacLean W.C., Watkins J.B., Jr., van Santen E. Fecal 13C analysis for the detection and quantitation of intestinal malabsorption. Limits of detection and application to disorders of intestinal cholylglycine metabolism. J. Lab. Clin. Med. 1981;97:440–448.
    1. Bjørkhaug S.T., Skar V., Medhus A.W., Tollisen A., Bramness J.G., Valeur J. Chronic alcohol overconsumption may alter gut microbial metabolism: A retrospective study of 719 13C-D-xylose breath test results. Microb. Ecol. Health Dis. 2017;28:1301725. doi: 10.1080/16512235.2017.1301725.
    1. Sutton D.G., Preston T., Love S. Application of the lactose 13C-ureide breath test for measurement of equine orocaecal transit time. Equine Vet. J. Suppl. 2011;39:49–55. doi: 10.1111/j.2042-3306.2011.00407.x.
    1. Hepner G.W. Increased sensitivity of the cholylglycine breath test for detecting ileal dysfunction. Gastroenterology. 1975;68:8–16. doi: 10.1016/S0016-5085(75)80043-6.
    1. Caspary W.F., Reimold W.V. [Clinical significance of the 14C-glycocholate breath test in the diagnosis of gastro-enterological diseases (author’s transl)] Dtsch. Med. Wochenschr. 1976;101:353–360. doi: 10.1055/s-0028-1104088.
    1. Watson W.S., McKenzie I., Holden R.J., Craig L., Sleigh J.D., Crean G.P. An evaluation of the 14C-glycocholic acid breath test in the diagnosis of bacterial colonisation of the jejunum. Scott. Med. J. 1980;25:27–32. doi: 10.1177/003693308002500106.
    1. Shindo K., Machida M., Miyakawa K., Fukumura M. A syndrome of cirrhosis, achlorhydria, small intestinal bacterial overgrowth, and fat malabsorption. Am. J. Gastroenterol. 1993;88:2084–2091.
    1. Fromm H., Hofmann A.F. Breath test for altered bile-acid metabolism. Lancet. 1971;2:621–625. doi: 10.1016/S0140-6736(71)80068-5.
    1. Rosenbaum C.L., Cluxton R.J., Jr. Ursodiol: A cholesterol gallstone solubilizing agent. Drug Intell. Clin. Pharm. 1988;22:941–945. doi: 10.1177/106002808802201202.
    1. Rubin R.A., Kowalski T.E., Khandelwal M., Malet P.F. Ursodiol for hepatobiliary disorders. Ann. Intern. Med. 1994;121:207–218. doi: 10.7326/0003-4819-121-3-199408010-00009.
    1. Winston J.A., Rivera A.J., Cai J., Thanissery R., Montgomery S.A., Patterson A.D., Theriot C.M. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect. Immun. 2020;88:e00045-20. doi: 10.1128/IAI.00045-20.
    1. Lajczak-McGinley N.K., Porru E., Fallon C.M., Smyth J., Curley C., McCarron P.A., Tambuwala M.M., Roda A., Keely S.J. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol. Rep. 2020;8:e14456. doi: 10.14814/phy2.14456.
    1. Li H., Wang Q., Chen P., Zhou C., Zhang X., Chen L. Ursodeoxycholic acid treatment restores gut microbiota and alleviates liver inflammation in non-alcoholic steatohepatitic mouse model. Front. Pharmacol. 2021;12:788558. doi: 10.3389/fphar.2021.788558.
    1. Kim B.T., Kim K.M., Kim K.N. The Effect of ursodeoxycholic acid on small intestinal bacterial overgrowth in patients with functional dyspepsia: A pilot randomized controlled trial. Nutrients. 2020;12:1410. doi: 10.3390/nu12051410.
    1. Ovadia C., Perdones-Montero A., Fan H.M., Mullish B.H., McDonald J.A.K., Papacleovoulou G., Wahlström A., Ståhlman M., Tsakmaki A., Clarke L.C.D., et al. Ursodeoxycholic acid enriches intestinal bile salt hydrolase-expressing Bacteroidetes in cholestatic pregnancy. Sci. Rep. 2020;10:3895. doi: 10.1038/s41598-020-60821-w.
    1. Zhang Y., Jiang R., Zheng X., Lei S., Huang F., Xie G., Kwee S., Yu H., Farrar C., Sun B., et al. Ursodeoxycholic acid accelerates bile acid enterohepatic circulation. Br. J. Pharmacol. 2019;176:2848–2863. doi: 10.1111/bph.14705.
    1. Pike C.M., Tam J., Melnyk R.A., Theriot C.M. Tauroursodeoxycholic acid inhibits Clostridioides difficile toxin-induced apoptosis. Infect. Immun. 2022;90:e0015322. doi: 10.1128/iai.00153-22.
    1. Aldini R., Roda A., Lenzi P.L., Ussia G., Vaccari M.C., Mazzella G., Festi D., Bazzoli F., Galletti G., Casanova S., et al. Bile acid active and passive ileal transport in the rabbit: Effect of luminal stirring. Eur. J. Clin. Invest. 1992;22:744–750. doi: 10.1111/j.1365-2362.1992.tb01439.x.
    1. Aldini R., Montagnani M., Roda A., Hrelia S., Biagi P.L., Roda E. Intestinal absorption of bile acids in the rabbit: Different transport rates in jejunum and ileum. Gastroenterology. 1996;110:459–468. doi: 10.1053/gast.1996.v110.pm8566593.
    1. Parquet M., Metman E.H., Raizman A., Rambaud J.C., Berthaux N., Infante R. Bioavailability, gastrointestinal transit, solubilization and faecal excretion of ursodeoxycholic acid in man. Eur. J. Clin. Invest. 1985;15:171–178. doi: 10.1111/j.1365-2362.1985.tb00164.x.
    1. Walker S., Rudolph G., Raedsch R., Stiehl A. Intestinal absorption of ursodeoxycholic acid in patients with extrahepatic biliary obstruction and bile drainage. Gastroenterology. 1992;102:810–815. doi: 10.1016/0016-5085(92)90162-R.
    1. Sauer P., Benz C., Rudolph G., Klöters-Plachky P., Stremmel W., Stiehl A. Influence of cholestasis on absorption of ursodeoxycholic acid. Dig. Dis. Sci. 1999;44:817–822. doi: 10.1023/A:1026686530785.
    1. Rudolph G., Kloeters-Plachky P., Sauer P., Stiehl A. Intestinal absorption and biliary secretion of ursodeoxycholic acid and its taurine conjugate. Eur. J, Clin. Invest. 2002;32:575–580. doi: 10.1046/j.1365-2362.2002.01030.x.
    1. Wolgemuth R.L., Hanson K.M., Zassenhaus P.H. A new substrate for the rapid evaluation of enteric microbial overgrowth. Am. J. Dig. Dis. 1976;21:821–826. doi: 10.1007/BF01073039.
    1. Arvanitakis C., Longnecker M.P., Folscroft J. Characterization of p-aminobenzoic acid transport across the rat intestine. J. Lab. Clin. Med. 1978;91:467–472.
    1. Kluczyk A., Popek T., Kiyota T., de Macedo P., Stefanowicz P., Lazar C., Konishi Y. Drug evolution: P-aminobenzoic acid as a building block. Curr. Med. Chem. 2002;9:1871–1892. doi: 10.2174/0929867023368872.
    1. Mutch C.A., Ordonez A.A., Qin H., Parker M., Bambarger L.E., Villanueva-Meyer J.E., Blecha J., Carroll V., Taglang C., Flavell R., et al. [11C]Para-aminobenzoic acid: A positron emission tomography tracer targeting bacteria specific metabolism. ACS Infect. Dis. 2018;4:1067–1072. doi: 10.1021/acsinfecdis.8b00061.
    1. Ordonez A.A., Parker M.F., Miller R.J., Plyku D., Ruiz-Bedoya C.A., Tucker E.W., Luu J.M., Dikeman D.A., Lesniak W.G., Holt D.P., et al. 11C-Para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans. JCI Insight. 2022;7:e154117. doi: 10.1172/jci.insight.154117.
    1. Kimura T., Wakasugi H., Ibayashi H. Clinical study of exocrine pancreatic function test by oral administration by N-benzoyl-L-tyrosyl-p-aminobenzoic acid. Digestion. 1981;21:133–139.
    1. Wakasugi H., Funakoshi T., Ibayashi H. Evaluation of exocrine pancreatic function by oral administration of N-benzoyl-L-tyrosyl-p-aminobenzoic acid (PFD test) in primary diabetes mellitus. Digestion. 1983;26:1–9. doi: 10.1159/000198862.
    1. Noda A., Hayakawa T., Kondo T., Katada N., Kameya A. Clinical evaluation of pancreatic excretion test with dimethadione and oral BT-PABA test in chronic pancreatitis. Dig. Dis. Sci. 1983;28:230–235. doi: 10.1007/BF01295118.
    1. Imai T., Tanaka K., Yonemitsu T., Yakushiji Y., Ohura K. Elucidation of the intestinal absorption of para-aminobenzoic acid, a marker for dietary intake. J. Pharm. Sci. 2017;106:2881–2888. doi: 10.1016/j.xphs.2017.04.070.
    1. Sharma R.S., Joy R.C., Boushey C.J., Ferruzzi M.G., Leonov A.P., McCrory M.A. Effects of para- aminobenzoic acid (PABA) form and administration mode on PABA recovery in 24-h urine collections. J. Acad. Nutr. Diet. 2014;114:457–463. doi: 10.1016/j.jand.2013.07.045.
    1. Chan K. High performance liquid chromatographic characterisation and quantitation of p- aminobenzoic acid N-acetylation in Chinese subjects. Eur. J. Drug Metab. Pharmacokinet. 1986;11:129–134. doi: 10.1007/BF03189838.
    1. Chan K., Miners J.O., Birkett D.J. Direct and simultaneous high-performance liquid chromatographic assay for the determination of p-aminobenzoic acid and its conjugates in human urine. J. Chromatogr. 1988;426:103–109. doi: 10.1016/S0378-4347(00)81931-3.
    1. Klotz U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5- aminosalicylic acid. Clin. Pharmacokinet. 1985;10:285–302. doi: 10.2165/00003088-198510040-00001.
    1. Wiggins J.B., Rajapakse R. Balsalazide: A novel 5-aminosalicylate prodrug for the treatment of active ulcerative colitis. Expert Opin. Drug Metab. Toxicol. 2009;5:1279–1284. doi: 10.1517/17425250903206996.
    1. Dhaneshwar S.S. Colon-specific prodrugs of 4-aminosalicylic acid for inflammatory bowel disease. World J. Gastroenterol. 2014;20:3564–3571. doi: 10.3748/wjg.v20.i13.3564.
    1. Tjørnelund. J., Hansen S.H. High-performance liquid chromatographic assay of 5-aminosalicylic acid (5-ASA) and its metabolites N-beta-D-glucopyranosyl-5-ASA, N-acetyl-5-ASA, N-formyl-5-ASA and N-butyryl-5-ASA in biological fluids. J. Chromatogr. 1991;570:109–117. doi: 10.1016/0378-4347(91)80205-Q.
    1. Nobilis M., Vybíralová Z., Sládková K., Lísa M., Holcapek M., Kvetina J. High-performance liquid-chromatographic determination of 5-aminosalicylic acid and its metabolites in blood plasma. J. Chromatogr. A. 2006;1119:299–308. doi: 10.1016/j.chroma.2006.01.058.
    1. Smetanová L., Stětinová V., Kholová D., Kuneš M., Nobilis M., Svoboda Z., Květina J. Transintestinal transport mechanisms of 5-aminosalicylic acid (in situ rat intestine perfusion, Caco-2 cells) and Biopharmaceutics Classification System. Gen. Physiol. Biophys. 2013;32:361–369. doi: 10.4149/gpb_2013034.
    1. Murakami T., Takano M. Intestinal efflux transporters and drug absorption. Exp Opin. Drug Metab. Toxicol. 2008;4:923–939. doi: 10.1517/17425255.4.7.923.
    1. Murakami T. Absorption sites of orally administered drugs in the small intestine. Exp. Opin. Drug Discov. 2017;12:1219–1232. doi: 10.1080/17460441.2017.1378176.
    1. Xin H.W., Schwab M., Klotz U. Transport studies with 5-aminosalicylate. Eur. J. Clin. Pharmacol. 2006;62:871–875. doi: 10.1007/s00228-006-0182-3.
    1. Yoshimura S., Kawano K., Matsumura R., Sugihara N., Furuno K. Inhibitory effect of flavonoids on the efflux of N-acetyl 5-aminosalicylic acid intracellularly formed in Caco-2 cells. J. Biomed. Biotechnol. 2009;2009:467489. doi: 10.1155/2009/467489.
    1. Kamishikiryo J., Matsumura R., Takamori T., Sugihara N. Effect of quercetin on the transport of N- acetyl 5-aminosalicylic acid. J. Pharm. Pharmacol. 2013;65:1037–1043. doi: 10.1111/jphp.12062.
    1. Yuri T., Kono Y., Fujita T. Transport characteristics of 5-aminosalicylic acid into colonic epithelium: Involvement of sodium-coupled monocarboxylate transporter SMCT1-mediated transport system. Biochem. Biophys. Res. Commun. 2020;524:561–566. doi: 10.1016/j.bbrc.2020.01.139.
    1. Takano M., Yumoto R., Murakami T. Expression and function of efflux drug transporters in the intestine. Phar. Macol. Ther. 2006;109:137–161. doi: 10.1016/j.pharmthera.2005.06.005.
    1. Gionchetti P., Campieri M., Belluzzi A., Boschi S., Brignola C., Miglioli M., Barbara L. Bioavailability of single and multiple doses of a new oral formulation of 5-ASA in patients with inflammatory bowel disease and healthy volunteers. Aliment. Pharmacol. Ther. 1994;8:535–540. doi: 10.1111/j.1365-2036.1994.tb00327.x.
    1. Christensen L.A., Fallingborg J., Jacobsen B.A., Abildgaard K., Rasmussen H.H., Rasmussen S.N., Hansen S.H. Bioavailability of 5-aminosalicyclic acid from slow release 5-aminosalicyclic acid drug and sulfasalazine in normal children. Dig. Dis. Sci. 1993;38:1831–1836. doi: 10.1007/BF01296106.
    1. Myers B., Evans D.N., Rhodes J., Evans B.K., Hughes B.R., Lee M.G., Richens A., Richards D. Metabolism and urinary excretion of 5-amino salicylic acid in healthy volunteers when given intravenously or released for absorption at different sites in the gastrointestinal tract. Gut. 1987;28:196–200. doi: 10.1136/gut.28.2.196.
    1. Bardhan P.K., Feger A., Kogon M., Muller J., Gillessen D., Beglinger C., Gyr N. Urinary choloyl- PABA excretion in diagnosing small intestinal bacterial overgrowth: Evaluation of a new noninvasive method. Dig. Dis. Sci. 2000;45:474–479. doi: 10.1023/A:1005428703993.
    1. Maeda Y., Takahashi M. Hydrolysis and absorption of a conjugate of ursodeoxycholic acid with para-aminobenzoic acid. J. Pharmacobiodyn. 1989;12:744–753. doi: 10.1248/bpb1978.12.744.
    1. Maeda Y., Takahashi M., Tashiro H., Akazawa F. The rapid evaluation of intestinal bacterial growth using a conjugate of ursodeoxycholic acid with para-aminobenzoic acid. J. Pharmacobiodyn. 1989;12:272–280. doi: 10.1248/bpb1978.12.272.
    1. Takahashi M., Maeda Y., Tashiro H., Eto T., Goto T., Sanada O. A new simple test for evaluation of intestinal bacteria. World J. Surg. 1990;14:628–634. doi: 10.1007/BF01658810.
    1. Takahashi M., Maeda Y., Tashiro H., Akazawa F., Okajima M., Yoshioka S., Matsugu Y., Toyota K., Masaoka Y. Basic studies on ursodeoxycholyl-para-aminobenzoic acid for evaluation of intestinal microflora. Scand. J. Gastroenterol. 1991;26:577–588. doi: 10.3109/00365529109043631.
    1. Takahashi M., Konishi T., Maeda Y., Matsugu Y., Akazawa F., Eto T., Okajima M., Uchida K., Masaoka Y., Okada K. Use of the conjugate of disulphated ursodeoxycholic acid with p-aminobenzoic acid for the detection of intestinal bacteria. Gut. 1993;34:823–828. doi: 10.1136/gut.34.6.823.
    1. Kiss Z., Wölfling J., Csáti S., Nagy F., Lonovics J., Schneider G. [The ursodeoxycholic acid-p- aminobenzoic acid test in the diagnosis of small bowel bacterial overgrowth syndrome] Orv. Hetil. 1997;138:1255–1258.
    1. Kiss Z.F., Wölfling J., Csáti S., Nagy F., Wittmann T., Schneider G., Lonovics J. The ursodeoxycholic acid-p-aminobenzoic acid deconjugation test, a new tool for the diagnosis of bacterial overgrowth syndrome. Eur. J. Gastroenterol. Hepatol. 1997;9:679–682. doi: 10.1097/00042737-199707000-00006.
    1. Konishi T., Takahashi M., Ohta S. Basic studies on 5-(7-hydroxy-3-Ophosphonocholyl)aminosalicylic acid for the evaluation of microbial overgrowth. Biol. Pharm. Bull. 1997;20:370–375. doi: 10.1248/bpb.20.370.
    1. Konishi T. [Basic studies on the utility of ursodeoxycholic acid derivatives for clinical medicine] Yakugaku Zasshi. 2000;120:1–15. doi: 10.1248/yakushi1947.120.1_1.
    1. Batta A.K., Tint G.S., Xu G., Shefer S., Salen G. Synthesis and intestinal metabolism of ursodeoxycholic acid conjugate with an antiinflammatory agent, 5-aminosalicylic acid. J. Lipid Res. 1998;39:1641–1646. doi: 10.1016/S0022-2275(20)32193-3.
    1. Goto M., Okamoto Y., Yamamoto M., Aki H. Anti-inflammatory effects of 5-aminosalicylic acid conjugates with chenodeoxycholic acid and ursodeoxycholic acid on carrageenan-induced colitis in guineapigs. J. Pharm. Pharmacol. 2001;53:1711–1720. doi: 10.1211/0022357011778115.
    1. Narisawa T., Fukaura Y., Takeba N., Nakai K. Chemoprevention of N-methylnitrosourea-induced colon carcinogenesis by ursodeoxycholic acid-5-aminosalicylic acid conjugate in F344 rats. Jpn. J. Cancer Res. 2002;93:143–150. doi: 10.1111/j.1349-7006.2002.tb01252.x.
    1. Chedid V., Dhalla S., Clarke J.O., Roland B.C., Dunbar K.B., Koh J., Justino E., Tomakin E., Mullin G.E. Herbal therapy is equivalent to rifaximin for the treatment of small intestinal bacterial overgrowth. Glob. Adv. Health Med. 2014;3:16–24. doi: 10.7453/gahmj.2014.019.
    1. Pittman N., Rawn S.M., Wang M., Masetto A., Beattie K.A., Larché M. Treatment of small intestinal bacterial overgrowth in systemic sclerosis: A systematic review. Rheumatology. 2018;57:1802–1811. doi: 10.1093/rheumatology/key175.
    1. Souza C., Rocha R., Cotrim H.P. Diet and intestinal bacterial overgrowth: Is there evidence? World J. Clin. Cases. 2022;10:4713–4716. doi: 10.12998/wjcc.v10.i15.4713.
    1. Baker D.E. Rifaximin: A nonabsorbed oral antibiotic. Rev. Gastroenterol. Disord. 2005;5:19–30.
    1. Pimentel M. Review of rifaximin as treatment for SIBO and IBS. Expert Opin. Investig. Drugs. 2009;18:349–358. doi: 10.1517/13543780902780175.
    1. Lombardo L., Foti M., Ruggia O., Chiecchio A. Increased incidence of small intestinal bacterial overgrowth during proton pump inhibitor therapy. Clin. Gastroenterol. Hepatol. 2010;8:504–508. doi: 10.1016/j.cgh.2009.12.022.
    1. Scarpellini E., Gabrielli M., Lauritano C.E., Lupascu A., Merra G., Cammarota G., Cazzato I.A., Gasbarrini G., Gasbarrini A. High dosage rifaximin for the treatment of small intestinal bacterial overgrowth. Aliment. Pharmacol. Ther. 2007;25:781–786. doi: 10.1111/j.1365-2036.2007.03259.x.
    1. Lauritano E.C., Gabrielli M., Scarpellini E., Lupascu A., Novi M., Sottili S., Vitale G., Cesario V., Serricchio M., Cammarota G., et al. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. Am. J. Gastroenterol. 2008;103:2031–2035. doi: 10.1111/j.1572-0241.2008.02030.x.
    1. Pimentel M., Morales W., Lezcano S., Sun-Chuan D., Low K., Yang J. Low-dose nocturnal tegaserod or erythromycin delays symptom recurrence after treatment of irritable bowel syndrome based on presumed bacterial overgrowth. Gastroenterol. Hepatol. 2009;5:435–442.
    1. Khalighi A.R., Khalighi M.R., Behdani R., Jamali J., Khosravi A., Kouhestani S., Radmanesh H., Esmaeelzadeh S., Khalighi N. Evaluating the efficacy of probiotic on treatment in patients with small intestinal bacterial overgrowth (SIBO)--a pilot study. Indian J. Med. Res. 2014;140:604–608.
    1. Leventogiannis K., Gkolfakis P., Spithakis G., Tsatali A., Pistiki A., Sioulas A., Giamarellos- Bourboulis E.J., Triantafyllou K. Effect of a preparation of four probiotics on symptoms of patients with irritable bowel syndrome: Association with intestinal bacterial overgrowth. Probiotics Antimicrob. Proteins. 2019;11:627–634. doi: 10.1007/s12602-018-9401-3.
    1. Zhong C., Qu C., Wang B., Liang S., Zeng B. Probiotics for preventing and treating small intestinal bacterial overgrowth: A meta-analysis and systematic review of current evidence. J. Clin. Gastroenterol. 2017;51:300–311. doi: 10.1097/MCG.0000000000000814.
    1. Ren X., Di Z., Zhang Z., Fu B., Wang Y., Huang C., Du Y. Chinese herbal medicine for the treatment of small intestinal bacterial overgrowth (SIBO): A protocol for systematic review and meta-analysis. Medicine. 2020;99:e23737. doi: 10.1097/MD.0000000000023737.
    1. Nickles M.A., Hasan A., Shakhbazova A., Wright S., Chambers C.J., Sivamani R.K. Alternative treatment approaches to small intestinal bacterial overgrowth: A systematic review. J. Altern. Complement Med. 2021;27:108–119. doi: 10.1089/acm.2020.0275.
    1. Allegretti J.R., Kassam Z., Chan W.W. Small intestinal bacterial overgrowth: Should screening be included in the pre-fecal microbiota transplantation evaluation? Dig. Dis. Sci. 2018;63:193–197. doi: 10.1007/s10620-017-4864-8.
    1. Xu F., Li N., Wang C., Xing H., Chen D., Wei Y. Clinical efficacy of fecal microbiota transplantation for patients with small intestinal bacterial overgrowth: A randomized, placebo-controlled clinic study. BMC Gastroenterol. 2021;21:54. doi: 10.1186/s12876-021-01630-x.
    1. Bayeli P.F., Mariottini M., Lisi L., Ferrari P., Tedone F. [Guidelines on intestinal dysmicrobism (SIBO Small Intestine Bacterial Overgrowth)] Minerva Gastroenterol. Dietol. 1999;45:297–308.
    1. Swart G.R., van den Berg J.W. 13C breath test in gastroenterological practice. Scand. J. Gastroenterol.Suppl. 1998;225:13–18.
    1. Satta P.V., Giannetti C., Oppia F., Cabras F. The North American Consensus on breath testing: The controversial diagnostic role of lactulose in SIBO. Am. J. Gastroenterol. 2018;113:440. doi: 10.1038/ajg.2017.392.
    1. de Lacy Costello B.P., Ledochowski M., Ratcliffe N.M. The importance of methane breath testing: A review. J. Breath Res. 2013;7:024001. doi: 10.1088/1752-7155/7/2/024001.
    1. Saad R.J., Chey W.D. Breath testing for small intestinal bacterial overgrowth: Maximizing test accuracy. Clin. Gastroenterol. Hepatol. 2014;12:1964–1972. doi: 10.1016/j.cgh.2013.09.055.
    1. Sanjeevi R., Jamwal K.D., Dhar Chowdhury S., Ramadass B., Gayathri R., Dutta A.K., Joseph A., Ramakrishna B.S., Chacko A. Assessment of small intestinal bacterial overgrowth in chronic pancreatitis patients using jejunal aspirate culture and glucose hydrogen breath test. Scand. J. Gastroenterol. 2021;56:588–593. doi: 10.1080/00365521.2021.1900383.
    1. Yu D.K., Elvin A.T., Morrill B., Eichmeier L.S., Lanman R.C., Lanman M.B., Giesing D.H. Effect of food coadministration on 5-aminosalicylic acid oral suspension bioavailability. Clin. Pharmacol. Ther. 1990;48:26–33. doi: 10.1038/clpt.1990.113.
    1. Yu D.K., Morrill B., Eichmeier L.S., Lanman R.C., Lanman M.B., Giesing D.H., Weir S.J. Pharmacokinetics of 5-aminosalicylic acid from controlled-release capsules in man. Eur. J. Clin. Pharmacol. 1995;48:273–277. doi: 10.1007/BF00198311.
    1. Matthis A.L., Zhang B., Denson L.A., Yacyshyn B.R., Aihara E., Montrose M.H. Importance of the evaluation of N-acetyltransferase enzyme activity prior to 5-aminosalicylic acid medication for ulcerative colitis. Inflamm. Bowel Dis. 2016;22:1793–1802. doi: 10.1097/MIB.0000000000000823.
    1. Berggren S., Gall C., Wollnitz N., Ekelund M., Karlbom U., Hoogstraate J., Schrenk D., Lennernäs H. Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine. Mol. Pharm. 2007;4:252–257. doi: 10.1021/mp0600687.
    1. Yokooji T., Murakami T., Yumoto R., Nagai J., Takano M. Site-specific bidirectional efflux of 2,4- dinitrophenyl-S-glutathione, a substrate of multidrug resistance-associated proteins, in rat intestine and Caco-2 cells. J. Pharm. Pharmacol. 2007;59:513–520. doi: 10.1211/jpp.59.4.0005.
    1. Rasmussen S.N., Bondesen S., Hvidberg E.F., Hansen S.H., Binder V., Halskov S., Flachs H. 5-aminosalicylic acid in a slow-release preparation: Bioavailability, plasma level, and excretion in humans. Gastroenterology. 1982;83:1062–1070. doi: 10.1016/S0016-5085(82)80075-9.

Source: PubMed

3
Tilaa