Results of a multicenter phase I/II trial of TCRαβ and CD19-depleted haploidentical hematopoietic stem cell transplantation for adult and pediatric patients

Wolfgang A Bethge, Matthias Eyrich, Stephan Mielke, Roland Meisel, Dietger Niederwieser, Paul G Schlegel, Ansgar Schulz, Johann Greil, Donald Bunjes, Arne Brecht, Jurgen Kuball, Michael Schumm, Vladan Vucinic, Markus Wiesneth, Halvard Bonig, Kasper Westinga, Stefanie Biedermann, Silke Holtkamp, Sandra Karitzky, Michaela Malchow, Christiane Siewert, Rupert Handgretinger, Peter Lang, Wolfgang A Bethge, Matthias Eyrich, Stephan Mielke, Roland Meisel, Dietger Niederwieser, Paul G Schlegel, Ansgar Schulz, Johann Greil, Donald Bunjes, Arne Brecht, Jurgen Kuball, Michael Schumm, Vladan Vucinic, Markus Wiesneth, Halvard Bonig, Kasper Westinga, Stefanie Biedermann, Silke Holtkamp, Sandra Karitzky, Michaela Malchow, Christiane Siewert, Rupert Handgretinger, Peter Lang

Abstract

Hematopoietic stem cell transplantation (HSCT) from haploidentical donors is a viable option for patients lacking HLA-matched donors. Here we report the results of a prospective multicenter phase I/II trial of transplantation of TCRαβ and CD19-depleted peripheral blood stem cells from haploidentical family donors after a reduced-intensity conditioning with fludarabine, thiotepa, and melphalan. Thirty pediatric and 30 adult patients with acute leukemia (n = 43), myelodysplastic or myeloproliferative syndrome (n = 6), multiple myeloma (n = 1), solid tumors (n = 6), and non-malignant disorders (n = 4) were enrolled. TCR αβ/CD19-depleted grafts prepared decentrally at six manufacturing sites contained a median of 12.1 × 106 CD34+ cells/kg and 14.2 × 103 TCRαβ+ T-cells/kg. None of the patients developed grade lll/IV acute graft-versus-host disease (GVHD) and only six patients (10%) had grade II acute GVHD. With a median follow-up of 733 days 36/60 patients are alive. The cumulative incidence of non-relapse mortality at day 100, 1 and 2 years after HSCT was 5%, 15%, and 17% for all patients, respectively. Estimated probabilities of overall and disease-free survival at 2 years were 63% and 50%, respectively. Based on these promising results in a high-risk patient cohort, haploidentical HSCT using TCRαβ/CD19-depleted grafts represents a viable treatment option.

Conflict of interest statement

WB: Consultancy and Research Funding—Miltenyi Biotec; Advisory Boards—Celgene, Novartis, Janssen, Gilead. ME: Clinical trial support and advisory boards—Bristol-Myers-Squibb. SM: Data safety monitoring board—Miltenyi, Immunicum; expert panel—Gilead/Kite, Bellicum; speaker’s fee—Novartis, DNA Prime SA, Cellex, Celgene, Kiadis Pharma, Jazz, Miltenyi; travel support—Cellex, Gilead/Kite, MSD, Celgene, Kiadis Pharma, Miltenyi. RM: Consulting or Advisory Role—Bluebird Bio, Bellicum Pharmaceuticals, Novartis; Travel, Accommodations, Expenses—Jazz Pharmaceuticals. DN: Advisory board—Cellectis; speakers bureau—Novartis, Daiichi; manuscript preparation support—Novartis. PGS: Advisory board—Bluebird Bio, not related to the topic of this publication. JK: Shareholder Gadeta and inventor on multiple patents dealing with gdT cell-related topics as well as CAR T isolation strategies; Research Support—Miltenyi Biotec, Novartis. HB: Research support: Bayer, Chugai, Erydel, Miltenyi, Polyphor, Sandoz-Hexal (a Novartis Company), Stage (a Celgene Company), Terumo BCT, Uniqure; honoraria/speakers‘ fees—Chugai, Fresenius, Genzyme, Kiadis, medac, Miltenyi, Novartis, Sandoz-Hexal, Terumo BCT; consultancy and advisory boards—Boehringer-Ingelheim, Celgene, Genzyme, medac, Novartis, Sandoz-Hexal, Stage, Terumo BCT; royalties—medac; stocks—Healthineers. KW: Advisory board—Novartis AG, not related to the topics of this publication. SB and CS are employees of Miltenyi Biotec. SH, SK, and MM are employees of Miltenyi Biomedicine. RH: Speakers’ honoraria—Miltenyi Biotec; co-patent holder of the TcR alpha-beta depletion. AB, DB, JG, PL, AS, MS, VV, MW: no conflict of interest.

© 2021. The Author(s).

Figures

Fig. 1. Performance of the TCRαβ- and…
Fig. 1. Performance of the TCRαβ- and CD19 depletion.
Median logarithmic depletion of TCRαβ+T- and CD19+ B cells in 87 depletion procedures with the CliniMACS Plus device.
Fig. 2. Cumulative incidence of virus reactivation.
Fig. 2. Cumulative incidence of virus reactivation.
Patients were screened for adenovirus (ADV) DNA (stool, urine, and blood) and for cytomegalovirus (CMV) DNA (blood, stool, and throat); cumulative incidences of positive findings are shown for the adult (a) and pediatric (b) patient cohort, respectively, and for donor/recipient pairs with CMV IgG seropositive recipient (D−R+/D+R+); no events occurred in seronegative recipients (D−R−/D+R−).
Fig. 3. Non-relapse mortality.
Fig. 3. Non-relapse mortality.
Cumulative incidence of non-relapse mortality (NRM) until 2 years posttransplant.
Fig. 4. Immune reconstitution of different lymphocyte…
Fig. 4. Immune reconstitution of different lymphocyte subsets after HSCT.
Reconstitution of CD3+ T-cells, CD3+CD4+ T-cells, and CD3+CD8+ T-cells (a), TCRαβ+ and TCRγδ+ T-cells (b) and CD19+ B- and CD56+ NK-cells (c) after transplantation of TCRαβ/CD19-depleted allografts. Points represent the mean values ± standard deviations at each time point.
Fig. 5. Relapse rate, overall survival, disease-free…
Fig. 5. Relapse rate, overall survival, disease-free survival, and GVHD-relapse-free survival for the whole patient cohort.
a Relapse rates in patients with leukemia/myelodysplastic syndrome (MDS) transplanted in complete remission (CR) versus patients with leukemia/MDS transplanted in non-remission. b Disease-free survival (DFS), overall survival (OS), and GVHD-, relapse-free survival (GRFS) of the whole patient group. c DFS of patients with leukemia/MDS transplanted in CR versus patients with leukemia/MDS transplanted in non-remission.
Fig. 6. Relapse rate, overall survival, disease-free…
Fig. 6. Relapse rate, overall survival, disease-free survival, and GVHD-relapse-free survival for adult patients.
a Relapse rates in adult patients with leukemia/myelodysplastic syndrome (MDS) transplanted in complete remission (CR) versus patients with leukemia/MDS transplanted in non-remission. b Disease-free survival (DFS), overall survival (OS), and GVHD-, relapse-free survival (GRFS) of the adult cohort. c DFS of adult patients with leukemia/MDS transplanted in CR versus adult patients with leukemia/MDS transplanted in non-remission.

References

    1. Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transpl. 2017;52:811–7. doi: 10.1038/bmt.2017.34.
    1. Or-Geva N, Reisner Y. The evolution of T-cell depletion in haploidentical stem-cell transplantation. Br J Haematol. 2016;172:667–84. doi: 10.1111/bjh.13868.
    1. Reisner Y, Kapoor N, Kirkpatrick D, Pollack MS, Cunningham-Rundles S, Dupont B, et al. Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood. 1983;61:341–8. doi: 10.1182/blood.V61.2.341.341.
    1. Aversa F, Tabilio A, Terenzi A, Velardi A, Falzetti F, Giannoni C, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–55. doi: 10.1182/blood.V84.11.3948.bloodjournal84113948.
    1. Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Disco. 2020;19:169–84. doi: 10.1038/s41573-019-0038-z.
    1. Kierkels GJJ, Scheper W, Meringa AD, Johanna I, Beringer DX, Janssen A, et al. Identification of a tumor-specific allo-HLA-restricted γδTCR. Blood Adv. 2019;3:2870–82. doi: 10.1182/bloodadvances.2019032409.
    1. Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, Abhyankar S, et al. Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transpl. 2007;39:751–7. doi: 10.1038/sj.bmt.1705650.
    1. Li Pira G, Malaspina D, Girolami E, Biagini S, Cicchetti E, Conflitti G, et al. Selective depletion of alphabeta T cells and B cells for human leukocyte antigen-haploidentical hematopoietic stem cell transplantation. A three-year follow-up of procedure efficiency. Biol Blood Marrow Transpl. 2016;22:2056–64. doi: 10.1016/j.bbmt.2016.08.006.
    1. Schumm M, Lang P, Bethge W, Faul C, Feuchtinger T, Pfeiffer M, et al. Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy. 2013;15:1253–8. doi: 10.1016/j.jcyt.2013.05.014.
    1. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124:822–6. doi: 10.1182/blood-2014-03-563817.
    1. Bertaina A, Zecca M, Buldini B, Sacchi N, Algeri M, Saglio F, et al. Unrelated donor vs HLA-haploidentical alpha/beta T-cell- and B-cell-depleted HSCT in children with acute leukemia. Blood. 2018;132:2594–607. doi: 10.1182/blood-2018-07-861575.
    1. Ghosh S, Schuster FR, Adams O, Babor F, Borkhardt A, Comoli P, et al. Haploidentical stem cell transplantation in DOCK8 deficiency—successful control of pre-existing severe viremia with a TCRass/CD19-depleted graft and antiviral treatment. Clin Immunol. 2014;152:111–4. doi: 10.1016/j.clim.2014.03.006.
    1. Kaynar L, Demir K, Turak EE, Ozturk CP, Zararsiz G, Gonen ZB, et al. TcRalphabeta-depleted haploidentical transplantation results in adult acute leukemia patients. Hematology. 2017;22:136–44. doi: 10.1080/10245332.2016.1238182.
    1. Kharya G, Nademi Z, Leahy TR, Dunn J, Barge D, Schulz A, et al. Haploidentical T-cell alpha beta receptor and CD19-depleted stem cell transplant for Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2014;134:1199–201. doi: 10.1016/j.jaci.2014.04.041.
    1. Lang P, Schlegel PG, Meisel R, Schulz A, Greil J, Bader P, et al. Safety and efficacy of TCRalpha/beta and CD19 depleted haploidentical stem cell transplantation following reduced intensity conditioning in children: results of a prospective multicenter phase I/II clinical trial. Bone Marrow Transpl. 2018;53:O154.
    1. Locatelli F, Merli P, Pagliara D, Li Pira G, Falco M, Pende D, et al. Outcome of children with acute leukemia given HLA-haploidentical HSCT after alphabeta T-cell and B-cell depletion. Blood. 2017;130:677–85. doi: 10.1182/blood-2017-04-779769.
    1. Mainardi C, Tumino M, Gazzola MV, Rampazzo A, Scarpa M, Messina C. TCRalphabeta CD19 depletion in allogeneic haematopoietic stem cell transplantation performed for Hurler syndrome. Bone Marrow Transpl. 2016;51:438–9. doi: 10.1038/bmt.2015.258.
    1. Maschan M, Shelikhova L, Ilushina M, Kurnikova E, Boyakova E, Balashov D, et al. TCR-alpha/beta and CD19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transpl. 2016;51:668–74. doi: 10.1038/bmt.2015.343.
    1. Tumino M, Mainardi C, Pillon M, Calore E, Gazzola MV, Destro R, et al. Haploidentical TCR A/B and B-cell depleted hematopoietic SCT in pediatric SAA and aspergillosis. Bone Marrow Transpl. 2014;49:847–9. doi: 10.1038/bmt.2014.58.
    1. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transpl. 2009;15:1628–33. doi: 10.1016/j.bbmt.2009.07.004.
    1. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transpl. 2015;21:389–401.e381. doi: 10.1016/j.bbmt.2014.12.001.
    1. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on acute GVHD grading. Bone Marrow Transpl. 1995;15:825–8.
    1. Holtan SG, DeFor TE, Lazaryan A, Bejanyan N, Arora M, Brunstein CG, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125:1333–8. doi: 10.1182/blood-2014-10-609032.
    1. Fuchs EJ. Human leukocyte antigen-haploidentical stem cell transplantation using T-cell-replete bone marrow grafts. Curr Opin Hematol. 2012;19:440–7. doi: 10.1097/MOH.0b013e32835822dc.
    1. Reisner Y, Hagin D, Martelli MF. Haploidentical hematopoietic transplantation: current status and future perspectives. Blood. 2011;118:6006–17. doi: 10.1182/blood-2011-07-338822.
    1. Roy DC, Walker I, Maertens J, Lewalle P, Olavarria E, Selleslag D, et al. ATIR101 administered after T-cell-depleted haploidentical HSCT reduces NRM and improves overall survival in acute leukemia. Leukemia. 2020;34:1907–23. doi: 10.1038/s41375-020-0733-0.
    1. Sahasrabudhe K, Otto M, Hematti P, Kenkre V. TCR αβ+/CD19+ cell depletion in haploidentical hematopoietic allogeneic stem cell transplantation: a review of current data. Leuk Lymphoma. 2019;60:598–609. doi: 10.1080/10428194.2018.1485905.
    1. Federmann B, Bornhauser M, Meisner C, Kordelas L, Beelen DW, Stuhler G, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: a phase II study. Haematologica. 2012;97:1523–31. doi: 10.3324/haematol.2011.059378.
    1. Federmann B, Hägele M, Pfeiffer M, Wirths S, Schumm M, Faul C, et al. Immune reconstitution after haploidentical hematopoietic cell transplantation: impact of reduced intensity conditioning and CD3/CD19 depleted grafts. Leukemia. 2011;25:121–9. doi: 10.1038/leu.2010.235.
    1. Eyrich M, Lang P, Lal S, Bader P, Klingebiel T, Handgretinger R, et al. A prospective analysis of the pattern of immune reconstitution following transplantation of HLA-disparate hematopoietic stem cells from parental donors. Br J Haematol. 2001;114:422–32. doi: 10.1046/j.1365-2141.2001.02934.x.
    1. Rambaldi B, Kim HT, Reynolds C, Chamling Rai S, Arihara Y, Kubo T, et al. Impaired T- and NK-cell reconstitution after haploidentical HCT with posttransplant cyclophosphamide. Blood Adv. 2021;5:352–64. doi: 10.1182/bloodadvances.2020003005.
    1. Stocker N, Gaugler B, Labopin M, Farge A, Ye Y, Ricard L, et al. High-dose post-transplant cyclophosphamide impairs γδ T-cell reconstitution after haploidentical haematopoietic stem cell transplantation using low-dose antithymocyte globulin and peripheral blood stem cell graft. Clin Transl Immunol. 2020;9:e1171. doi: 10.1002/cti2.1171.
    1. Sanz J, Montoro J, Solano C, Valcárcel D, Sampol A, Ferrá C, et al. Prospective randomized study comparing myeloablative unrelated umbilical cord blood transplantation versus HLA-haploidentical related stem cell transplantation for adults with hematologic malignancies. Biol Blood Marrow Transpl. 2020;26:358–66. doi: 10.1016/j.bbmt.2019.10.014.
    1. Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transpl. 2003;9:543–58. doi: 10.1016/s1083-8791(03)00287-8.
    1. Symons HJ, Zahurak M, Cao Y, Chen A, Cooke K, Gamper C, et al. Myeloablative haploidentical BMT with posttransplant cyclophosphamide for hematologic malignancies in children and adults. Blood Adv. 2020;4:3913–25. doi: 10.1182/bloodadvances.2020001648.
    1. Srour SA, Milton DR, Bashey A, Karduss-Urueta A, Al Malki MM, Romee R, et al. Haploidentical transplantation with post-transplantation cyclophosphamide for high-risk acute lymphoblastic leukemia. Biol Blood Marrow Transpl. 2017;23:318–24. doi: 10.1016/j.bbmt.2016.11.008.
    1. Solh M, Zhang X, Connor K, Brown S, Solomon SR, Morris LE, et al. Factors predicting graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation: multivariable analysis from a single center. Biol Blood Marrow Transpl. 2016;22:1403–9. doi: 10.1016/j.bbmt.2016.04.006.
    1. Kröger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016;374:43–53. doi: 10.1056/NEJMoa1506002.

Source: PubMed

3
Tilaa