Current State of Pediatric Heart Failure

Bibhuti B Das, Bibhuti B Das

Abstract

Pediatric heart failure (HF) represents an important cause of morbidity and mortality in childhood. There is an overlapping relationship of HF, congenital heart disease, and cardiomyopathy. The goal of treatment of HF in children is to maintain stability, prevent progression, and provide a reasonable milieu to allow somatic growth and optimal development. Current management and therapy for HF in children are extrapolated from treatment approaches in adults. There are significant barriers in applying adult data to children because of developmental factors, age variation from birth to adolescence, and differences in the genetic expression profile and β-adrenergic signaling. At the same time, there are significant challenges in performing well-designed drug trials in children with HF because of heterogeneity of diagnoses identifying a clinically relevant outcome with a high event rate, and a difficulty in achieving sufficient enrollment. A judicious balance between extrapolation from adult HF guidelines and the development of child-specific data on treatment represent a wise approach to optimize pediatric HF management. This approach is helpful as reflected by the increasing role of ventricular assist devices in the management of advanced HF in children. This review discusses the causes, epidemiology, pathophysiology, clinical manifestations, conventional medical treatment, clinical trials, and the role of device therapy in pediatric HF.

Keywords: advanced heart failure; mechanical circulatory support; pediatric heart failure; ventricular assist device.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Common causes of heart failure in children—the relationship of ventricular dysfunction to CHD and cardiomyopathy.
Figure 2
Figure 2
Pathophysiology of chronic heart failure. (AT1 = angiotensinogen 1, ↑ = increase, ↓ = decrease, NP = natriuretic peptide, ANP = atrial natriuretic peptide, BNP = B-type natriuretic peptide).
Figure 3
Figure 3
Perfusion and congestion model: patterns of presentation in heart failure in children [22]. (Presented with permission from the Publisher, Elsevier, originally published in Canadian Journal of Cardiology 2013; 29:1535-1552) (License Number 4335401450214).
Figure 4
Figure 4
Diagnosis and management of acute heart failure in children. (CHD = congenital heart disease, PGE = prostaglandin E, SCD = sudden cardiac death, CBC = complete blood count, CMP = comprehensive metabolic panel, ABG = arterial blood gas, CXR = chest-X-ray, ECG = electrocardiogram, ECHO= echocardiogram, ACLS = advanced cardiac life support, PALS = pediatric advanced life support, ICU = intensive care unit, ECMO = extra-corporeal membrane oxygenation, VAD = ventricular assist device, MRI = magnetic resonance imaging, CRP = C-reactive protein, ESR = erythrocyte sedimentation rate, R/O = rule out, LBBB = left bundle branch block, BNP = B-type natriuretic peptide).
Figure 5
Figure 5
Indication of mechanical circulatory support and device selection in children with heart failure. (BSA = body surface area, IV = intravenous).

References

    1. Heidenreich P.A., Albert N.M., Allen L.A., Bluemke D.A., Butler J., Fonarow G.C., Ikonomidis J.S., Khavjou O., Konstam M.A., Maddox T.M., et al. Forecasting the impact of heart failure in the United Sates. A policy statement from the American Heart Association. Circ. Heart Fail. 2013;6:606–619. doi: 10.1161/HHF.0b013e318291329a.
    1. Deipanjan N., Lin K., O’Connor M., Elci O.U., Kim J.J., Decker J.A., Price J.F., Zafar F., Morales D.L., Denfield S.W., et al. Hospital charges for pediatric heart failure related hospitalizations admissions in the United States from 2000 to 2009. J. Heart Lung Transpl. 2014;33:S307–S308.
    1. Hunt S.A., Abraham W.T., Chin M.H., Feldman A.M., Francis G.S., Ganiats T.G., Jessup M., Konstam M.A., Mancini D.M., Michl K., et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart failure in the Adult-Summary Article. J. Am. Coll. Cardiol. 2005;46:1116–1143. doi: 10.1016/j.jacc.2005.08.023.
    1. Kirk R., Dipchand A.I., Rosenthal D.N., Addonizio L., Burch M., Chrisant M., Dubin A., Everitt M., Gajarski R., Mertens L., et al. The international Society of Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. J. Heart Lung Transpl. 2014;33:888–909. doi: 10.1016/j.healun.2014.06.002.
    1. Mebazaa A. Acute heart failure deserves a log-scale boost in research support. Call for Multidisciplinary and universal actions. JACC Heart Fail. 2018;6:76–79. doi: 10.1016/j.jchf.2017.09.012.
    1. Packer M. Acute heart failure is an event rather than a disease. Plea for a radical change in thinking and in therapeutic drug development. JACC Heart Fail. 2018;6:73–75. doi: 10.1016/j.jchf.2017.05.008.
    1. Hsu D.T., Pearson G.D. Heart Failure in Children. Part I: History, Etiology, and pathophysiology. Circ. Heart Fail. 2009;2:63–70. doi: 10.1161/CIRCHEARTFAILURE.108.820217.
    1. Jessup M., Abraham W.T., Casey D.E., Feldman A.M., Francis G.S., Ganiats T.G., Konstam M.A., Mancini D.M., Rahko P.S., Silver M.A., et al. 2009 Focused Update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2009;119:1977–2016.
    1. Rossano J.W., Kim J.J., Decker J.A., Price J.F., Zafar F., Graves D.E., Morales D.L., Heinle J.S., Bozkurt B., Towbin J.A., et al. Prevalence, morbidity, and mortality of heart failure-related hospitalization in the United States: A population based study. J. Card. Fail. 2012;18:459–470. doi: 10.1016/j.cardfail.2012.03.001.
    1. Rosenthal D., Chrisant M., Edens E., Mahony L., Canter C., Colan S., Dubin A., Lamour J., Ross R., Shaddy R., et al. International Society of Heart and Lung Transplantation: Practice guidelines for management of heart failure in children. J. Heart. Lung Transpl. 2004;23:1313–1333. doi: 10.1016/j.healun.2004.03.018.
    1. Lipshultz S.E., Sleeper L.A., Towbin J.A., Lowe A.M., Orav E.J., Cox G.F., Lurie P.R., McCoy K.L., McDonald M.A., Messere J.E., et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N. Engl. J. Med. 2003;348:1647–1655. doi: 10.1056/NEJMoa021715.
    1. Nugent A.W., Daubeney P.E., Chondros P., Carlin J.B., Cheung M., Wilkinson L.C., Davis A.M., Kahler S.G., Chow C.W., Wilkinson J.L., et al. The epidemiology of childhood cardiomyopathy in Australia. N. Engl. J. Med. 2003;348:1639–1646. doi: 10.1056/NEJMoa021737.
    1. Andrew R.E., Fenton M.J., Ridout D.A., Burch M. New-onset heart failure due to heart muscle disease in childhood: A prospective study in United Kingdom and Ireland. Circulation. 2008;117:79–84. doi: 10.1161/CIRCULATIONAHA.106.671735.
    1. Shaddy R.E., George A.T., Jaecklin T., Lochlainn E.N., Thakur L., Agrawal R., Solar-Yohay S., Chen F., Rossano J.W., Severin T., et al. Systematic literature review on the incidence and prevalence of heart failure in children and adolescents. Pediatr. Cardiol. 2018;39:415–436. doi: 10.1007/s00246-017-1787-2.
    1. Hinton R.B., Ware S.M. Heart Failure in pediatric patients with congenital heart disease. Circ. Res. 2017;120:978–994. doi: 10.1161/CIRCRESAHA.116.308996.
    1. Francis G., McDonald K., Cohn J. Neurohormonal activation in preclinical heart failure: Remodeling and the potential for intervention. Circulation. 1993;87(Suppl. 5):90–96.
    1. Goldsmith S. Interaction between the sympathetic nervous system and the RAAS in heart failure. Curr. Heart Fail. Rep. 2004;1:45–50. doi: 10.1007/s11897-004-0024-5.
    1. Sipido K.R., Eisner D. Something old, something new: Changing views on the cellular mechanism of heart failure. Cardiovasc. Res. 2005;68:167–174. doi: 10.1016/j.cardiores.2005.08.011.
    1. Das B.B. Plasma B-type natriuretic peptides in children with cardiovascular diseases. Pediatr. Cardiol. 2010;31:1135–1145. doi: 10.1007/s00246-010-9758-x.
    1. Knecht M., Pagel I., Langenickel T., Philipp S., Scheuermann-Freestone M., Willnow T., Bruemmer D., Graf K., Dietz R., Willenbrock R. Increased expression of neural neutral endopeptidase in severe heart failure. Life Sci. 2002;71:2701–2712. doi: 10.1016/S0024-3205(02)01990-2.
    1. Braunwald E. The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure. J. Am. Coll. Cardiol. 2015;65:1029–1041. doi: 10.1016/j.jacc.2015.01.033.
    1. Kantor P.F., Lougheed J., Danecea A., McGillion M., Barbosa N., Chan C., Dillenburg R., Atallah J., Buchholz H., Chant-Gambacort C., et al. Presentation, diagnosis, and medical management of heart failure in children: Canadian Cardiovascular Society guidelines. Can. J. Cardiol. 2013;29:1535–1552. doi: 10.1016/j.cjca.2013.08.008.
    1. Ross R.D. The Ross classification for heart failure in children after 25 years: A review and an age-stratified revision. Pediatr. Cardiol. 2012;33:295–300. doi: 10.1007/s00246-012-0306-8.
    1. Chen S., Dykes J.C., McElhinney D.B., Gajarski R.J., Shin A.Y., Hollander S.A., Everitt M.E., Price J.F., Thiagarajan R.R., Kindel S.J., et al. Hemodynamic profiles of children with end-stage heart failure. Eur. Heart J. 2017;38:2900–2909. doi: 10.1093/eurheartj/ehx456.
    1. Mullens W., Abrahams Z., Francis G.S., Sokos G., Taylor D.O., Starling R.C., Young J.B., Tang W.H. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009;53:589–596. doi: 10.1016/j.jacc.2008.05.068.
    1. Miyamoto S.D., Stauffer B.L., Nakano S., Sobus R., Nunley K., Nelson P., Sucharov C.C. Beta-adrenergic adaptation in pediatric idiopathic dilated cardiomyopathy. Eur. Heart J. 2012;35:33–41. doi: 10.1093/eurheartj/ehs229.
    1. Patel M.D., Mohan J., Schneider C., Bajpai G., Purevjav E., Canter C.E., Towbin J., Bredemeyer A., Lavine K.J. Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight. 2017;2 doi: 10.1172/jci.insight.94382.
    1. Glass L., Conway J. Innovation in pediatric clinical trials: The need to rethink the end-point. J. Heart Lung Transpl. 2018;37:431–432. doi: 10.1016/j.healun.2017.05.011.
    1. Li J.S., Colan S.D., Sleeper L.A., Newburger J.W., Pemberton V.L., Atz A.M., Cohen M.S., Golding F., Klein G.L., Lacro R.V., et al. Lessons learned from a pediatric clinical trial: The pediatric heart network angiotensin-converting enzyme inhibition in mitral regurgitation study. Am. Heart J. 2011;161:233–240. doi: 10.1016/j.ahj.2010.10.030.
    1. Lewis A.B., Chabot M. The effect of treatment with angiotensin-converting enzyme inhibitors on survival of pediatric patients with dilated cardiomyopathy. Pediatr. Cardiol. 1993;14:9–12.
    1. Shaddy R.E., Boucek M.M., Hsu D.T., Boucek R.J., Canter C.E., Mahony L., Ross R.D., Pahl E., Blume E.D., Dodd D.A., et al. Carvedilol for children and adolescent with heart failure: A randomized controlled trial. J. Am. Med. Assoc. 2007;298:1171–1179. doi: 10.1001/jama.298.10.1171.
    1. Rusconi P., Gomez-Marin O., Rossique-Gonzalez M., Redha E., Marín J.R., Lon-Young M., Wolff G.S. Carvedilol in children with cardiomyopathy: 3-year experience at a single institution. J. Heart Lung Transpl. 2004;23:832–838. doi: 10.1016/j.healun.2003.07.025.
    1. Burns L.A., Chrisant M.K., Lamour J.M., Shaddy R.E., Pahl E., Blume E.D., Hallowell S., Addonizio L.J., Canter C.E. Carvedilol as therapy in pediatric heart failure: An initial multicenter experience. J. Pediatr. 2001;138:505–511. doi: 10.1067/mpd.2001.113045.
    1. Kantor P.F., Abrahan J.R., Dipchand A.I., Benson L.N., Redington A.N. The impact of changing medical therapy on transplantation-free survival in pediatric dilated cardiomyopathy. J. Am. Coll. Cardiol. 2010;55:1377–1384. doi: 10.1016/j.jacc.2009.11.059.
    1. Hsu D.T., Mahony L., Sleeper L.A. Enalapril in infants with single ventricle. Circulation. 2010;122:333–340. doi: 10.1161/CIRCULATIONAHA.109.927988.
    1. Bonnet D., Berger F., Jokinen E., Kantor P.F., Daubeney P.E.F. Ivabradine in children with dilated cardiomyopathy and symptomatic chronic heart failure. J. Am. Coll. Cardiol. 2017;70:1262–1272. doi: 10.1016/j.jacc.2017.07.725.
    1. McMurray J.V., Packer M., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin-Neprilysin inhibition versus enalapril in heart failure. N. Eng. J. Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077.
    1. Shaddy R., Canter C., Halnon N., Kochilas L., Rossano J., Bonnet D., Bush C., Zhao Z., Kantor P., Burch M., et al. Design for the sacubitril/valsartan (LCZ696) compared with enalapril study of pediatric patients with heart failure due to systemic left heart ventricle systolic dysfunction. Am. Heart J. 2017;193:23–34. doi: 10.1016/j.ahj.2017.07.006.
    1. Abraham W.T., Fisher W.G., Smith A.L., Delurgio D.B., Leon A.R., Loh E., Kocovic D.Z., Packer M., Clavell A.L., Hayes D.L., et al. Multicenter InSync Randomized Clinical Evaluation of Cardiac resynchronization in chronic heart failure. N. Eng. J. Med. 2002;346:1845–1853. doi: 10.1056/NEJMoa013168.
    1. Janousek J., Gebauer R.A., Abdul-Khaliq H., Turner M., Kornyei L., Grollmuss O., Rosenthal E., Villain E., Früh A., Paul T., et al. Cardiac resynchronization therapy in pediatric and congenital heart disease: Differential effects in various anatomical and functional substrates. Heart. 2009;95:1165–1171. doi: 10.1136/hrt.2008.160465.
    1. Motonga K.S., Dubin A.M. Cardiac resynchronization therapy for pediatric patients with heart failure and congenital heart disease: A reappraisal of results. Circulation. 2014;129:1879–1891. doi: 10.1161/CIRCULATIONAHA.113.001383.
    1. Rhee E.K., Canter C.E., Basile S., Webber S.A., Naftel D.C. Sudden death prior to pediatric heart transplantation: Would implantable defibrillator improve outcome? J. Heart Lung Transpl. 2007;26:447–452. doi: 10.1016/j.healun.2007.02.005.
    1. Leoni L., Padalino M., Biffanti R., Ferretto S., Vettor G., Corrado D., Stellin G., Milanesi O., Iliceto S. Pacemaker remote monitoring in the pediatric population: Is it a real solution? Pacing Clin. Electrophysiol. 2015;38:565–571. doi: 10.1111/pace.12600.
    1. Dipchand A.I. Current state of pediatric cardiac transplantation. Ann. Cardiothorac. Surg. 2018;7:31–35. doi: 10.21037/acs.2018.01.07.
    1. The International Society for Heart and Lung Transplantation International Thoracic Organ Transplant (TTX) registry Data Slides: Pediatric Heart Transplantation Statistics. [(accessed on 25 June 2018)]; Available online: .
    1. Peura J.L., Colvin-Adams M., Francis G.S., Grady K.L., Hoffman T.M., Jessup M., John R., Kiernan M.S., Mitchell J.E., O’Connell J.B., et al. Recommendations for use of mechanical circulatory support: Device strategies and patient selection. Circulation. 2012;126:2648–2667. doi: 10.1161/CIR.0b013e3182769a54.
    1. Dipchand A.I., Mahle W.T., Tresler M., Naftel D.C., Almond C., Kirklin J.K., Pruitt E., Webber S.A., Pediatric Heart Transplant Study Investigators Extracorporeal membrane oxygenation as a bridge to pediatric heart transplantation. Effect on post-listing and post-transplantation outcomes. Circ. Heart Fail. 2015;8:960–969. doi: 10.1161/CIRCHEARTFAILURE.114.001553.
    1. Fraser C.D., Jr., Jaquiss R.D., Rosenthal D.N., Humpl T., Canter C.E., Blackstone E.H., Naftel D.C., Ichord R.N., Bomgaars L., Tweddell J.S., et al. Prospective trial of a pediatric ventricular assist device. N. Engl. J. Med. 2012;367:532–541. doi: 10.1056/NEJMoa1014164.
    1. Blume E., Naftel D., Bastardi H., Duncan B., Kirklin J., Weber S. Outcomes of children bridged to heart transplantation with ventricular assist devices: A multi-institutional study. Circulation. 2006;113:2313–2319. doi: 10.1161/CIRCULATIONAHA.105.577601.
    1. Wehman B., Stafford K.A., Bittle G.J., Kon Z.N., Evans C.F., Rajagopal K., Pietris N., Kaushal S., Griffith B.P. Modern outcomes of mechanical circulatory support as a bridge to pediatric heart transplantation. Ann. Thorac. Surg. 2016;101:2321–2328. doi: 10.1016/j.athoracsur.2015.12.003.
    1. Almond C.S., Morales D.L., Blackstone E.H., Turrentine M.W., Imamura M., Massicotte M.P., Jordan L.C., Devaney E.J., Ravishankar C., Kanter K.R., et al. Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 2013;127:1702–1711. doi: 10.1161/CIRCULATIONAHA.112.000685.
    1. Jaquiss R.D., Bronicki R.A. An overview of mechanical circulatory support in children. Pediatr. Crit. Care Med. 2013;14(Suppl. 1):S3–S6. doi: 10.1097/PCC.0b013e318292dca5.
    1. Eghtesady P., Almond C., Tjossem C., Epstein D., Imamura M., Turrentine M., Tweddell J., Jaquiss R.D., Canter C., Berlin Heart Investigators Post-transplant outcomes of children bridged to transplant with Berlin Heart Excor pediatric ventricular assist device. Circulation. 2013;128(Suppl. 1):S24–S31. doi: 10.1161/CIRCULATIONAHA.112.000446.
    1. Blume E.D., Rosenthal D.N., Rossano J.W., Baldwin J.T., Eghtesady P., Morales D.L., Cantor R.S., Conway J., Lorts A., Almond C.S., et al. Outcomes of children implanted with ventricular assist devices in the United States: First analysis of the Pediatric Interagency Registry for mechanical circulatory support (PediMACS) J. Heart Lung Transpl. 2016;35:578–584. doi: 10.1016/j.healun.2016.01.1227.
    1. Yarlagadda V.V., Maeda K., Zhang Y., Chen S., Dykes J.C., Gowen M.A., Shuttleworth P., Murray J.M., Shin A.Y., Reinhartz O., et al. Temporary circulatory support in U.S. children awaiting heart transplantation. J. Am. Coll. Cardiol. 2017;70:2250–2260. doi: 10.1016/j.jacc.2017.08.072.
    1. Das B.B., Kirklin J., Pruitt E., Chrisant M., Lin K., Hong B., Daneman S., Canter C. Mechanical circulatory support a bridge to transplantation in children with single ventricle physiology: A multicenter study. J. Heart Lung Transpl. 2016;35:S46–S47. doi: 10.1016/j.healun.2016.01.125.
    1. Lorts A., Rizwan R., Zafar F., Jefferies J.L., Tweddell J.S., Arabia F.A., Morales D.L. Worldwide use of SynCardia Total Artificial Heart in pediatric population: A 30 year experience. J. Heart Lung Transpl. 2016;35:S352–S353. doi: 10.1016/j.healun.2016.01.1012.

Source: PubMed

3
Tilaa