Feasibility and diagnostic accuracy of using brain attenuation changes on CT to estimate time of ischemic stroke onset

Grant Mair, Awad Alzahrani, Richard I Lindley, Peter A G Sandercock, Joanna M Wardlaw, Grant Mair, Awad Alzahrani, Richard I Lindley, Peter A G Sandercock, Joanna M Wardlaw

Abstract

Purpose: CT attenuation of ischemic brain reduces with time after stroke onset. We aimed to quantify this relationship and test the feasibility and accuracy of estimating stroke onset time using only CT attenuation of visible ischemic lesions, the CT-Clock Tool.

Methods: We selected CT scans with ischemic lesions representing a range of stroke-onset-to-scan times (elapsed time) from a well-defined stroke trial. We measured the attenuation of ischemic lesions and contralateral normal brain to derive attenuation ratio. We assigned scans to development (75%) or test (25%) datasets. We plotted the relationship between attenuation ratio and elapsed time in the development dataset and derived a best-fit curve. We calculated estimated time in the test dataset using only the attenuation ratio curve. We compared estimated time to elapsed time and derived absolute error for estimated time. We assessed area under the receiver operating characteristic (AUROC) curve for identifying scans ≤ 4.5 h elapsed time.

Results: We included 342 scans from 200 patients (41% male, median age 83 years). Elapsed time range: 22 min to 36 days. Estimation errors were least at early elapsed times (r = 0.82, p < 0.0001): median absolute error was 23, 106, 1030 and 1933 min for scans acquired ≤ 3, > 3-9, > 9-30 and > 30 h from stroke onset, respectively. AUROC was high at 0.955.

Conclusions: It is feasible to accurately estimate stroke onset time using simple attenuation measures of ischemic brain. Our method was most accurate 0-9 h from onset and may be useful for treatment eligibility assessment, especially where imaging resources are limited.

Keywords: Attenuation; CT; Ischemia; Stroke.

Conflict of interest statement

The authors report no disclosures or potential conflicts of interest relevant to this manuscript.

Figures

Fig. 1
Fig. 1
ROI placement within the same ischemic lesions on sequential thin-slice CT scans for two different patients. Note: Upper panel: Two sequential scan measurements from the same patient, left image at 175 min from stroke symptom onset, right image at 36 h from onset. Lower panels: Three sequential scan measurements from the same patient, left image at 120 min, middle right image at 22 h, and lower right image at 100 h from stroke onset
Fig. 2
Fig. 2
Flowchart for patient selection
Fig. 3
Fig. 3
Best-fit logarithmic function for attenuation ratio versus elapsed time in the development dataset (n = 256)
Fig. 4
Fig. 4
Bland-Altman analysis of error in estimated time results. Note: Difference between elapsed and estimated time (horizontal solid line) in the test dataset. For clarity of presentation, only includes results from the most clinically relevant early (≤ 3 h) and delayed (> 3 to 9 h) elapsed time subgroups. Mean − 0.2 h, SD 2.9, n = 42. Dotted lines represent ± 2 SD from mean
Fig. 5
Fig. 5
ROC analysis testing the expected discriminative ability of attenuation ratio to determine intravenous alteplase eligibility as per 4.5 h European licensing limit, n = 342. Note: Area under curve = 0.955

References

    1. Wardlaw JM, von Kummer R, Farrall AJ, Chappell FM, Hill M, Perry D. A large web-based observer reliability study of early ischaemic signs on computed tomography. The Acute Cerebral CT Evaluation Of Stroke Study (ACCESS) PLoS One. 2010;5(12):e15757. doi: 10.1371/journal.pone.0015757.
    1. von Kummer R, Dzialowski I. Imaging of cerebral ischemic edema and neuronal death. Neuroradiology. 2017;59(6):545–553. doi: 10.1007/s00234-017-1847-6.
    1. Symon L, Branston NM, Strong AJ, Hope TD. The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol Suppl (R Coll Pathol) 1977;11:149–154. doi: 10.1136/jcp.s3-11.1.149.
    1. Thomalla G, Gerloff C. Treatment concepts for wake-up stroke and stroke with unknown time of symptom onset. Stroke. 2015;46(9):2707–2713. doi: 10.1161/STROKEAHA.115.009701.
    1. Nannoni S, Strambo D, Sirimarco G, Amiguet M, Vanacker P, Eskandari A, Saliou G, Wintermark M, Dunet V, Michel P. Eligibility for late endovascular treatment using DAWN, DEFUSE-3, and more liberal selection criteria in a stroke center. J Neurointerv Surg. 2020;12(9):842–847. doi: 10.1136/neurintsurg-2019-015382.
    1. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, Cheripelli B, Cho TH, Fazekas F, Fiehler J, Ford I, Galinovic I, Gellissen S, Golsari A, Gregori J, Günther M, Guibernau J, Häusler KG, Hennerici M, Kemmling A, Marstrand J, Modrau B, Neeb L, Perez de la Ossa N, Puig J, Ringleb P, Roy P, Scheel E, Schonewille W, Serena J, Sunaert S, Villringer K, Wouters A, Thijs V, Ebinger M, Endres M, Fiebach JB, Lemmens R, Muir KW, Nighoghossian N, Pedraza S, Gerloff C, WAKE-UP Investigators MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379:611–622. doi: 10.1056/NEJMoa1804355.
    1. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, Kleinig TJ, Wijeratne T, Curtze S, Dewey HM, Miteff F, Tsai CH, Lee JT, Phan TG, Mahant N, Sun MC, Krause M, Sturm J, Grimley R, Chen CH, Hu CJ, Wong AA, Field D, Sun Y, Barber PA, Sabet A, Jannes J, Jeng JS, Clissold B, Markus R, Lin CH, Lien LM, Bladin CF, Christensen S, Yassi N, Sharma G, Bivard A, Desmond PM, Yan B, Mitchell PJ, Thijs V, Carey L, Meretoja A, Davis SM, Donnan GA, EXTEND Investigators Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–1803. doi: 10.1056/NEJMoa1813046.
    1. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, Sila CA, Hassan AE, Millan M, Levy EI, Mitchell P, Chen M, English JD, Shah QA, Silver FL, Pereira VM, Mehta BP, Baxter BW, Abraham MG, Cardona P, Veznedaroglu E, Hellinger FR, Feng L, Kirmani JF, Lopes DK, Jankowitz BT, Frankel MR, Costalat V, Vora NA, Yoo AJ, Malik AM, Furlan AJ, Rubiera M, Aghaebrahim A, Olivot JM, Tekle WG, Shields R, Graves T, Lewis RJ, Smith WS, Liebeskind DS, Saver JL, Jovin TG, DAWN Trial Investigators Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21. doi: 10.1056/NEJMoa1706442.
    1. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart R, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mlynash M, Heit JJ, Zaharchuk G, Kim S, Carrozzella J, Palesch YY, Demchuk AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG, DEFUSE 3 Investigators Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–718. doi: 10.1056/NEJMoa1713973.
    1. Wintermark M, Luby M, Bornstein NM, Demchuk A, Fiehler J, Kudo K, Lees KR, Liebeskind DS, Michel P, Nogueira RG, Parsons MW, Sasaki M, Wardlaw JM, Wu O, Zhang W, Zhu G, Warach SJ. International survey of acute stroke imaging used to make revascularization treatment decisions. Int J Stroke. 2015;10(5):759–762. doi: 10.1111/ijs.12491.
    1. WHO (2017) Global atlas of medical devices. Accessed: 27th Aug 2020; Available from:
    1. Durai Pandian J, Padma V, Vijaya P, Sylaja PN, Murthy JM, et al. Int J Stroke. 2007;2(1):17–26. doi: 10.1111/j.1747-4949.2007.00089.x.
    1. IST-3 Collaborative Group The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet. 2012;379(9834):2352–2363. doi: 10.1016/S0140-6736(12)60768-5.
    1. Sandercock P, Lindley R, Wardlaw J, Dennis M, Lewis S, Venables G, et al. Third international stroke trial (IST-3) of thrombolysis for acute ischaemic stroke. Trials. 2008;9:37. doi: 10.1186/1745-6215-9-37.
    1. Wardlaw JM, Sandercock PAG, Lindley RI, Cohen G, von Kummer R, von Heijne A, et al. Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. Lancet Neurol. 2015;14(5):485–496. doi: 10.1016/S1474-4422(15)00012-5.
    1. Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Minnerup J, Broocks G, Kalkoffen J, Langner S, Knauth M, Psychogios MN, Wersching H, Teuber A, Heindel W, Eckert B, Wiendl H, Schramm P, Fiehler J, Kemmling A. Computed tomography-based quantification of lesion water uptake identifies patients within 4.5 hours of stroke onset: a multicenter observational study. Ann Neurol. 2016;80(6):924–934. doi: 10.1002/ana.24818.
    1. Broocks G, Leischner H, Hanning U, Flottmann F, Faizy TD, Schon G et al (2020) Lesion age imaging in acute stroke: water uptake in CT versus DWI-FLAIR mismatch. Ann Neurol. 10.1002/ana.25903
    1. Rocha M, Jovin TG. Fast versus slow progressors of infarct growth in large vessel occlusion stroke: clinical and research implications. Stroke. 2017;48(9):2621–2627. doi: 10.1161/STROKEAHA.117.017673.
    1. Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32(7):1310–1316. doi: 10.1038/jcbfm.2011.186.
    1. Kucinski T, Vaterlein O, Glauche V, Fiehler J, Klotz E, Eckert B, et al. Correlation of apparent diffusion coefficient and computed tomography density in acute ischemic stroke. Stroke. 2002;33:1786–1791. doi: 10.1161/01.STR.0000019125.80118.99.
    1. Mokin M, Primiani CT, Siddiqui AH, Turk AS. ASPECTS (Alberta Stroke Program Early CT Score) measurement using Hounsfield unit values when selecting patients for stroke Thrombectomy. Stroke. 2017;48(6):1574–1579. doi: 10.1161/STROKEAHA.117.016745.
    1. Becker H, Desch H, Hacker H, Pencz A. CT fogging effect with ischemic cerebral infarcts. Neuroradiology. 1979;18:185–192. doi: 10.1007/BF00345723.
    1. Skriver EB, Olsen TS. Transient disappearance of cerebral infarcts on CT scan, the so-called fogging effect. Neuroradiology. 1981;22(2):61–65. doi: 10.1007/BF00344775.

Source: PubMed

3
Tilaa