Implementation and evaluation of short peripheral intravenous catheter flushing guidelines: a stepped wedge cluster randomised trial

Samantha Keogh, Caroline Shelverton, Julie Flynn, Gabor Mihala, Saira Mathew, Karen M Davies, Nicole Marsh, Claire M Rickard, Samantha Keogh, Caroline Shelverton, Julie Flynn, Gabor Mihala, Saira Mathew, Karen M Davies, Nicole Marsh, Claire M Rickard

Abstract

Background: Peripheral intravenous catheters (PIVCs) are ubiquitous medical devices, crucial to providing essential fluids and drugs. However, post-insertion PIVC failure occurs frequently, likely due to inconsistent maintenance practice such as flushing. The aim of this implementation study was to evaluate the impact a multifaceted intervention centred on short PIVC maintenance had on patient outcomes.

Methods: This single-centre, incomplete, stepped wedge, cluster randomised trial with an implementation period was undertaken at a quaternary hospital in Queensland, Australia. Eligible patients were from general medical and surgical wards, aged ≥ 18 years, and requiring a PIVC for > 24 h. Wards were the unit of randomisation and allocation was concealed until the time of crossover to the implementation phase. Patients, clinicians, and researchers were not masked but infections were adjudicated by a physician masked to allocation. Practice during the control period was standard care (variable practice with manually prepared flushes of 0.9% sodium chloride). The intervention group received education reinforcing practice guidelines (including administration with manufacturer-prepared pre-filled flush syringes). The primary outcome was all-cause PIVC failure (as a composite of occlusion, infiltration, dislodgement, phlebitis, and primary bloodstream or local infection). Analysis was by intention-to-treat.

Results: Between July 2016 and February 2017, 619 patients from 9 clusters (wards) were enrolled (control n = 306, intervention n = 313), with 617 patients comprising the intention-to-treat population. PIVC failure was 91 (30%) in the control and 69 (22%) in the intervention group (risk difference - 8%, 95% CI - 14 to - 1, p = 0.032). Total costs were lower in the intervention group. No serious adverse events related to study intervention occurred.

Conclusions: This study demonstrated the effectiveness of post-insertion PIVC flushing according to recommended guidelines. Evidence-based education, surveillance and products for post-insertion PIVC management are vital to improve patient outcomes.

Trial registration: Trial submitted for registration on 25 January 2016. Approved and retrospectively registered on 4 August 2016. Ref: ACTRN12616001035415 .

Keywords: Catheter-related infection; Evidence-based practice; Flushing; Peripheral intravenous catheter; Randomised trial.

Conflict of interest statement

SK’s current employer (QUT) has received on her behalf education consultancy fees from BD Medical. NM’s previous employer (Griffith University) has received on her behalf investigator-initiated research grants and unrestricted educational grants from BD-Bard and Cardinal Health consultancy fees from BD-Bard. CMR’s employer has received, on her behalf, investigator-initiated research grants and unrestricted educational grants from BD-Bard, Cardinal Health, and consultancy fees from 3 M, BD-Bard, BBraun. All other authors declare no competing interests. BD Medical provided in-kind support for this study through the provision of product education. BD Medical did not design the study protocol, did not collect or analyse data, and were not involved at all in the preparation of the manuscript. There are no non-financial competing interests to declare.

Figures

Fig. 1
Fig. 1
Incomplete stepped wedge cluster randomised trial with an implementation period. Study design and patient flow
Fig. 2
Fig. 2
Staff satisfaction rating of intervention % scored ≥ of 7 (out 10)

References

    1. Zingg W, Pittet D. Peripheral venous catheters: an under-evaluated problem. Int J Antimicrob Agents. 2009;34:S38–S42. doi: 10.1016/S0924-8579(09)70565-5.
    1. Alexandrou E, Ray-Barruel G, Carr PJ, Frost SA, Inwood S, Higgins N, Lin F, Alberto L, Mermel L, Rickard CM et al: Use of short peripheral intravenous catheters: characteristics, management, and outcomes worldwide. J Hosp Med. 2018;13(5). 10.12788/jhm.3039.
    1. O'Grady NP, Alexander M, Burns LA, et al. Guidelines for prevention of intravascular catheter related infectons. Clin Infect Dis. 2011;52(9):e162–e193. doi: 10.1093/cid/cir257.
    1. Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81(9):1159–1171. doi: 10.4065/81.9.1159.
    1. Rickard CM, Webster J, Wallis MC, Marsh N, McGrail MR, French V, Foster L, Gallagher P, Gowardman JR, Zhang L, et al. Routine versus clinically indicated replacement of peripheral intravenous catheters: a randomised controlled equivalence trial. Lancet. 2012;380(9847):1066–1074. doi: 10.1016/S0140-6736(12)61082-4.
    1. Marsh N, Webster J, Ullman A, Mihala G, Cooke M, Rickard C. How often are patients experiencing local and catheter-related bloodstream infections within an adult population? A systematic review of peripheral venous catheter complications and failure. Infect Dis Health. 2018;23:S12. doi: 10.1016/j.idh.2018.09.046.
    1. Tuffaha HW, Rickard CM, Webster J, Marsh N, Gordon L, Wallis M, Scuffham PA. Cost-effectiveness analysis of clinically indicated versus routine replacement of peripheral intravenous catheters. Appl Health Econ Health Policy. 2014;12(1):51–58. doi: 10.1007/s40258-013-0077-2.
    1. Global market overview for vascular acceess devices and accessories 2012–2022. In. Buranby, BC: Medview; 2016.
    1. Infusion Nurses Society: Infusion Nursing Standards of Practice. J of Inf Nurs. 2016;39(1S):169 pages.
    1. Royal College of Nursing . Standard for Infusion Therapy. 4. London: RCN; 2016.
    1. Goossens GA. Flushing and locking of venous catheters: available evidence and evidence deficit. Nurs Res Prac. 2015;2015. 10.1155/2015/985686.
    1. de Sousa Salgueiro Oliveira A, dos Santos Costa PJ, Garcia Nascimento Graveto JM, Gama Costa FJ, de Almeida Osorio NI, Timoteo Carvaheira AS, Dinis Parreira PM. Nurses’ peripheral intravenous catheter-related practices: a descriptive study. Revista de Enfermagem Referencia. 2019;IV(21):111–120. doi: 10.12707/RIV19006.
    1. Keogh S, Flynn J, Marsh N, Higgins N, Davies K, Rickard CM. Nursing and midwifery practice for maintenance of vascular access device patency. A cross-sectional survey. Int J Nurs Stud. 2015;52(11):1678–1685. doi: 10.1016/j.ijnurstu.2015.07.001.
    1. Keogh S, Shelverton C, Flynn J, Davies K, Marsh N, Rickard C. An observational study of nurses’ intravenous flush and medication practice in the clnical setting. Vasc Access. 2017;3(1):3–10.
    1. Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. BMJ. 2015;350:h391. doi: 10.1136/bmj.h391.
    1. Hemming K, Lilford R, Girling AJ. Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level designs. Stat Med. 2015;34(2):181–196. doi: 10.1002/sim.6325.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Freemantle N, Calvert M, Wood J, Eastaugh J, Griffin C. Composite outcomes in randomized trials: greater precision but with greater uncertainty? JAMA. 2003;289(19):2554–2559. doi: 10.1001/jama.289.19.2554.
    1. Keogh S, Marsh N, Higgins N, Davies K, Rickard C. A time and motion study of peripheral venous catheter flushing practice using manual and prefilled flush syringes. J Inf Nurs. 2014;37(2):96–101. doi: 10.1097/NAN.0000000000000024.
    1. Rickard CMM, N.;Webster, J.;Runnegar, N.;Larsen, E.;McGrail, M. R.;Fullerton, F.;Bettington, E.;Whitty, J. A.;Choudhury, M. A.;Tuffaha, H.;Corley, A.;McMillan, D. J.;Fraser, J. F.;Marshall, A. P.;Playford, E. G.: Dressings and securements for the prevention of peripheral intravenous catheter failure in adults (SAVE): a pragmatic, randomised controlled, superiority trial. Lancet 2018, 392(10145):419–430.
    1. Hemming K, Girling A. A menu driven facility for power and detecable-difference calculations in stepped-qedge cluster randomized trials. Stata J. 2014;14(2):363–380. doi: 10.1177/1536867X1401400208.
    1. Chen Y, Yang K, Marusic A, Qaseem A, Meerpohl JJ, Flottorp S, Akl EA, Schunemann HJ, Chan ES, Falck-Ytter Y, et al. A reporting tool for practice guidelines in health care: the RIGHT statement. Ann Intern Med. 2017;166(2):128–132. doi: 10.7326/M16-1565.
    1. Ng ES, BGrieve R, Carpenter JR. Two-stage nonparametric bootstrap sampling with shrinkage correction for clustered data. Stata J. 2013;13(1):141–164. doi: 10.1177/1536867X1301300111.
    1. Ista E, van der Hoven B, Kornelisse RF, van der Starre C, Vos MC, Boersma E, Helder OK. Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16(6):724–734. doi: 10.1016/S1473-3099(15)00409-0.
    1. Ray-Barruel G, Xu H, Marsh N, Cooke M, Rickard CM. Effectiveness of insertion and maintenance bundles in preventing peripheral intravenous catheter-related complications and bloodstream infection in hospital patients: a systematic review. Infect Dis Health. 2019;24(3):152–168. doi: 10.1016/j.idh.2019.03.001.
    1. Lavallee JF, Gray TA, Dumville J, Russell W, Cullum N. The effects of care bundles on patient outcomes: a systematic review and meta-analysis. Implement Sci. 2017;12(1):142. doi: 10.1186/s13012-017-0670-0.
    1. Tian L, Zhou T, MA A, Liu Q: 预充式导管冲洗器临床效果meta分析 [The clinical effectiveness of pre-filled saline syringes. A Meta-analysis]. Chinese Nurs Manag. 2017;17(11):1545–55.
    1. Saliba P, Cuervo G, Hornero A, De Carli G, Marani A, Puro V, Felisa Lopez A, Iftimie S, Castro A, Diaz-Brito Fernandez V, et al. The impact of flushing with pre-filled saline syringes on the incidence of peripheral venous catheter failure: a quasi-experimental study. J Vasc Access. 2020;21(4):490–6. 10.1177/1129729819888423.
    1. Ray-Barruel G, Cooke M, Chopra V, Mitchell M, Rickard CM. The I-DECIDED clinical decision-making tool for peripheral intravenous catheter assessment and safe removal: a clinimetric evaluation. BMJ Open. 2020;10(1):e035239. doi: 10.1136/bmjopen-2019-035239.
    1. Vendramim P, Ferreire Machado AVelar A, Rickard CM, da Luz Goncalves Pedreira M: The RESPECT trial - Replacement of peripheral intravenous catheters according to clinical reasons or every 96 hours: a randomized, controlled, non-inferiority trial. Int J Nurs Stud. 2020;107(Article10350). 10.1016/j.ijnurstu.2019.103504.

Source: PubMed

3
Tilaa