Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome

Vincenzo Di Marzo, Cristoforo Silvestri, Vincenzo Di Marzo, Cristoforo Silvestri

Abstract

Lifestyle is a well-known environmental factor that plays a major role in facilitating the development of metabolic syndrome or eventually exacerbating its consequences. Various lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light-dark cycles, substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging. Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and the gut microbiome and, hence, how lifestyle interventions can provide new therapies against cardiometabolic risk by ensuring correct functioning of both these systems.

Keywords: endocannabinoidome; endocannabinoids; metabolic syndrome; microbiome.

Conflict of interest statement

The authors receive research grants from GW Pharmaceuticals, not related to this work.

Figures

Figure 1
Figure 1
Endocannabinoidome mediators and their receptors (A) and anabolic and catabolic enzymes (B). Interactions are indicated by dark shaded boxes, and anabolic enzymes that function in concert are grouped together; “X” indicates inhibitory interactions; “a” indicates that enzymes only function with arachidonoyl homologs. A lighter shade of gray indicates a lower interaction with the receptors or a lesser role of the enzymes in biosynthesis or degradation.
Figure 2
Figure 2
The endocannabinoidome–microbiome axis as a mechanism through which lifestyle choices affect various aspects of metabolism, which in turn may lead to the metabolic syndrome when dysregulated. This can, in turn, impact on both endocannabinoidome and microbiome-mediated signaling and, ultimately, also on lifestyle, thus creating potential vicious circles.

References

    1. Yamaoka K., Tango T. Effects of lifestyle modification on metabolic syndrome: A systematic review and meta-analysis. BMC Med. 2012;10:138. doi: 10.1186/1741-7015-10-138.
    1. Reilly J.J., El-Hamdouchi A., Diouf A., Monyeki A., Somda S.A. Determining the worldwide prevalence of obesity. Lancet. 2018;391:1773–1774. doi: 10.1016/S0140-6736(18)30794-3.
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. Lancet. 2016;387:1513–1530. doi: 10.1016/S0140-6736(16)00618-8.
    1. Liu H.-H., Li J.-J. Aging and dyslipidemia: A review of potential mechanisms. Ageing Res. Rev. 2015;19:43–52. doi: 10.1016/j.arr.2014.12.001.
    1. Blacher J., Levy B.I., Mourad J.-J., Safar M.E., Bakris G. From epidemiological transition to modern cardiovascular epidemiology: Hypertension in the 21st century. Lancet. 2016;388:530–532. doi: 10.1016/S0140-6736(16)00002-7.
    1. Halcox J.P., Banegas J.R., Roy C., Dallongeville J., De Backer G., Guallar E., Perk J., Hajage D., Henriksson K.M., Borghi C. Prevalence and treatment of atherogenic dyslipidemia in the primary prevention of cardiovascular disease in Europe: EURIKA, a cross-sectional observational study. BMC Cardiovasc. Disord. 2017;17:160. doi: 10.1186/s12872-017-0591-5.
    1. Barquera S., Pedroza-Tobías A., Medina C., Hernández-Barrera L., Bibbins-Domingo K., Lozano R., Moran A.E. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch. Med. Res. 2015;46:328–338. doi: 10.1016/j.arcmed.2015.06.006.
    1. Saboya P.P., Bodanese L.C., Zimmermann P.R., da Silva Gustavo A., Macagnan F.E., Feoli A.P., da Silva Oliveira M. Lifestyle Intervention on Metabolic Syndrome and its Impact on Quality of Life: A Randomized Controlled Trial. Arq. Bras. Cardiol. 2017;108:60–69. doi: 10.5935/abc.20160186.
    1. VanWormer J.J., Boucher J.L., Sidebottom A.C., Sillah A., Knickelbine T. Lifestyle changes and prevention of metabolic syndrome in the Heart of New Ulm Project. Prev. Med. Rep. 2017;6:242–245. doi: 10.1016/j.pmedr.2017.03.018.
    1. Silvestri C., Di Marzo V. The Endocannabinoid System in Energy Homeostasis and the Etiopathology of Metabolic Disorders. Cell Metab. 2013;17:475–490. doi: 10.1016/j.cmet.2013.03.001.
    1. Cristino L., Becker T., Di Marzo V. Endocannabinoids and energy homeostasis: An update: Regolatory Role of Endocannabinoids in Obesity. BioFactors. 2014;40:389–397. doi: 10.1002/biof.1168.
    1. Piscitelli F., Carta G., Bisogno T., Murru E., Cordeddu L., Berge K., Tandy S., Cohn J.S., Griinari M., Banni S., et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr. Metab. (Lond.) 2011;8:51. doi: 10.1186/1743-7075-8-51.
    1. Osei-Hyiaman D., DePetrillo M., Pacher P., Liu J., Radaeva S., Bátkai S., Harvey-White J., Mackie K., Offertáler L., Wang L., et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 2005;115:1298–1305. doi: 10.1172/JCI200523057.
    1. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Esteve E., Ricart W., Fernández-Real J.-M. Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: Did gut microbiote co-evolve with insulin resistance? Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:483–490. doi: 10.1097/MCO.0b013e328348c06d.
    1. Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Duncan A.E., Kau A.L., Griffin N.W., Lombard V., Henrissat B., Bain J.R., et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214.
    1. Cohen L.J., Esterhazy D., Kim S.-H., Lemetre C., Aguilar R.R., Gordon E.A., Pickard A.J., Cross J.R., Emiliano A.B., Han S.M., et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017;549:48–53. doi: 10.1038/nature23874.
    1. Everard A., Plovier H., Rastelli M., Van Hul M., de Wouters d’Oplinter A., Geurts L., Druart C., Robine S., Delzenne N.M., Muccioli G.G., et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat. Commun. 2019;10:457. doi: 10.1038/s41467-018-08051-7.
    1. Geurts L., Everard A., Van Hul M., Essaghir A., Duparc T., Matamoros S., Plovier H., Castel J., Denis R.G.P., Bergiers M., et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat. Commun. 2015;6:6495. doi: 10.1038/ncomms7495.
    1. Song J.-X., Ren H., Gao Y.-F., Lee C.-Y., Li S.-F., Zhang F., Li L., Chen H. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice. Front. Physiol. 2017;8:602. doi: 10.3389/fphys.2017.00602.
    1. Mehrpouya-Bahrami P., Chitrala K.N., Ganewatta M.S., Tang C., Murphy E.A., Enos R.T., Velazquez K.T., McCellan J., Nagarkatti M., Nagarkatti P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep. 2017;7:15645. doi: 10.1038/s41598-017-15154-6.
    1. Costantini L., Molinari R., Farinon B., Merendino N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017;18:2645. doi: 10.3390/ijms18122645.
    1. Dahiya D.K., Renuka, Puniya M., Shandilya U.K., Dhewa T., Kumar N., Kumar S., Puniya A.K., Shukla P. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front. Microbiol. 2017;8:563. doi: 10.3389/fmicb.2017.00563.
    1. Mailing L.J., Allen J.M., Buford T.W., Fields C.J., Woods J.A. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc. Sport Sci. Rev. 2019;47:75–85. doi: 10.1249/JES.0000000000000183.
    1. Pertwee R., Cascio M.G. Chapter 6: Known Pharmacological Actions of Delta-9-Tetrahydrocannabinol and of Four Other Chemical Constituents of Cannabis that Activate Cannabinoid Receptors. In: Pertwee R., editor. Handbook of Cannabis. Oxford University Press; Oxford, UK: 2014. pp. 115–136.
    1. Devane W.A., Hanus L., Breuer A., Pertwee R.G., Stevenson L.A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–1949. doi: 10.1126/science.1470919.
    1. Mechoulam R., Ben-Shabat S., Hanus L., Ligumsky M., Kaminski N.E., Schatz A.R., Gopher A., Almog S., Martin B.R., Compton D.R. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995;50:83–90. doi: 10.1016/0006-2952(95)00109-D.
    1. Di Marzo V., De Petrocellis L., Bisogno T. The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb. Exp. Pharmacol. 2005:147–185.
    1. Dinh T.P., Carpenter D., Leslie F.M., Freund T.F., Katona I., Sensi S.L., Kathuria S., Piomelli D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA. 2002;99:10819–10824. doi: 10.1073/pnas.152334899.
    1. Cravatt B.F., Giang D.K., Mayfield S.P., Boger D.L., Lerner R.A., Gilula N.B. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–87. doi: 10.1038/384083a0.
    1. Bisogno T., Howell F., Williams G., Minassi A., Cascio M.G., Ligresti A., Matias I., Schiano-Moriello A., Paul P., Williams E.-J., et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 2003;163:463–468. doi: 10.1083/jcb.200305129.
    1. Okamoto Y., Morishita J., Tsuboi K., Tonai T., Ueda N. Molecular Characterization of a Phospholipase D Generating Anandamide and Its Congeners. J. Biol. Chem. 2004;279:5298–5305. doi: 10.1074/jbc.M306642200.
    1. Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 2018;17:623–639. doi: 10.1038/nrd.2018.115.
    1. Simon G.M., Cravatt B.F. Anandamide Biosynthesis Catalyzed by the Phosphodiesterase GDE1 and Detection of Glycerophospho-N-acyl Ethanolamine Precursors in Mouse Brain. J. Biol. Chem. 2008;283:9341–9349. doi: 10.1074/jbc.M707807200.
    1. Liu J., Wang L., Harvey-White J., Osei-Hyiaman D., Razdan R., Gong Q., Chan A.C., Zhou Z., Huang B.X., Kim H.-Y., et al. A biosynthetic pathway for anandamide. Proc. Natl. Acad. Sci. USA. 2006;103:13345–13350. doi: 10.1073/pnas.0601832103.
    1. Naughton S.S., Mathai M.L., Hryciw D.H., McAinch A.J. Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int. J. Endocrinol. 2013;2013:361895. doi: 10.1155/2013/361895.
    1. Bluher M., Engeli S., Kloting N., Berndt J., Fasshauer M., Batkai S., Pacher P., Schon M.R., Jordan J., Stumvoll M. Dysregulation of the Peripheral and Adipose Tissue Endocannabinoid System in Human Abdominal Obesity. Diabetes. 2006;55:3053–3060. doi: 10.2337/db06-0812.
    1. Côté M., Matias I., Lemieux I., Petrosino S., Alméras N., Després J.-P., Di Marzo V. Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int. J. Obes. 2007;31:692–699. doi: 10.1038/sj.ijo.0803539.
    1. Engeli S., Böhnke J., Feldpausch M., Gorzelniak K., Janke J., Bátkai S., Pacher P., Harvey-White J., Luft F.C., Sharma A.M., et al. Activation of the Peripheral Endocannabinoid System in Human Obesity. Diabetes. 2005;54:2838–2843. doi: 10.2337/diabetes.54.10.2838.
    1. Karvela A., Rojas-Gil A.P., Samkinidou E., Papadaki H., Pappa A., Georgiou G., Spiliotis B.E. Endocannabinoid (EC) receptor, CB1, and EC enzymes’ expression in primary adipocyte cultures of lean and obese pre-pubertal children in relation to adiponectin and insulin. J. Pediatr. Endocrinol. Metab. 2010;23:1011–1024. doi: 10.1515/jpem.2010.162.
    1. Pagano C., Pilon C., Calcagno A., Urbanet R., Rossato M., Milan G., Bianchi K., Rizzuto R., Bernante P., Federspil G., et al. The Endogenous Cannabinoid System Stimulates Glucose Uptake in Human Fat Cells via Phosphatidylinositol 3-Kinase and Calcium-Dependent Mechanisms. J. Clin. Endocrinol. Metab. 2007;92:4810–4819. doi: 10.1210/jc.2007-0768.
    1. Diep T.A., Madsen A.N., Holst B., Kristiansen M.M., Wellner N., Hansen S.H., Hansen H.S. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 2011;25:765–774. doi: 10.1096/fj.10-166595.
    1. Aviello G., Matias I., Capasso R., Petrosino S., Borrelli F., Orlando P., Romano B., Capasso F., Di Marzo V., Izzo A.A. Inhibitory effect of the anorexic compound oleoylethanolamide on gastric emptying in control and overweight mice. J. Mol. Med. 2008;86:413–422. doi: 10.1007/s00109-008-0305-7.
    1. Kuipers E.N., Kantae V., Maarse B.C.E., van den Berg S.M., van Eenige R., Nahon K.J., Reifel-Miller A., Coskun T., de Winther M.P.J., Lutgens E., et al. High Fat Diet Increases Circulating Endocannabinoids Accompanied by Increased Synthesis Enzymes in Adipose Tissue. Front. Physiol. 2019;9:1913. doi: 10.3389/fphys.2018.01913.
    1. Miranda R.A., De Almeida M.M., Rocha C.P.D.D., de Brito Fassarella L., De Souza L.L., Souza A.F.P.D., Andrade C.B.V.D., Fortunato R.S., Pazos-Moura C.C., Trevenzoli I.H. Maternal high-fat diet consumption induces sex-dependent alterations of the endocannabinoid system and redox homeostasis in liver of adult rat offspring. Sci. Rep. 2018;8:14751. doi: 10.1038/s41598-018-32906-0.
    1. Dias-Rocha C.P., Almeida M.M., Santana E.M., Costa J.C.B., Franco J.G., Pazos-Moura C.C., Trevenzoli I.H. Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood. J. Nutr. Biochem. 2018;51:56–68. doi: 10.1016/j.jnutbio.2017.09.019.
    1. Kris-Etherton P.M., Taylor D.S., Yu-Poth S., Huth P., Moriarty K., Fishell V., Hargrove R.L., Zhao G., Etherton T.D. Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr. 2000;71:179S–188S. doi: 10.1093/ajcn/71.1.179S.
    1. Alvheim A.R., Malde M.K., Osei-Hyiaman D., Lin Y.H., Pawlosky R.J., Madsen L., Kristiansen K., Frøyland L., Hibbeln J.R. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 2012;20:1984–1994. doi: 10.1038/oby.2012.38.
    1. Matias I., Petrosino S., Racioppi A., Capasso R., Izzo A.A., Di Marzo V. Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: Effect of high fat diets. Mol. Cell. Endocrinol. 2008;286:S66–S78. doi: 10.1016/j.mce.2008.01.026.
    1. Alvheim A.R., Torstensen B.E., Lin Y.H., Lillefosse H.H., Lock E.-J., Madsen L., Frøyland L., Hibbeln J.R., Malde M.K. Dietary Linoleic Acid Elevates the Endocannabinoids 2-AG and Anandamide and Promotes Weight Gain in Mice Fed a Low Fat Diet. Lipids. 2014;49:59–69. doi: 10.1007/s11745-013-3842-y.
    1. Batetta B., Griinari M., Carta G., Murru E., Ligresti A., Cordeddu L., Giordano E., Sanna F., Bisogno T., Uda S., et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J. Nutr. 2009;139:1495–1501. doi: 10.3945/jn.109.104844.
    1. Rossmeisl M., Jilkova Z.M., Kuda O., Jelenik T., Medrikova D., Stankova B., Kristinsson B., Haraldsson G.G., Svensen H., Stoknes I., et al. Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids. PLoS ONE. 2012;7:e38834. doi: 10.1371/journal.pone.0038834.
    1. Berge K., Piscitelli F., Hoem N., Silvestri C., Meyer I., Banni S., Di Marzo V. Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men. Lipids Health Dis. 2013;12:78. doi: 10.1186/1476-511X-12-78.
    1. Demizieux L., Piscitelli F., Troy-Fioramonti S., Iannotti F.A., Borrino S., Gresti J., Muller T., Bellenger J., Silvestri C., Di Marzo V., et al. Early Low-Fat Diet Enriched With Linolenic Acid Reduces Liver Endocannabinoid Tone and Improves Late Glycemic Control After a High-Fat Diet Challenge in Mice. Diabetes. 2016;65:1824–1837. doi: 10.2337/db15-1279.
    1. Pachikian B.D., Essaghir A., Demoulin J.-B., Neyrinck A.M., Catry E., De Backer F.C., Dejeans N., Dewulf E.M., Sohet F.M., Portois L., et al. Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: Genomic analysis of cellular targets. PLoS ONE. 2011;6:e23365. doi: 10.1371/journal.pone.0023365.
    1. Berger A., Crozier G., Bisogno T., Cavaliere P., Innis S., Marzo V.D. Anandamide and diet: Inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc. Natl. Acad. Sci. USA. 2001;98:6402–6406. doi: 10.1073/pnas.101119098.
    1. Artmann A., Petersen G., Hellgren L.I., Boberg J., Skonberg C., Nellemann C., Hansen S.H., Hansen H.S. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochimica et Biophysica Acta (BBA) Mol. Cell Biol. Lipids. 2008;1781:200–212. doi: 10.1016/j.bbalip.2008.01.006.
    1. Ramsden C.E., Zamora D., Makriyannis A., Wood J.T., Mann J.D., Faurot K.R., MacIntosh B.A., Majchrzak-Hong S.F., Gross J.R., Courville A.B., et al. Diet-Induced Changes in n-3- and n-6-Derived Endocannabinoids and Reductions in Headache Pain and Psychological Distress. J. Pain. 2015;16:707–716. doi: 10.1016/j.jpain.2015.04.007.
    1. Verhoeckx K.C.M., Voortman T., Balvers M.G.J., Hendriks H.F.J., Wortelboer H.M., Witkamp R.F. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochimica et Biophysica Acta (BBA) Mol. Cell Biol. Lipids. 2011;1811:578–586. doi: 10.1016/j.bbalip.2011.07.008.
    1. Arshad A., Chung W.Y., Steward W., Metcalfe M.S., Dennison A.R. Reduction in circulating pro-angiogenic and pro-inflammatory factors is related to improved outcomes in patients with advanced pancreatic cancer treated with gemcitabine and intravenous omega-3 fish oil. HPB (Oxford) 2013;15:428–432. doi: 10.1111/hpb.12002.
    1. Watson J.E., Kim J.S., Das A. Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins Other Lipid Mediat. 2019;143:106337.
    1. Wainwright C.L., Michel L. Endocannabinoid system as a potential mechanism for n-3 long-chain polyunsaturated fatty acid mediated cardiovascular protection. Proc. Nutr. Soc. 2013;72:460–469. doi: 10.1017/S0029665113003406.
    1. Meijerink J., Balvers M., Witkamp R. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids—From fishy endocannabinoids to potential leads. Br. J. Pharmacol. 2013;169:772–783. doi: 10.1111/bph.12030.
    1. Rossmeisl M., Pavlisova J., Janovska P., Kuda O., Bardova K., Hansikova J., Svobodova M., Oseeva M., Veleba J., Kopecky J., et al. Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients. Biochimica et Biophysica Acta (BBA) Mol. Cell Biol. Lipids. 2018;1863:712–725. doi: 10.1016/j.bbalip.2018.03.011.
    1. Moran C.P., Shanahan F. Gut microbiota and obesity: Role in aetiology and potential therapeutic target. Best Pract. Res. Clin. Gastroenterol. 2014;28:585–597. doi: 10.1016/j.bpg.2014.07.005.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Finucane M.M., Sharpton T.J., Laurent T.J., Pollard K.S. A Taxonomic Signature of Obesity in the Microbiome? Getting to the Guts of the Matter. PLoS ONE. 2014;9:e84689. doi: 10.1371/journal.pone.0084689.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Kasselman L.J., Vernice N.A., DeLeon J., Reiss A.B. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis. 2018;271:203–213. doi: 10.1016/j.atherosclerosis.2018.02.036.
    1. Ascher S., Reinhardt C. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. Eur. J. Immunol. 2018;48:564–575. doi: 10.1002/eji.201646879.
    1. Ma J., Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front. Pharmacol. 2018;9:1082. doi: 10.3389/fphar.2018.01082.
    1. van den Munckhof I.C.L., Kurilshikov A., ter Horst R., Riksen N.P., Joosten L.A.B., Zhernakova A., Fu J., Keating S.T., Netea M.G., de Graaf J., et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: A systematic review of human studies: Impact of gut microbiota on low-grade inflammation. Obes. Rev. 2018;19:1719–1734. doi: 10.1111/obr.12750.
    1. Zhou W., Sailani M.R., Contrepois K., Zhou Y., Ahadi S., Leopold S.R., Zhang M.J., Rao V., Avina M., Mishra T., et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature. 2019;569:663. doi: 10.1038/s41586-019-1236-x.
    1. Rose S.M.S.-F., Contrepois K., Moneghetti K.J., Zhou W., Mishra T., Mataraso S., Dagan-Rosenfeld O., Ganz A.B., Dunn J., Hornburg D., et al. A longitudinal big data approach for precision health. Nat. Med. 2019;25:792.
    1. Cui C., Li Y., Gao H., Zhang H., Han J., Zhang D., Li Y., Zhou J., Lu C., Su X. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE. 2017;12:e0186216. doi: 10.1371/journal.pone.0186216.
    1. Shen W., Gaskins H.R., McIntosh M.K. Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem. 2014;25:270–280. doi: 10.1016/j.jnutbio.2013.09.009.
    1. Pu S., Khazanehei H., Jones P.J., Khafipour E. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT) Front. Microbiol. 2016;7:1612. doi: 10.3389/fmicb.2016.01612.
    1. Everard A., Cani P.D. Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol. 2013;27:73–83. doi: 10.1016/j.bpg.2013.03.007.
    1. Muccioli G.G., Naslain D., Bäckhed F., Reigstad C.S., Lambert D.M., Delzenne N.M., Cani P.D. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 2010;6:392. doi: 10.1038/msb.2010.46.
    1. Cani P.D., Plovier H., Van Hul M., Geurts L., Delzenne N.M., Druart C., Everard A. Endocannabinoids—At the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 2016;12:133–143. doi: 10.1038/nrendo.2015.211.
    1. Veronese N., Solmi M., Caruso M.G., Giannelli G., Osella A.R., Evangelou E., Maggi S., Fontana L., Stubbs B., Tzoulaki I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018;107:436–444. doi: 10.1093/ajcn/nqx082.
    1. Ahmadi S., Mainali R., Nagpal R., Sheikh-Zeinoddin M., Soleimanian-Zad S., Wang S., Deep G., Kumar Mishra S., Yadav H. Dietary Polysaccharides in the Amelioration of Gut Microbiome Dysbiosis and Metabolic Diseases. Obes. Control Ther. 2017;4 doi: 10.15226/2374-8354/4/2/00140.
    1. Bindels L.B., Delzenne N.M., Cani P.D., Walter J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015;12:303–310. doi: 10.1038/nrgastro.2015.47.
    1. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. doi: 10.2337/db06-1491.
    1. Cani P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. Cani P.D., Possemiers S., Van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D.M., et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103. doi: 10.1136/gut.2008.165886.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Dehghan P., Pourghassem Gargari B., Asghari Jafar-abadi M. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized controlled clinical trial. Nutrition. 2014;30:418–423. doi: 10.1016/j.nut.2013.09.005.
    1. Depommier C., Everard A., Druart C., Plovier H., Hul M.V., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M., et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019;25:1096. doi: 10.1038/s41591-019-0495-2.
    1. Jourdan T., Szanda G., Cinar R., Godlewski G., Holovac D.J., Park J.K., Nicoloro S., Shen Y., Liu J., Rosenberg A.Z., et al. Developmental Role of Macrophage Cannabinoid-1 Receptor Signaling in Type 2 Diabetes. Diabetes. 2017;66:994–1007. doi: 10.2337/db16-1199.
    1. Jourdan T., Godlewski G., Cinar R., Bertola A., Szanda G., Liu J., Tarn J., Han T., Mukhopadhyay B., Skarulis M.C., et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat. Med. 2013;19:1132–1140. doi: 10.1038/nm.3265.
    1. Lv J., Qi L., Yu C., Yang L., Guo Y., Chen Y., Bian Z., Sun D., Du J., Ge P., et al. Consumption of spicy foods and total and cause specific mortality: Population based cohort study. BMJ. 2015;351:h3942. doi: 10.1136/bmj.h3942.
    1. Yuan L.-J., Qin Y., Wang L., Zeng Y., Chang H., Wang J., Wang B., Wan J., Chen S.-H., Zhang Q.-Y., et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin. Nutr. 2016;35:388–393. doi: 10.1016/j.clnu.2015.02.011.
    1. Kroff J., Hume D.J., Pienaar P., Tucker R., Lambert E.V., Rae D.E. The metabolic effects of a commercially available chicken peri-peri (African bird’s eye chilli) meal in overweight individuals. Br. J. Nutr. 2017;117:635–644. doi: 10.1017/S0007114515003104.
    1. Dömötör A., Szolcsányi J., Mózsik G. Capsaicin and glucose absorption and utilization in healthy human subjects. Eur. J. Pharmacol. 2006;534:280–283. doi: 10.1016/j.ejphar.2006.01.017.
    1. Ludy M.-J., Moore G.E., Mattes R.D. The Effects of Capsaicin and Capsiate on Energy Balance: Critical Review and Meta-analyses of Studies in Humans. Chem. Senses. 2012;37:103–121. doi: 10.1093/chemse/bjr100.
    1. Kang J.-H., Tsuyoshi G., Han I.-S., Kawada T., Kim Y.M., Yu R. Dietary Capsaicin Reduces Obesity-induced Insulin Resistance and Hepatic Steatosis in Obese Mice Fed a High-fat Diet. Obesity. 2010;18:780–787. doi: 10.1038/oby.2009.301.
    1. Zhang L.L., Yan Liu D., Ma L.Q., Luo Z.D., Cao T.B., Zhong J., Yan Z.C., Wang L.J., Zhao Z.G., Zhu S.J., et al. Activation of Transient Receptor Potential Vanilloid Type-1 Channel Prevents Adipogenesis and Obesity. Circ. Res. 2007;100:1063–1070. doi: 10.1161/01.RES.0000262653.84850.8b.
    1. Motter A.L., Ahern G.P. TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 2008;582:2257–2262. doi: 10.1016/j.febslet.2008.05.021.
    1. Lee E., Jung D.Y., Kim J.H., Patel P.R., Hu X., Lee Y., Azuma Y., Wang H.-F., Tsitsilianos N., Shafiq U., et al. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB J. 2015;29:3182–3192. doi: 10.1096/fj.14-268300.
    1. Wanner S.P., Garami A., Romanovsky A.A. Hyperactive when young, hypoactive and overweight when aged: Connecting the dots in the story about locomotor activity, body mass, and aging in Trpv1 knockout mice. Aging (Albany NY) 2011;3:450–454. doi: 10.18632/aging.100306.
    1. Baboota R.K., Murtaza N., Jagtap S., Singh D.P., Karmase A., Kaur J., Bhutani K.K., Boparai R.K., Premkumar L.S., Kondepudi K.K., et al. Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice. J. Nutr. Biochem. 2014;25:893–902. doi: 10.1016/j.jnutbio.2014.04.004.
    1. Shen W., Shen M., Zhao X., Zhu H., Yang Y., Lu S., Tan Y., Li G., Li M., Wang J., et al. Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila. Front. Microbiol. 2017;8:272. doi: 10.3389/fmicb.2017.00272.
    1. Kang C., Wang B., Kaliannan K., Wang X., Lang H., Hui S., Huang L., Zhang Y., Zhou M., Chen M., et al. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. mBio. 2017;8:e00470-17. doi: 10.1128/mBio.00470-17.
    1. Karwad M.A., Macpherson T., Wang B., Theophilidou E., Sarmad S., Barrett D.A., Larvin M., Wright K.L., Lund J.N., O’Sullivan S.E. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα. FASEB J. 2017;31:469–481. doi: 10.1096/fj.201500132.
    1. Kang C., Zhang Y., Zhu X., Liu K., Wang X., Chen M., Wang J., Chen H., Hui S., Huang L., et al. Healthy Subjects Differentially Respond to Dietary Capsaicin Correlating with Specific Gut Enterotypes. J. Clin. Endocrinol. Metab. 2016;101:4681–4689. doi: 10.1210/jc.2016-2786.
    1. Perez-Burgos A., Wang L., McVey Neufeld K.-A., Mao Y.-K., Ahmadzai M., Janssen L.J., Stanisz A.M., Bienenstock J., Kunze W.A. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938. J. Physiol. 2015;593:3943–3957. doi: 10.1113/JP270229.
    1. Holick M.F., Chen T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008;87:1080S–1086S. doi: 10.1093/ajcn/87.4.1080S.
    1. Al-Dabhani K., Tsilidis K.K., Murphy N., Ward H.A., Elliott P., Riboli E., Gunter M., Tzoulaki I. Prevalence of vitamin D deficiency and association with metabolic syndrome in a Qatari population. Nutr. Diabetes. 2017;7:e263. doi: 10.1038/nutd.2017.14.
    1. Moon R.J., Curtis E.M., Cooper C., Davies J.H., Harvey N.C. Vitamin D supplementation: Are multivitamins sufficient? Arch. Dis. Child. 2019 doi: 10.1136/archdischild-2018-316339.
    1. Strange R.C., Shipman K.E., Ramachandran S. Metabolic syndrome: A review of the role of vitamin D in mediating susceptibility and outcome. World J. Diabetes. 2015;6:896–911. doi: 10.4239/wjd.v6.i7.896.
    1. Su D., Nie Y., Zhu A., Chen Z., Wu P., Zhang L., Luo M., Sun Q., Cai L., Lai Y., et al. Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Front. Physiol. 2016;7:498. doi: 10.3389/fphys.2016.00498.
    1. Ooi J.H., Li Y., Rogers C.J., Cantorna M.T. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J. Nutr. 2013;143:1679–1686. doi: 10.3945/jn.113.180794.
    1. Ghaly S., Kaakoush N.O., Lloyd F., Gordon L., Forest C., Lawrance I.C., Hart P.H. Ultraviolet Irradiation of Skin Alters the Faecal Microbiome Independently of Vitamin D in Mice. Nutrients. 2018;10:1069. doi: 10.3390/nu10081069.
    1. Bikle D. Vitamin D: Production, Metabolism, and Mechanisms of Action. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., Dungan K., Grossman A., Hershman J.M., Kaltsas G., Koch C., et al., editors. Endotext. , Inc.; South Dartmouth, MA, USA: 2000.
    1. Kendall A.C., Pilkington S.M., Massey K.A., Sassano G., Rhodes L.E., Nicolaou A. Distribution of Bioactive Lipid Mediators in Human Skin. J. Invest. Dermatol. 2015;135:1510–1520. doi: 10.1038/jid.2015.41.
    1. Magina S., Esteves-Pinto C., Moura E., Serrão M.P., Moura D., Petrosino S., Di Marzo V., Vieira-Coelho M.A. Inhibition of basal and ultraviolet B-induced melanogenesis by cannabinoid CB1 receptors: A keratinocyte-dependent effect. Arch. Dermatol. Res. 2011;303:201–210. doi: 10.1007/s00403-011-1126-z.
    1. Felton S.J., Kendall A.C., Almaedani A.F.M., Urquhart P., Webb A.R., Kift R., Vail A., Nicolaou A., Rhodes L.E. Serum endocannabinoids and N-acyl ethanolamines and the influence of simulated solar UVR exposure in humans in vivo. Photochem. Photobiol. Sci. 2017;16:564–574. doi: 10.1039/C6PP00337K.
    1. Magina S., Vieira-Coelho M.A., Moura E., Serrão M.P., Piscitelli F., Moura D., Di Marzo V. Effect of narrowband ultraviolet B treatment on endocannabinoid plasma levels in patients with psoriasis. Br. J. Dermatol. 2014;171:198–201. doi: 10.1111/bjd.12916.
    1. Guida F., Boccella S., Belardo C., Iannotta M., Piscitelli F., De Filippis F., Paino S., Ricciardi F., Siniscalco D., Marabese I., et al. Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain Behav. Immunity. 2019 doi: 10.1016/j.bbi.2019.04.006.
    1. Di Marzo V., Côté M., Matias I., Lemieux I., Arsenault B.J., Cartier A., Piscitelli F., Petrosino S., Alméras N., Després J.-P. Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: Associations with changes in metabolic risk factors. Diabetologia. 2009;52:213–217. doi: 10.1007/s00125-008-1178-6.
    1. Gasperi V., Ceci R., Tantimonaco M., Talamonti E., Battista N., Parisi A., Florio R., Sabatini S., Rossi A., Maccarrone M. The Fatty Acid Amide Hydrolase in Lymphocytes from Sedentary and Active Subjects. Med. Sci. Sports Exerc. 2014;46:24–32. doi: 10.1249/MSS.0b013e3182a10ce6.
    1. Fernández-Aranda F., Sauchelli S., Pastor A., Gonzalez M.L., de la Torre R., Granero R., Jiménez-Murcia S., Baños R., Botella C., Fernández-Real J.M., et al. Moderate-Vigorous Physical Activity across Body Mass Index in Females: Moderating Effect of Endocannabinoids and Temperament. PLoS ONE. 2014;9:e104534. doi: 10.1371/journal.pone.0104534.
    1. Raichlen D.A., Foster A.D., Seillier A., Giuffrida A., Gerdeman G.L. Exercise-induced endocannabinoid signaling is modulated by intensity. Eur. J. Appl. Physiol. 2013;113:869–875. doi: 10.1007/s00421-012-2495-5.
    1. Raichlen D.A., Foster A.D., Gerdeman G.L., Seillier A., Giuffrida A. Wired to run: Exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the “runner’s high”. J. Exp. Biol. 2012;215:1331–1336. doi: 10.1242/jeb.063677.
    1. Heyman E., Gamelin F.-X., Goekint M., Piscitelli F., Roelands B., Leclair E., Di Marzo V., Meeusen R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—Possible implications for reward and depression. Psychoneuroendocrinology. 2012;37:844–851. doi: 10.1016/j.psyneuen.2011.09.017.
    1. Heyman E., Gamelin F.-X., Aucouturier J., Marzo V.D. The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: Potential implications for the treatment of obesity. Obes. Rev. 2012;13:1110–1124. doi: 10.1111/j.1467-789X.2012.01026.x.
    1. Cedernaes J., Fanelli F., Fazzini A., Pagotto U., Broman J.-E., Vogel H., Dickson S.L., Schiöth H.B., Benedict C. Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans. Psychoneuroendocrinology. 2016;74:258–268. doi: 10.1016/j.psyneuen.2016.09.014.
    1. Gamelin F.-X., Aucouturier J., Iannotti F.A., Piscitelli F., Mazzarella E., Aveta T., Leriche M., Dupont E., Cieniewski-Bernard C., Montel V., et al. Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity. J. Physiol. Biochem. 2016;72:183–199. doi: 10.1007/s13105-016-0469-5.
    1. Mikkelsen K., Stojanovska L., Polenakovic M., Bosevski M., Apostolopoulos V. Exercise and mental health. Maturitas. 2017;106:48–56. doi: 10.1016/j.maturitas.2017.09.003.
    1. Fuss J., Steinle J., Bindila L., Auer M.K., Kirchherr H., Lutz B., Gass P. A runner’s high depends on cannabinoid receptors in mice. Proc. Natl. Acad. Sci. USA. 2015;112:13105–13108. doi: 10.1073/pnas.1514996112.
    1. Hill M.N., Titterness A.K., Morrish A.C., Carrier E.J., Lee T.T.-Y., Gil-Mohapel J., Gorzalka B.B., Hillard C.J., Christie B.R. Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus. 2010;20:513–523. doi: 10.1002/hipo.20647.
    1. De Chiara V., Errico F., Musella A., Rossi S., Mataluni G., Sacchetti L., Siracusano A., Castelli M., Cavasinni F., Bernardi G., et al. Voluntary exercise and sucrose consumption enhance cannabinoid CB1 receptor sensitivity in the striatum. Neuropsychopharmacology. 2010;35:374–387. doi: 10.1038/npp.2009.141.
    1. Swenson S., Hamilton J., Robison L., Thanos P.K. Chronic aerobic exercise: Lack of effect on brain CB1 receptor levels in adult rats. Life Sci. 2019;230:84–88. doi: 10.1016/j.lfs.2019.05.058.
    1. Stone N.L., Millar S.A., Herrod P.J.J., Barrett D.A., Ortori C.A., Mellon V.A., O’Sullivan S.E. An Analysis of Endocannabinoid Concentrations and Mood Following Singing and Exercise in Healthy Volunteers. Front. Behav. Neurosci. 2018;12:269. doi: 10.3389/fnbeh.2018.00269.
    1. Antunes H.K.M., Leite G.S.F., Lee K.S., Barreto A.T., dos Santos R.V.T., de Sá Souza H., Tufik S., de Mello M.T. Exercise deprivation increases negative mood in exercise-addicted subjects and modifies their biochemical markers. Physiol. Behav. 2016;156:182–190. doi: 10.1016/j.physbeh.2016.01.028.
    1. Hsu Y.J., Chiu C.C., Li Y.P., Huang W.C., Huang Y.T., Huang C.C., Chuang H.L. Effect of Intestinal Microbiota on Exercise Performance in Mice. J. Strength Cond. Res. 2015;29:552–558. doi: 10.1519/JSC.0000000000000644.
    1. Petriz B.A., Castro A.P., Almeida J.A., Gomes C.P., Fernandes G.R., Kruger R.H., Pereira R.W., Franco O.L. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genom. 2014;15:511. doi: 10.1186/1471-2164-15-511.
    1. Denou E., Marcinko K., Surette M.G., Steinberg G.R., Schertzer J.D. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am. J. Physiol.-Endocrinol. Metab. 2016;310:E982–E993. doi: 10.1152/ajpendo.00537.2015.
    1. Lai Z.-L., Tseng C.-H., Ho H.J., Cheung C.K.Y., Lin J.-Y., Chen Y.-J., Cheng F.-C., Hsu Y.-C., Lin J.-T., El-Omar E.M., et al. Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci. Rep. 2018;8:15625. doi: 10.1038/s41598-018-33893-y.
    1. Maillard F., Vazeille E., Sauvanet P., Sirvent P., Combaret L., Sourdrille A., Chavanelle V., Bonnet R., Otero Y.F., Delcros G., et al. High intensity interval training promotes total and visceral fat mass loss in obese Zucker rats without modulating gut microbiota. PLoS ONE. 2019;14:e0214660. doi: 10.1371/journal.pone.0214660.
    1. Barton W., Penney N.C., Cronin O., Garcia-Perez I., Molloy M.G., Holmes E., Shanahan F., Cotter P.D., O’Sullivan O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2017 doi: 10.1136/gutjnl-2016-313627.
    1. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920. doi: 10.1136/gutjnl-2013-306541.
    1. Estaki M., Pither J., Baumeister P., Little J.P., Gill S.K., Ghosh S., Ahmadi-Vand Z., Marsden K.R., Gibson D.L. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4:42. doi: 10.1186/s40168-016-0189-7.
    1. Munukka E., Ahtiainen J.P., Puigbó P., Jalkanen S., Pahkala K., Keskitalo A., Kujala U.M., Pietilä S., Hollmén M., Elo L., et al. Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Front. Microbiol. 2018;9:2323. doi: 10.3389/fmicb.2018.02323.
    1. Cristiano C., Pirozzi C., Coretti L., Cavaliere G., Lama A., Russo R., Lembo F., Mollica M.P., Meli R., Calignano A., et al. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain Behav. Immunity. 2018;74:166–175. doi: 10.1016/j.bbi.2018.09.003.
    1. Vidot D.C., Prado G., Hlaing W.M., Florez H.J., Arheart K.L., Messiah S.E. Metabolic Syndrome among Marijuana Users in the United States: An Analysis of National Health and Nutrition Examination Survey Data. Am. J. Med. 2016;129:173–179. doi: 10.1016/j.amjmed.2015.10.019.
    1. Le Strat Y., Le Foll B. Obesity and Cannabis Use: Results from 2 Representative National Surveys. Am. J. Epidemiol. 2011;174:929–933. doi: 10.1093/aje/kwr200.
    1. Alshaarawy O., Anthony J.C. Are cannabis users less likely to gain weight? Results from a national 3-year prospective study. Int. J. Epidemiol. 2019 doi: 10.1093/ije/dyz044.
    1. Penner E.A., Buettner H., Mittleman M.A. The Impact of Marijuana Use on Glucose, Insulin, and Insulin Resistance among US Adults. Am. J. Med. 2013;126:583–589. doi: 10.1016/j.amjmed.2013.03.002.
    1. Alshaarawy O., Anthony J.C. Cannabis Smoking and Diabetes Mellitus: Results from Meta-Analysis with Eight Independent Replication Samples. Epidemiology. 2015;26:597–600. doi: 10.1097/EDE.0000000000000314.
    1. Rajavashisth T.B., Shaheen M., Norris K.C., Pan D., Sinha S.K., Ortega J., Friedman T.C. Decreased prevalence of diabetes in marijuana users: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III. BMJ Open. 2012;2:e000494. doi: 10.1136/bmjopen-2011-000494.
    1. Danielsson A.K., Lundin A., Yaregal A., Östenson C.G., Allebeck P., Agardh E.E. Cannabis Use as Risk or Protection for Type 2 Diabetes: A Longitudinal Study of 18 000 Swedish Men and Women. J. Diabetes Res. 2016;2016:1–6. doi: 10.1155/2016/6278709.
    1. Ngueta G., Bélanger R.E., Laouan-Sidi E.A., Lucas M. Cannabis use in relation to obesity and insulin resistance in the inuit population. Obesity. 2015;23:290–295. doi: 10.1002/oby.20973.
    1. Adejumo A.C., Ajayi T.O., Adegbala O.M., Adejumo K.L., Alliu S., Akinjero A.M., Onyeakusi N.E., Ojelabi O., Bukong T.N. Cannabis use is associated with reduced prevalence of progressive stages of alcoholic liver disease. Liver Int. 2018;38:1475–1486. doi: 10.1111/liv.13696.
    1. Adejumo A.C., Alliu S., Ajayi T.O., Adejumo K.L., Adegbala O.M., Onyeakusi N.E., Akinjero A.M., Durojaiye M., Bukong T.N. Cannabis use is associated with reduced prevalence of non-alcoholic fatty liver disease: A cross-sectional study. PLoS ONE. 2017;12:e0176416. doi: 10.1371/journal.pone.0176416.
    1. Akturk H.K., Taylor D.D., Camsari U.M., Rewers A., Kinney G.L., Shah V.N. Association Between Cannabis Use and Risk for Diabetic Ketoacidosis in Adults With Type 1 Diabetes. JAMA Intern. Med. 2019;179:115. doi: 10.1001/jamainternmed.2018.5142.
    1. Auer R., Sidney S., Goff D., Vittinghoff E., Pletcher M.J., Allen N.B., Reis J.P., Lewis C.E., Carr J., Rana J.S. Lifetime marijuana use and subclinical atherosclerosis: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Addiction. 2018;113:845–856. doi: 10.1111/add.14110.
    1. DeFilippis E.M., Singh A., Divakaran S., Gupta A., Collins B.L., Biery D., Qamar A., Fatima A., Ramsis M., Pipilas D., et al. Cocaine and Marijuana Use Among Young Adults With Myocardial Infarction. J. Am. Coll. Cardiol. 2018;71:2540–2551. doi: 10.1016/j.jacc.2018.02.047.
    1. Villares J. Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience. 2007;145:323–334. doi: 10.1016/j.neuroscience.2006.11.012.
    1. Ceccarini J., Kuepper R., Kemels D., van Os J., Henquet C., Laere K.V. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict. Biol. 2015;20:357–367. doi: 10.1111/adb.12116.
    1. Marzo V.D., Berrendero F., Bisogno T., González S., Cavaliere P., Romero J., Cebeira M., Ramos J.A., Fernández-Ruiz J.J. Enhancement of Anandamide Formation in the Limbic Forebrain and Reduction of Endocannabinoid Contents in the Striatum of Δ9-Tetrahydrocannabinol-Tolerant Rats. J. Neurochem. 2000;74:1627–1635. doi: 10.1046/j.1471-4159.2000.0741627.x.
    1. Morgan C.J.A., Page E., Schaefer C., Chatten K., Manocha A., Gulati S., Curran H.V., Brandner B., Leweke F.M. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br. J. Psychiatry. 2013;202:381–382. doi: 10.1192/bjp.bp.112.121178.
    1. Maia J., Midão L., Cunha S.C., Almada M., Fonseca B.M., Braga J., Gonçalves D., Teixeira N., Correia-da-Silva G. Effects of cannabis tetrahydrocannabinol on endocannabinoid homeostasis in human placenta. Arch. Toxicol. 2019;93:649–658. doi: 10.1007/s00204-019-02389-7.
    1. McIntosh A.L., Martin G.G., Huang H., Landrock D., Kier A.B., Schroeder F. Δ9-Tetrahydrocannabinol induces endocannabinoid accumulation in mouse hepatocytes: Antagonism by Fabp1 gene ablation. J. Lipid Res. 2018;59:646–657. doi: 10.1194/jlr.M082644.
    1. De Petrocellis L., Ligresti A., Moriello A.S., Allarà M., Bisogno T., Petrosino S., Stott C.G., Di Marzo V. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 2011;163:1479–1494. doi: 10.1111/j.1476-5381.2010.01166.x.
    1. Cluny N.L., Keenan C.M., Reimer R.A., Le Foll B., Sharkey K.A. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. PLoS ONE. 2015;10:e0144270. doi: 10.1371/journal.pone.0144270.
    1. Wargent E.T., Zaibi M.S., Silvestri C., Hislop D.C., Stocker C.J., Stott C.G., Guy G.W., Duncan M., Di Marzo V., Cawthorne M.A. The cannabinoid Δ9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr. Diabetes. 2013;3:e68. doi: 10.1038/nutd.2013.9.
    1. Weiss L., Zeira M., Reich S., Har-Noy M., Mechoulam R., Slavin S., Gallily R. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity. 2006;39:143–151. doi: 10.1080/08916930500356674.
    1. Jadoon K.A., Ratcliffe S.H., Barrett D.A., Thomas E.L., Stott C., Bell J.D., O’Sullivan S.E., Tan G.D. Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study. Diabetes Care. 2016;39:1777–1786. doi: 10.2337/dc16-0650.
    1. Silvestri C., Paris D., Martella A., Melck D., Guadagnino I., Cawthorne M., Motta A., Di Marzo V. Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J. Hepatol. 2015;62:1382–1390. doi: 10.1016/j.jhep.2015.01.001.
    1. Le Bastard Q., Al-Ghalith G.A., Grégoire M., Chapelet G., Javaudin F., Dailly E., Batard E., Knights D., Montassier E. Systematic review: Human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther. 2018;47:332–345. doi: 10.1111/apt.14451.
    1. Panee J., Gerschenson M., Chang L. Associations between Microbiota, Mitochondrial Function, and Cognition in Chronic Marijuana Users. J. Neuroimmune Pharmacol. 2018;13:113–122. doi: 10.1007/s11481-017-9767-0.
    1. Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science. 2011;334:105–108. doi: 10.1126/science.1208344.
    1. Smit E., Crespo C.J. Dietary intake and nutritional status of US adult marijuana users: Results from the Third National Health and Nutrition Examination Survey. Public Health Nutr. 2001;4:781–786. doi: 10.1079/PHN2000114.
    1. Fulcher J.A., Hussain S.K., Cook R., Li F., Tobin N.H., Ragsdale A., Shoptaw S., Gorbach P.M., Aldrovandi G.M. Effects of Substance Use and Sex Practices on the Intestinal Microbiome During HIV-1 Infection. J. Infect. Dis. 2018;218:1560–1570. doi: 10.1093/infdis/jiy349.
    1. Yun Y., Kim H.-N., Kim S.E., Heo S.G., Chang Y., Ryu S., Shin H., Kim H.-L. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17:151. doi: 10.1186/s12866-017-1052-0.
    1. Ottosson F., Brunkwall L., Ericson U., Nilsson P.M., Almgren P., Fernandez C., Melander O., Orho-Melander M. Connection Between BMI-Related Plasma Metabolite Profile and Gut Microbiota. J. Clin. Endocrinol. Metab. 2018;103:1491–1501. doi: 10.1210/jc.2017-02114.
    1. Precup G., Vodnar D.-C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles-A comprehensive literature review. Br. J. Nutr. 2019:1–24. doi: 10.1017/S0007114519000680.
    1. Al-Ghezi Z.Z., Busbee P.B., Alghetaa H., Nagarkatti P.S., Nagarkatti M. Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav. Immun. 2019 doi: 10.1016/j.bbi.2019.07.028.
    1. Becker W.J., Nagarkatti M., Nagarkatti P.S. Δ9-tetrahydrocannabinol (THC) activation of cannabinoid receptors induces unique changes in the murine gut microbiome and associated induction of myeloid-derived suppressor cells and Th17 cells. J. Immunol. 2017;198:218.11.

Source: PubMed

3
Tilaa