Exposure of Infants to Isoniazid via Breast Milk After Maternal Drug Intake of Recommended Doses Is Clinically Insignificant Irrespective of Metaboliser Status. A Physiologically-Based Pharmacokinetic (PBPK) Modelling Approach to Estimate Drug Exposure of Infants via Breast-Feeding

Estella Dora Germaine Garessus, Hans Mielke, Ursula Gundert-Remy, Estella Dora Germaine Garessus, Hans Mielke, Ursula Gundert-Remy

Abstract

Isoniazid is a first-line anti-tuberculosis drug recommended for treatment of drug-susceptible Mycobacterium tuberculosis infections. Breast-feeding is not contra-indicated while undergoing isoniazid therapy, even though isoniazid was found to migrate into breast milk, leading to infant drug exposure. Exposure assessment of isoniazid in infants exposed to the drug via breast milk has so far not accounted for the polymorphic expression of the isoniazid metabolising enzyme N-acetyltransferase 2. The aim of this study was to re-visit the safety assessment of maternal isoniazid therapy for infants exposed to the drug via breast milk, while accounting for fast and slow metabolisers in the adult and infant population, as well as for slower metabolism in small infants than in adults. We applied a physiologically-based pharmacokinetic (PBPK) modelling approach to estimate mother and infant external and internal drug exposure non-invasively. Validity of our PBPK models was confirmed through comparison of simulated results with experimental data. Highest recommended oral doses for mothers are daily 300 mg or 900 mg every 3 days. Simulation of maternal intake of 300 mg resulted in oral exposures of 0.58 (95%CI: 0.42-0.69) mg/day and 1.49 (1.22-1.50) mg/day for infants of fast and slow metabolising mothers, respectively. Oral exposures of infants within the first 24 h after maternal intake of 900 mg were 1.75 (1.25-2.06) mg/day and 4.46 (4.00-4.50) mg/day. Maximal drug concentrations in infant plasma ranged between 0.04 and 0.78 mg/L for the two dosing regimens. We therefore conclude that infant exposure to isoniazid via breast milk after maternal drug intake of highest recommended doses is very low. We expect that such low exposure levels most likely do not cause any clinically significant adverse effects in nursed infants.

Keywords: PBPK; breast milk; exposure; infants; isoniazid; pharmacokinetics; tuberculosis.

Figures

FIGURE 1
FIGURE 1
Schematic representation of the physiologically-based pharmacokinetic (PBPK) models for the lactating woman and breast-fed infant.
FIGURE 2
FIGURE 2
Validation of the PBPK model of the mother. Simulated concentration-time profiles (black lines) in (1) plasma and (2) breast milk were compared with data points from lactating mothers from four different clinical studies (Lass and Bünger, 1953; Ricci and Copaitich, 1954; Berlin and Lee, 1979; Singh et al., 2007), which either administered (A) 300 mg (Ricci and Copaitich, 1954; Berlin and Lee, 1979; Singh et al., 2007) or (B) 200 mg (Lass and Bünger, 1953) to mothers. Green and blue shadows show 95% confidence intervals of simulated mean estimates for slow and fast metabolisers, respectively.
FIGURE 3
FIGURE 3
Validation of the PBPK model of the infant. Simulated pharmacokinetics after oral doses of 40 mg where compared with those reported by Rey et al. (2001), who administered 10 mg isoniazid/kg body weight (but did not report the weight of the children). Children in Rey et al. (2001)’s study where 42.5 months old on average (age range: 0.13–196 months). Points with error bars are means and standard errors of the respective means reported by Rey et al. (2001). Black lines show simulated mean concentration estimates with 95% confidence intervals.
FIGURE 4
FIGURE 4
Concentration-time profiles of isoniazid in (1) plasma of the mother, (2) breast milk, (3) plasma of the infant, and (4) oral doses of the child, for four different mother–infant pairs; (A) mother fast – infant fast, (B) mother fast – infant slow, (C) mother slow – infant fast, (D) mother slow – infant slow. Simulation of maternal oral doses of daily 300 mg, breast-feeding every 2 h, the first breast-feeding event taking place 2 h after drug intake by the mother (“Simulation 1”). Black lines show simulated results for mean clearance estimates. Blue shadows show simulation results for all clearance values laying within the 95% confidence interval of the mean clearance estimate.
FIGURE 5
FIGURE 5
Concentration-time profiles of isoniazid in (1) plasma of the mother, (2) breast milk, (3) plasma of the infant, and (4) oral doses of the child, for four different mother-infant pairs; (A) mother fast – infant fast, (B) mother fast – infant slow, (C) mother slow – infant fast, (D) mother slow – infant slow. Simulation of maternal oral doses of 900 mg, breast-feeding every 2 h, the first breast-feeding event taking place 2 h after drug intake by the mother (“Simulation 2”). Black lines show simulated results for mean clearance estimates. Blue shadows show simulation results for all clearance values laying within the 95% confidence interval of the mean clearance estimate.

References

    1. Adhikari M. (2009). Tuberculosis and tuberculosis/HIV co-infection in pregnancy. Semin. Fetal Neonatal Med. 14 234–240. 10.1016/j.siny.2009.02.001
    1. Anderson P. O., Sauberan J. B. (2016). Modeling drug passage into human milk. Clin. Pharmacol. Ther. 100 42–52. 10.1002/cpt.377
    1. Beiling L. J., Knight G. J., Mundro-Faure A. D., Anderson J. (1966). The sodium, potassium, and water contents of red blood cells of healthy human adults. J. Clin. Invest. 45 1817–1825. 10.1172/JCI105485
    1. Berlin C. M., Jr., Lee C. (1979). Isoniazid and acetylisoniazid disposition in human milk, saliva and plasma. Fed. Proc. 38:426.
    1. Bonicke R., Reif W. (1953). Enzymatic inactivation of isonicotinic acid hydrazide in human and animal organism. Archiv für Experimentelle Pathologie und Pharmakologie 220 321–323.
    1. Bornschein B. F. (2000). Aktivität Der N-Acetyltransferasen NAT1 und NAT2 in menschlichen Geweben. Ph.D. thesis, Neuherberg, Institut für Toxikologie und Umwelthygiene der Technischen Universität München.
    1. Byczkowski J. Z., Fisher J. W. (1995). A computer program linking physiologically based pharmacokinetic model with cancer risk assessment for breast-fed infants. Comput. Methods Programs Biomed. 46 155–163. 10.1016/0169-2607(94)01616-N
    1. Byczkowski J. Z., Lipscomb J. C. (2001). Physiologically based pharmacokinetic modelling and the lactational transfer of methylmercury. Risk Anal. 21 869–882. 10.1111/0272-4332.215158
    1. Centers for Disease Control and Prevention [CDC] (2014). Tuberculosis (TB). Pregnancy. TB and Pregnancy. Available at: Page last reviewed: November 16 2014. Page last updated: December 18 2014 [accessed November 14, 2017].
    1. Centers for Disease Control and Prevention (CDC). (2016). [internet]. Tuberculosis (TB). Latent tuberculosis infection: A Guide for Primary Health Care Providers. Available at: Page last reviewed: April 3 2016. Page last updated August 5 2016 [Accessed October 16, 2017].
    1. Cheng J., Krausz K. W., Li F., Ma X., Gonzalez F. J. (2013). CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid. Toxicol. Appl. Pharmacol. 266 245–253. 10.1016/j.taap.2012.10.024
    1. Clewell R. A., Gearhart J. M. (2002). Pharmacokinetics of toxic chemicals in breast milk: use of PBPK Models to predict infant exposure. Environ. Health Pers. 110 A333–A337. 10.1289/ehp.021100333
    1. Garessus E. D. G., Mielke H., Gundert-Remy U. (2018). Influence of fast and slow metabolizer status on the pharmacokinetics of isoniazid in lactating women and breast-fed infants. a physiologically-based pharmacokinetic (PBPK) modelling approach to estimate drug exposure via breast milk in infants. Naunyn-Schmiedeberg’s Arch. Pharmacol. 391(Suppl. 1), S75. 10.1007/s00210-018-147-75
    1. Hansch A. L., Hoekman D. (1995). Exploring QSAR: Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society.
    1. Hassan H. M., Guo H.-L., Yousef B. A., Luyong Z., Zhenzhou J. (2015). Hepatotoxicity mechanisms of isoniazid: a mini-review. J. Appl. Toxicol. 35 1427–1432. 10.1002/jat.3175
    1. Herrera A. M., Scott D. O., Lunte C. E. (1990). Microdialysis sampling for determination of plasma protein binding of drugs. Pharm. Res. 7 1077–1081. 10.1023/A:1015955503708
    1. ICRP. (2002). Basic Anatomical, and Physiological Data. (for )Use in Radiological Protection Reference Values. Ottawa: ICRP Publication.
    1. Jana N., Barik S., Arora N., Singh A. K. (2012). Tuberculosis in pregnancy: the challenges for south asian countries. J. Obstet. Gynaecol. Res. 38 1125–1136. 10.1111/j.1447-0756.2012.01856.x
    1. Jana N., Ghosh K., Sinha S., Gopalan S. (1996). The perinatal aspects of pulmonary tuberculosis. Fetal Matern. Med. Rev. 8 229–238. 10.1017/S0965539596000046
    1. Kent J. C., Mitoulas L. R., Cregan M. D., Ramsay D. T., Doherty D. A., Hartmann P. E. (2006). Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics 117 e387–e395. 10.1542/peds.2005-1417
    1. Lass A., Bünger P. (1953). Untersuchungen über die diffusion in den fetalen kreislauf, das fruchtwasser und die muttermilch. Klin. Wochenschr. 31 606–608. 10.1007/BF01477812
    1. Lawn S. D., Bekker L. G., Middelkoop K., Myer L., Wood R. (2006). Impact of HIV infection on the epidemiology of tuberculosis in a peri-urban community in south africa: the need for age-specific interventions. Clin. Infect. Dis. 42 1040–1047. 10.1086/501018
    1. Metushi I., Uetrecht J., Phillips E. (2016). Mechanism of isoniazid-induced hepatotoxicity: then and now. Br. J. Clin. Pharmacol. 81 1030–1036. 10.1111/bcp.1288
    1. Mittal H., Das S., Faridi M. M. A. (2014). Management of newborn infant born to mother suffering from tuberculosis: current recommendations & gaps in knowledge. Indian J. Med. Res. 140 32–39.
    1. Nahid P., Dorman S. E., Alipanah N., Barry P. M., Brozek J. L., Cattamanchi A., et al. (2016). Official american thoracic society/centers for disease control and prevention/infectious diseases society of america clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin. Infect. Dis. 63 e147–e195. 10.1093/cid/ciw376
    1. Partosch F., Mielke H., Stahlmann R., Gundert-Remy U. (2018). Exposure of nursed infants to maternal treatment with ethambutol and rifampicin. Basic Clin. Pharmacol. Toxicol. 123 213–220. 10.1111/bcpt.12995
    1. Perrin D. D. (1965). Dissociation Constants of Organic Bases in Aqueous Solutions [Book]. IUPAC Chemical Data Series No. 12. Pure and Applied Chemistry. London: Butterworths.
    1. Queensland Government. Department of Health. (2016). Guideline. Treatment of Tuberculosis in Pregnant Women and Newborn Infants. Version 3.1. Available at: [Accessed October 16, 2017].
    1. R Core Team (2017). R: A Language And Environment For Statistical Computing. Vienna: R Foundation for Statistical Computing.
    1. Rey E., Gendrel D., Treluyer J. M., Tran A., Pariente-Khayat A., d’Athis P., et al. (2001). Isoniazid pharmacokinetics in children according to acetylator phenotype. Fundam. Clin. Pharmacol. 15 355–359. 10.1046/j.1472-8206.2001.00044.x
    1. Ricci G., Copaitich T. (1954). Elimination of orally administered isoniazid in human milk. Rass. Clin. Ter. 53 209–214.
    1. Saktiawati A. M. I., Sturkenboom M. G. G., Stienstra Y., Subronto Y. W., Sumardi Kosterink J. G. W., et al. (2016). Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naïve TB patients: a randomized cross-over trial. J. Antimicrob. Chemother. 71 703–710. 10.1093/jac/dkv394
    1. Schaberg T., Rebhan K., Lode H. (1996). Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. Eur. Res. J. 9 2026–2030. 10.1183/09031963.96.09102026
    1. Schmitt W. (2008a). Corrigendum to: “general approach for the calculation of tissue to plasma partition coefficients”. Toxicol. vitro 22:1666 10.1016/j.tiv.2008.04.020
    1. Schmitt W. (2008b). General approach for the calculation of tissue to plasma partition coefficients. Toxicol. vitro 22 457–467. 10.1016/j.tiv.2007.09.010
    1. Shelley M. L., Andersen M. E., Fisher J. W. (1988). An inhalation distribution model for the lactating mother and nursing child. Toxicol. Lett. 43 23–29. 10.1016/0378-4274(88)90018-5
    1. Singh N., Golani A., Patel Z., Maitra A. (2007). Transfer of isoniazid from circulation to breast milk in lactating women on chronic therapy for tuberculosis. Br. J. Clin. Pharmacol. 65 418–422. 10.1111/j.1365-2125.2007.03061.x
    1. Soetaert K., Thomas Petzoldt R., Woodrow Setzer. (2010). Solving differential equations in r: package deSolve. J. Stat. Softw. 33 1–25. 10.18637/jss.v033.i09
    1. Spyridis N. P., Spyridis P. G., Gelesme A., Spysa V., Valianatou M., Metsou F., et al. (2007). The effectiveness of a 9-month regimen of isoniazid alone versus 3- and 4-month regimens of isoniazid plus rifampin for treatment of latent tuberculosis infections in children: result of an 11-year randomized study. Clin. Infect. Dis. 45 715–722. 10.1086/520983
    1. Steele M. A., Burk R. F. (1991). Toxic hepatitis with isoniazid and rifampin. a meta-analysis. Chest 99 465–471. 10.1378/chest.99.2.465
    1. Thompson M. D., Beard D. A. (2011). Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport. J. Pharmacokinet. Pharmacodyn. 38 405–421. 10.1007/s10928-011-9200-x
    1. Verner M.-A., Ayotte P., Muckle G., Charbonneau M., Haddad S. (2009). A physiologically based pharmacokinetic model for the assessment of infant exposure to persistent organic pollutants in epidemiological studies. Environ. Health Pers. 117 481–487. 10.1289/ehp.0800047
    1. Villarino M. E., Scott N. A., Weis S. E., Weiner M., Conde M. B., Jones B., et al. (2015). Treatment forpreventing tuberculosis in children and adolescnets. A randomized clinical trial of a 3-month,23-dose regimen of a combination of rifapentine and isoniazid. JAMA Petriatr. 169 247–255. 10.1001/jamapediatrics.2014.3158
    1. Vitello D. J., Ripper R. M., Fettiplace M. R., Weinberg G. L., Vitello J. M. (2015). Blood density is nearly equal to water density: a validation study of the gravimetric method of measuring intraoperative blood loss. J. Vet. 2015:152730. 10.1155/2015/152730
    1. Vorherr H. (1974). Drug excretion in breast milk. Postgrad. Med. 56 97–104. 10.1080/00325481.1974.11713872
    1. Walker K., Ginsberg G., Hattis D., Johns D. O., Guyton K. Z., Sonawane B. (2009). Genetic polymorphism in n-acetyltransferase (NAT): Population distribution of NAT1 and NAT2 Activity. J. Toxicol. Environ. Health 12 440–472. 10.1080/10937400903158383
    1. Wickham H. (2009). Ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag; 10.1007/978-0-387-98141-3
    1. Wilikins J. J., Langdon G., McIlleron H., Pillai G., Smith P. J., Simonsson U. S. H. (2011). Variability in the population of pharmacokinetics of isoniazid in South African tuberculosis patients. Br. J. Clin. Pharmacol. 21 51–62. 10.1111/j.1365-2125.2011.03940.x
    1. Windmill K. F., Gaedigk A., Hall P. M., Samaratunga H., Grant D. M., McManus M. E. (2000). Localization of N-Acetyltransferases NAT1 and NAT2 in human tissues. Toxicol. Sci. 54 19–29.
    1. World Health Organization [WHO] (2014). Treatment of TB in children. Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children. 2nd edition. Available at: [accessed June 23, 2018].
    1. World Health Organization [WHO] (2016). Global Tuberculosis Report 2016. Available at: [accessed June 6, 2017].
    1. World Health Organization [WHO] (2017). The top 10 causes of death. Fact sheet. Available at: [accessed September 8, 2017].
    1. Zeileis A., Grothendieck G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. J. Stat. Softw. 14 1–27. 10.18637/jss.v014.i06

Source: PubMed

3
Tilaa