Prevalence of metabolic syndrome among HIV-positive and HIV-negative populations in sub-Saharan Africa-a systematic review and meta-analysis

Olamide O Todowede, Solange Z Mianda, Benn Sartorius, Olamide O Todowede, Solange Z Mianda, Benn Sartorius

Abstract

Background: Metabolic syndrome (MetS) is a constellation of conditions that increase the risk of cardiovascular diseases. It is an emerging concern in sub-Saharan African (SSA) countries, particularly because of an increasingly aging population and lifestyle changes. There is an increased risk of MetS and its components among people living with Human immune deficiency syndrome (HIV) individuals; however, the prevalence of metabolic syndrome in the SSA population and its differential contribution by HIV status is not yet established. This systematic review and meta-analysis were conducted to estimate the pooled prevalence of metabolic syndrome in people living with HIV and uninfected populations, its variation by sub-components.

Methods: We performed a comprehensive search on major databases-MEDLINE (PubMed), EBSCOhost, and Cochrane Database of Systematic Reviews and Web of sciences for original epidemiological research articles that compared proportions of the MetS and its subcomponents between people living with HIV and uninfected patients and published between January 1990-December 2017. The inclusion criteria were adults aged ≥ 18 years, with confirmed HIV status. We assessed the risk of bias using a prevalence studies tool, and random effect meta-analyses were used to compute the pooled overall prevalence.

Results: A total of four cross-sectional studies comprising 496 HIV uninfected and 731 infected participants were included in the meta-analysis. The overall prevalence of MetS among people living with HIV was 21.5% (95% CI 15.09-26.86) versus uninfected 12.0% (95% CI 5.00-21.00%), with substantial heterogeneity. The reported relative risk estimate for MetS among the two groups was twofold (RR 1.83, 95% CI 0.98-3.41), with an estimated predictive interval of 0.15 to 22.43 and P = 0.055 higher for the infected population. Hypertension was the most prevalent MetS sub-components, with diverse proportions of people living with HIV (5.2-50.0%) and uninfected (10.0-59.0%) populations.

Conclusions: The high range of MetS prevalence in the HIV-infected population compared to the uninfected population highlights the possible presence of HIV related drivers of MetS. Also, the reported high rate of MetS, irrespective of HIV status, indicates a major metabolic disorder epidemic that requires urgent prevention and management programs in SSA. Similarly, in the era of universal test and treat strategy among people living with HIV cohorts, routine check-up of MetS sub-components is required in HIV management as biomarkers.

Systematic review registration: PROSPERO CRD42016045727.

Keywords: HIV-negative; HIV-positive; Metabolic syndrome; Sub-Saharan Africa.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not Applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram of study selection process
Fig. 2
Fig. 2
Map of Africa indicating the regions where the included studies were situated
Fig. 3
Fig. 3
Forest plot of the prevalence of metabolic syndrome in studies on HIV-positive subjects
Fig. 4
Fig. 4
Forest plot of the prevalence ratios of metabolic syndrome comparing HIV-positive to HIV-negative subjects

References

    1. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: 10.1007/s11906-018-0812-z.
    1. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin N Am. 2004;33(2):351–375. doi: 10.1016/j.ecl.2004.03.005.
    1. Gundogan K, Bayram F, Gedik V, Kaya A, Karaman A, Demir O, Sabuncu T, Kocer D, Coskun R. Metabolic syndrome prevalence according to ATP III and IDF criteria and related factors in Turkish adults. Arch Med Sci. 2013;9(2):243–253. doi: 10.5114/aoms.2013.34560.
    1. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19):1973–1974. doi: 10.1001/jama.2015.4260.
    1. Xiao J, Wu C-L, Gao Y-X, Wang S-L, Wang L, Lu Q-Y, Wang X-J, Hua T-Q, Shen H, Cai H. Prevalence of metabolic syndrome and its risk factors among rural adults in Nantong, China. Sci Rep. 2016;6:38089. doi: 10.1038/srep38089.
    1. Council NR, Population Co. The continuing epidemiological transition in sub-Saharan Africa: a workshop summary: National Academies Press; 2012. weblink: /
    1. Granich R, Gupta S, Hersh B, Williams B, Montaner J, Young B, Zuniga JM. Trends in AIDS deaths, new infections and ART coverage in the top 30 countries with the highest AIDS mortality burden; 1990–2013. PLoS One. 2015;10(7):e0131353. doi: 10.1371/journal.pone.0131353.
    1. Bygbjerg IC. Double burden of noncommunicable and infectious diseases in developing countries. Science. 2012;337(6101):1499–1501. doi: 10.1126/science.1223466.
    1. HIV/AIDS JUNPo . Fact sheet—latest statistics on the status of the AIDS epidemic. 2017.
    1. Chhoun P, Tuot S, Harries AD, Kyaw NTT, Pal K, Mun P, Brody C, Mburu G, Yi S. High prevalence of non-communicable diseases and associated risk factors amongst adults living with HIV in Cambodia. PLoS One. 2017;12(11):e0187591. doi: 10.1371/journal.pone.0187591.
    1. Hyle EP, Naidoo K, Su AE, El-Sadr WM, Freedberg KA. HIV, tuberculosis, and non-communicable diseases: what is known about the costs, effects, and cost-effectiveness of integrated care? J Acquir Immune Defic Syndr (1999) 2014;67(0 1):S87–S95. doi: 10.1097/QAI.0000000000000254.
    1. Nguyen KA, Peer N, Mills EJ, Kengne AP. A meta-analysis of the metabolic syndrome prevalence in the global HIV-infected population. PLoS One. 2016;11(3):e0150970. doi: 10.1371/journal.pone.0150970.
    1. Alvarez C, Salazar R, Galindez J, Rangel F, Castaaeda ML, Lopardo G, Cuhna CA, Roldan Y, Sussman O, Gutierrez G, et al. Metabolic syndrome in HIV-infected patients receiving antiretroviral therapy in Latin America. Braz J Infect Dis. 2010;14(3):256–263. doi: 10.1016/S1413-8670(10)70053-2.
    1. Bosho DD, Dube L, Mega TA, Adare DA, Tesfaye MG, Eshetie TC. Prevalence and predictors of metabolic syndrome among people living with human immunodeficiency virus (PLWHIV) Diabetol Metab Syndr. 2018;10:10. doi: 10.1186/s13098-018-0312-y.
    1. Mondy K, Overton ET, Grubb J, Tong S, Seyfried W, Powderly W, Yarasheski K. Metabolic syndrome in HIV-infected patients from an urban, midwestern US outpatient population. Clin Infect Dis. 2007;44(5):726–734. doi: 10.1086/511679.
    1. Jones CY. Metabolic syndrome in HIV-infected patients: no different than the general population? Clin Infect Dis. 2007;44(5):735–738. doi: 10.1086/511691.
    1. Freitas P, Carvalho D, Souto S, Santos AC, Xerinda S, Marques R, Martinez E, Sarmento A, Medina JL. Impact of lipodystrophy on the prevalence and components of metabolic syndrome in HIV-infected patients. BMC Infect Dis. 2011;11(1):246. doi: 10.1186/1471-2334-11-246.
    1. Samaras K, Wand H, Law M, Emery S, Cooper D, Carr A. Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using International Diabetes Foundation and Adult Treatment Panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reactive protein, and hypoadiponectinemia. Diabetes Care. 2007;30(1):113–119. doi: 10.2337/dc06-1075.
    1. Todowede OO, Sartorius B. Prevalence of metabolic syndrome, discrete or comorbid diabetes and hypertension in sub-Saharan Africa among people living with HIV versus HIV-negative populations: a systematic review and meta-analysis protocol. BMJ Open. 2017;7(7):e016602. doi: 10.1136/bmjopen-2017-016602.
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Armijo-Olivo S, Stiles CR, Hagen NA, Biondo PD, Cummings GG. Assessment of study quality for systematic reviews: a comparison of the Cochrane Collaboration Risk of Bias Tool and the Effective Public Health Practice Project Quality Assessment Tool: methodological research. J Eval Clin Pract. 2012;18(1):12–18. doi: 10.1111/j.1365-2753.2010.01516.x.
    1. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, Baker P, Smith E, Buchbinder R. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934–939. doi: 10.1016/j.jclinepi.2011.11.014.
    1. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857–872. doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>;2-E.
    1. Gumedze FN, Jackson D. A random effects variance shift model for detecting and accommodating outliers in meta-analysis. BMC Med Res Methodol. 2011;11(1):19. doi: 10.1186/1471-2288-11-19.
    1. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67(11):974–978. doi: 10.1136/jech-2013-203104.
    1. Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72(1):39. doi: 10.1186/2049-3258-72-39.
    1. Zannou DM, Denoeud L, Lacombe K, Amoussou-Guenou D, Bashi J, Akakpo J, Gougounon A, Akonde A, Ade G, Houngbe F, et al. Incidence of lipodystrophy and metabolic disorders in patients starting non-nucleoside reverse transcriptase inhibitors in Benin. Antivir Ther. 2009;14(3):371–380.
    1. Sobieszczyk ME, Werner L, Mlisana K, Naicker N, Feinstein A, Gray CM, Masson L, Passmore JAS, Williamson C, Karim QA, et al. Metabolic syndrome after HIV acquisition in South African women. JAIDS. 2016;73(4):438–445.
    1. Guehi C, Badje A, Gabillard D, Ouattara E, Koule SO, Moh R, Ekouevi D, Ahibo H, N'Takpe JB, Menan GK, et al. High prevalence of being overweight and obese HIV-infected persons, before and after 24 months on early ART in the ANRS 12136 Temprano Trial. AIDS Res Ther. 2016;13:12. doi: 10.1186/s12981-016-0094-y.
    1. Guira O, Tieno H, Diendere AE, Sagna Y, Diallo I, Yameogo B, Zoungrana L, Yameogo TM, Bognounou R, Drabo JY. Features of metabolic syndrome and its associated factors during highly active antiretroviral therapy in Ouagadougou (Burkina Faso) J Int Assoc Provid AIDS Care. 2016;15(2):159–163. doi: 10.1177/2325957415601503.
    1. Ayodele OE, Akinboro AO, Akinyemi SO, Adepeju AA, Akinremi OA, Alao CA, Popoola AA. Prevalence and clinical correlates of metabolic syndrome in Nigerians living with human immunodeficiency virus/acquired immunodeficiency syndrome. Metab Syndr Relat Disord. 2012;10(5):373–379. doi: 10.1089/met.2012.0050.
    1. Amusa G, Awokola B, Isiguzo G, Onuh J, Uguru S, Oke D, Danbauchi S, Okeahialam B. OS 37-02 hypertension in HIV-infected adults in north-central Nigeria: prevalence, associated risk factors and assessment of risk using the Framingham risk score. J Hypertens. 2016;34(Suppl 1):ISH 2016.
    1. Berhane T, Yami A, Alemseged F, Yemane T, Hamza L, Kassim M, Deribe K. Prevalence of lipodystrophy and metabolic syndrome among HIV positive individuals on Highly Active Anti-Retroviral treatment in Jimma, South West Ethiopia. Pan Afr Med J. 2012;13:43.
    1. Fourie CMT, Van Rooyen JM, Kruger A, Schutte AE. Lipid abnormalities in a never-treated HIV-1 subtype C-infected African population. Lipids. 2010;45(1):73–80. doi: 10.1007/s11745-009-3369-4.
    1. Hirigo AT, Tesfaye DY. Influences of gender in metabolic syndrome and its components among people living with HIV virus using antiretroviral treatment in Hawassa, southern Ethiopia. BMC Res Notes. 2016;9:145. doi: 10.1186/s13104-016-1953-2.
    1. Mashinya F, Alberts M, Van Geertruyden JP, Colebunders R. Assessment of cardiovascular risk factors in people with HIV infection treated with ART in rural South Africa: a cross sectional study. AIDS Res Ther. 2015;12:42. doi: 10.1186/s12981-015-0083-6.
    1. Mbunkah HA, Meriki HD, Kukwah AT, Nfor O, Nkuo-Akenji T. Prevalence of metabolic syndrome in human immunodeficiency virus - infected patients from the South-West region of Cameroon, using the adult treatment panel III criteria. Diabetol Metab Syndr. 2014;6(1):92. doi: 10.1186/1758-5996-6-92.
    1. Muyanja D, Muzoora C, Muyingo A, Muyindike W, Siedner MJ. High prevalence of metabolic syndrome and cardiovascular disease risk among people with HIV on stable ART in southwestern Uganda. AIDS Patient Care STDs. 2016;30(1):4–10. doi: 10.1089/apc.2015.0213.
    1. Ngatchou W, Lemogoum D, Ndobo P, Yagnigni E, Tiogou E, Nga E, Kouanfack C, van de Borne P, Hermans MP. Increased burden and severity of metabolic syndrome and arterial stiffness in treatment-naive HIV+ patients from Cameroon. Vasc Health Risk Manag. 2013;9:509–516. doi: 10.2147/VHRM.S42350.
    1. Obirikorang C, Quaye L, Osei-Yeboah J, Odame EA, Asare I. Prevalence of metabolic syndrome among HIV-infected patients in Ghana: a cross-sectional study. Niger Med J. 2016;57(2):86–90. doi: 10.4103/0300-1652.182082.
    1. Tesfaye DY, Kinde S, Medhin G, Megerssa YC, Tadewos A, Tadesse E, Shimelis T. Burden of metabolic syndrome among HIV-infected patients in southern Ethiopia. Diabetes Metab Syndr. 2014;8(2):102–107. doi: 10.1016/j.dsx.2014.04.008.
    1. Sawadogo M, Sakande J, Kabré E, Sougue M. Annales de biologie clinique: 2005. 2005. Plasma lipids profile of non treated HIV infected adults in Ouagadougou (Burkina Faso) pp. 507–512.
    1. Adébayo A, Albert DC, Ericie S, Angelo AC, Jules G, Armand W, Séraphin A, Léopold C, Gabriel A. Prevalence, associated and predisposing factors of metabolic syndrome among people living with HIV on antiretroviral treatment in Porto Novo in 2014. Pan Afr Med J. 2015;22:296. doi: 10.11604/pamj.2015.22.296.7923.
    1. Muhammad S, Sani MU, Okeahialam BN. Cardiovascular disease risk factors among HIV-infected Nigerians receiving highly active antiretroviral therapy. Niger Med J. 2013;54(3):185. doi: 10.4103/0300-1652.114591.
    1. Okafor CI. The metabolic syndrome in Africa: current trends. Indian J Endocrinol Metab. 2012;16(1):56–66. doi: 10.4103/2230-8210.91191.
    1. Paula AA, Falcão MCN, Pacheco AG. Metabolic syndrome in HIV-infected individuals: underlying mechanisms and epidemiological aspects. AIDS Res Ther. 2013;10:32. doi: 10.1186/1742-6405-10-32.
    1. Moreira GC, Cipullo JP, Ciorlia LAS, Cesarino CB, Vilela-Martin JF. Prevalence of metabolic syndrome: association with risk factors and cardiovascular complications in an urban population. PLoS One. 2014;9(9):e105056. doi: 10.1371/journal.pone.0105056.
    1. Jericó C, Knobel H, Montero M, Ordoñez-Llanos J, Guelar A, Gimeno JL, Saballs P, López-Colomés JL, Pedro-Botet J. Metabolic syndrome among HIV-infected patients: prevalence, characteristics, and related factors. Diabetes Care. 2005;28(1):132–137. doi: 10.2337/diacare.28.1.132.
    1. Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE, Prins M, Reiss P. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis. 2014;59(12):1787–1797. doi: 10.1093/cid/ciu701.
    1. Huis In ‘t Veld D, Pengpid S, Colebunders R, Peltzer K. Body mass index and waist circumference in patients with HIV in South Africa and associated socio-demographic, health related and psychosocial factors. AIDS Behav. 2018;22(6):1972–86.
    1. Balt CA. Hypertension and HIV infection. J Assoc Nurses AIDS Care. 2013;24(1 Suppl):S127–S134. doi: 10.1016/j.jana.2012.06.012.
    1. Dimala CA, Atashili J, Mbuagbaw JC, Wilfred A, Monekosso GL. Prevalence of hypertension in HIV/AIDS patients on highly active antiretroviral therapy (HAART) compared with HAART-naïve patients at the Limbe Regional Hospital, Cameroon. PLoS One. 2016;11(2):e0148100. doi: 10.1371/journal.pone.0148100.
    1. Palacios R, Santos J, Gonzalez M, Ruiz J, Marquez M. Incidence and prevalence of the metabolic syndrome in a cohort of naive HIV-infected patients: prospective analysis at 48 weeks of highly active antiretroviral therapy. Int J STD AIDS. 2007;18(3):184–187. doi: 10.1258/095646207780132415.

Source: PubMed

3
Tilaa