Role of autotaxin in systemic lupus erythematosus

Yumi Tsuchida, Hirofumi Shoda, Tetsuji Sawada, Keishi Fujio, Yumi Tsuchida, Hirofumi Shoda, Tetsuji Sawada, Keishi Fujio

Abstract

Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease characterized by the production of various autoantibodies and deposition of immune complexes. SLE is a heterogenous disease, and the pattern of organ involvement and response to treatment differs significantly among patients. Novel biological markers are necessary to assess the extent of organ involvement and predict treatment response in SLE. Lysophosphatidic acid is a lysophospholipid involved in various biological processes, and autotaxin (ATX), which catalyzes the production of lysophosphatidic acid in the extracellular space, has gained attention in various diseases as a potential biomarker. The concentration of ATX is increased in the serum and urine of patients with SLE and lupus nephritis. Recent evidence suggests that ATX produced by plasmacytoid dendritic cells may play an important role in the immune system and pathogenesis of SLE. Furthermore, the production of ATX is associated with type I interferons, a key cytokine in SLE pathogenesis, and ATX may be a potential biomarker and key molecule in SLE.

Keywords: SLE; autotaxin (ATX); lysophosphatidic acid; lysophospholipids; type I interferons.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Tsuchida, Shoda, Sawada and Fujio.

Figures

Figure 1
Figure 1
An Overview of ATX. (A) The ATX-LPA axis: ATX is a lysophospholipase that mainly catalyzes the production of LPA from lysoglycerophospholipids, such as lysophosphatidylcholine. (LPC, lysophosphatidylcholine; ATX, autotaxin; LPA, lysophosphatidic acid; LPAR, LPA receptor). (B) Regulation of ATX expression: the expression of ATX is induced by TNF, IL-6, LPS, and type I interferons and inhibited by LPA. (TNF, tumor necrosis factor; IL-6, interleukin-6; LPS, lipopolysaccharide). (C) ATX and the pathogenesis of SLE: pDCs are activated by TLR7 and TLR9 signals, resulting in the production of type I interferons. Type I interferons induce the production of ATX and thus the production of LPA. This results in the activation of mDCs, which present autoantigens to T cells and activate them. Together, this leads to the maturation of B cells and the production of autoantibodies. Immune complexes further enhance the activation of pDCs, resulting in a positive feedback loop, contributing to the organ damage in SLE (pDC, plasmacytoid dendritic cell; TLR, toll-like receptors; mDC, myeloid dendritic cell).

References

    1. Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. (2002) 29:288–91.
    1. Choi MY, FitzPatrick RD, Buhler K, Mahler M, Fritzler MJ. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun Rev. (2020) 19:102463. doi: 10.1016/j.autrev.2020.102463, PMID:
    1. Arriens C, Wren JD, Munroe ME, Mohan C. Systemic lupus erythematosus biomarkers: the challenging quest. Rheumatology. (2017) 56:i32–45. doi: 10.1093/rheumatology/kew407
    1. Gupta R, Yadav A, Aggarwal A. Longitudinal assessment of monocyte chemoattractant protein-1 in lupus nephritis as a biomarker of disease activity. Clin Rheumatol. (2016) 35:2707–14. doi: 10.1007/s10067-016-3404-9, PMID:
    1. Lan L, Han F, Lang X, Chen J. Monocyte chemotactic Protein-1, Fractalkine, and receptor for advanced glycation end products in different pathological types of lupus nephritis and their value in different treatment prognoses. PLoS One. (2016) 11:e0159964. doi: 10.1371/journal.pone.0159964, PMID:
    1. Brunner HI, Bennett MR, Mina R, Suzuki M, Petri M, Kiani AN, et al. . Association of noninvasively measured renal protein biomarkers with histologic features of lupus nephritis. Arthritis Rheum. (2012) 64:2687–97. doi: 10.1002/art.34426, PMID:
    1. Ytterberg SR, Schnitzer TJ. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum. (1982) 25:401–6. doi: 10.1002/art.1780250407
    1. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med. (1979) 301:5–8. doi: 10.1056/NEJM197907053010102
    1. Maher TM, Kreuter M, Lederer DJ, Brown KK, Wuyts W, Verbruggen N, et al. . Rationale, design and objectives of two phase III, randomised, placebo-controlled studies of GLPG1690, a novel autotaxin inhibitor, in idiopathic pulmonary fibrosis (ISABELA 1 and 2). BMJ Open Respir Res. (2019) 6:e000422. doi: 10.1136/bmjresp-2019-000422, PMID:
    1. Tang X, Wuest M, Benesch MGK, Dufour J, Zhao Y, Curtis JM, et al. . Inhibition of Autotaxin with GLPG1690 increases the efficacy of radiotherapy and chemotherapy in a mouse model of breast cancer. Mol Cancer Ther. (2020) 19:63–74. doi: 10.1158/1535-7163.MCT-19-0386, PMID:
    1. Iwaki Y, Ohhata A, Nakatani S, Hisaichi K, Okabe Y, Hiramatsu A, et al. . ONO-8430506: a novel Autotaxin inhibitor that enhances the antitumor effect of paclitaxel in a breast cancer model. ACS Med Chem Lett. (2020) 11:1335–41. doi: 10.1021/acsmedchemlett.0c00200, PMID:
    1. Tan ST, Ramesh T, Toh XR, Nguyen LN. Emerging roles of lysophospholipids in health and disease. Prog Lipid Res. (2020) 80:101068. doi: 10.1016/j.plipres.2020.101068, PMID:
    1. Zhang X, Li M, Yin N, Zhang J. The expression regulation and biological function of Autotaxin. Cells. (2021) 10:939. doi: 10.3390/cells10040939
    1. Dusaulcy R, Rancoule C, Grès S, Wanecq E, Colom A, Guigné C, et al. . Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. J Lipid Res. (2011) 52:1247–55. doi: 10.1194/jlr.M014985, PMID:
    1. Magkrioti C, Galaris A, Kanellopoulou P, Stylianaki EA, Kaffe E, Aidinis V. Autotaxin and chronic inflammatory diseases. J Autoimmun. (2019) 104:102327. doi: 10.1016/j.jaut.2019.102327, PMID:
    1. Ntatsoulis K, Karampitsakos T, Tsitoura E, Stylianaki EA, Matralis AN, Tzouvelekis A, et al. . Commonalities between ARDS, pulmonary fibrosis and COVID-19: the potential of Autotaxin as a therapeutic target. Front Immunol. (2021) 12:687397. doi: 10.3389/fimmu.2021.687397, PMID:
    1. Fulkerson Z, Wu T, Sunkara M, Kooi CV, Morris AJ, Smyth SS. Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. J Biol Chem. (2011) 286:34654–63. doi: 10.1074/jbc.M111.276725, PMID:
    1. Song J, Guan M, Zhao Z, Zhang J. Type I interferons function as autocrine and paracrine factors to induce Autotaxin in response to TLR activation. PLoS One. (2015) 10:e0136629. doi: 10.1371/journal.pone.0136629, PMID:
    1. Kano K, Matsumoto H, Kono N, Kurano M, Yatomi Y, Aoki J. Suppressing postcollection lysophosphatidic acid metabolism improves the precision of plasma LPA quantification. J Lipid Res. (2021) 62:100029. doi: 10.1016/j.jlr.2021.100029, PMID:
    1. Nakamura K, Kishimoto T, Ohkawa R, Okubo S, Tozuka M, Yokota H, et al. . Suppression of lysophosphatidic acid and lysophosphatidylcholine formation in the plasma in vitro: proposal of a plasma sample preparation method for laboratory testing of these lipids. Anal Biochem. (2007) 367:20–7. doi: 10.1016/j.ab.2007.05.004, PMID:
    1. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, et al. . Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. (1998) 280:719–23. doi: 10.1001/jama.280.8.719, PMID:
    1. Hosogaya S, Yatomi Y, Nakamura K, Ohkawa R, Okubo S, Yokota H, et al. . Measurement of plasma lysophosphatidic acid concentration in healthy subjects: strong correlation with lysophospholipase D activity. Ann Clin Biochem. (2008) 45:364–8. doi: 10.1258/acb.2008.007242, PMID:
    1. Watanabe N, Ikeda H, Nakamura K, Ohkawa R, Kume Y, Aoki J, et al. . Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. J Clin Gastroenterol. (2007) 41:616–23. doi: 10.1097/01.mcg.0000225642.90898.0e, PMID:
    1. Masuda A, Nakamura K, Izutsu K, Igarashi K, Ohkawa R, Jona M, et al. . Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br J Haematol. (2008) 143:60–70. doi: 10.1111/j.1365-2141.2008.07325.x, PMID:
    1. Masuda A, Fujii T, Iwasawa Y, Nakamura K, Ohkawa R, Igarashi K, et al. . Serum autotaxin measurements in pregnant women: application for the differentiation of normal pregnancy and pregnancy-induced hypertension. Clin Chim Acta. (2011) 412:1944–50. doi: 10.1016/j.cca.2011.06.039, PMID:
    1. Sumida H, Nakamura K, Yanagida K, Ohkawa R, Asano Y, Kadono T, et al. . Decrease in circulating autotaxin by oral administration of prednisolone. Clin Chim Acta. (2013) 415:74–80. doi: 10.1016/j.cca.2012.10.003, PMID:
    1. Iwata Y, Kitajima S, Yamahana J, Shimomura S, Yoneda-Nakagawa S, Sakai N, et al. . Higher serum levels of autotaxin and phosphatidylserine-specific phospholipase a (1) in patients with lupus nephritis. Int J Rheum Dis. (2021) 24:231–9. doi: 10.1111/1756-185X.14031, PMID:
    1. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, et al. . Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem. (1992) 267:2524–9. doi: 10.1016/S0021-9258(18)45911-X, PMID:
    1. She S, Zhang Q, Shi J, Yang F, Dai K. Roles of Autotaxin/Autotaxin-lysophosphatidic acid Axis in the initiation and progression of liver cancer. Front Oncol. (2022) 12:922945. doi: 10.3389/fonc.2022.922945, PMID:
    1. Shimura T, Kurano M, Morita Y, Yoshikawa N, Nishikawa M, Igarashi K, et al. . Autotaxin and soluble IL-2 receptor concentrations in cerebrospinal fluids are useful for the diagnosis of central nervous system invasion caused by haematological malignancies. Ann Clin Biochem. (2019) 56:240–6. doi: 10.1177/0004563218818197, PMID:
    1. Takemura K, Takizawa E, Tamori A, Nakamae M, Kubota H, Uchida-Kobayashi S, et al. . Association of serum autotaxin levels with liver fibrosis in patients pretreatment and posttreatment with chronic hepatitis C. J Gastroenterol Hepatol. (2021) 36:217–24. doi: 10.1111/jgh.15114, PMID:
    1. Fujimori N, Umemura T, Kimura T, Tanaka N, Sugiura A, Yamazaki T, et al. . Serum autotaxin levels are correlated with hepatic fibrosis and ballooning in patients with non-alcoholic fatty liver disease. World J Gastroenterol. (2018) 24:1239–49. doi: 10.3748/wjg.v24.i11.1239, PMID:
    1. Ikeda H, Kobayashi M, Kumada H, Enooku K, Koike K, Kurano M, et al. . Performance of autotaxin as a serum marker for liver fibrosis. Ann Clin Biochem. (2018) 55:469–77. doi: 10.1177/0004563217741509, PMID:
    1. Ikeda H, Yatomi Y. Autotaxin in liver fibrosis. Clin Chim Acta. (2012) 413:1817–21. doi: 10.1016/j.cca.2012.07.014
    1. Tripathi H, Al-Darraji A, Abo-Aly M, Peng H, Shokri E, Chelvarajan L, et al. . Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol. (2020) 149:95–114. doi: 10.1016/j.yjmcc.2020.09.011, PMID:
    1. Maher TM, van der Aar EM, Van de Steen O, Allamassey L, Desrivot J, Dupont S, et al. . Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomised placebo-controlled trial. Lancet Respir Med. (2018) 6:627–35. doi: 10.1016/S2213-2600(18)30181-4, PMID:
    1. Castelino FV, Bain G, Pace VA, Black KE, George L, Probst CK, et al. . An Autotaxin/lysophosphatidic acid/Interleukin-6 amplification loop drives scleroderma fibrosis. Arthritis Rheumatol. (2016) 68:2964–74. doi: 10.1002/art.39797, PMID:
    1. Khanna D, Denton CP, Furst DE, Mayes MD, Matucci-Cerinic M, Smith V, et al. . A 24-week, phase IIa, randomized, double-blind, placebo-controlled study of Ziritaxestat in early diffuse cutaneous systemic sclerosis (NOVESA). Arthritis Rheumatol. (2023) inpress. doi: 10.1002/art.42477
    1. Nikitopoulou I, Oikonomou N, Karouzakis E, Sevastou I, Nikolaidou-Katsaridou N, Zhao Z, et al. . Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. J Exp Med. (2012) 209:925–33. doi: 10.1084/jem.20112012, PMID:
    1. Miyabe Y, Miyabe C, Iwai Y, Takayasu A, Fukuda S, Yokoyama W, et al. . Necessity of lysophosphatidic acid receptor 1 for development of arthritis. Arthritis Rheum. (2013) 65:2037–47. doi: 10.1002/art.37991, PMID:
    1. Huang X, Dorta-Estremera S, Yao Y, Shen N, Cao W. Predominant role of Plasmacytoid dendritic cells in stimulating systemic autoimmunity. Front Immunol. (2015) 6:526. doi: 10.3389/fimmu.2015.00526
    1. Lövgren T, Eloranta ML, Båve U, Alm GV, Rönnblom L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. (2004) 50:1861–72. doi: 10.1002/art.20254, PMID:
    1. Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol. (2022) 18:575–90. doi: 10.1038/s41584-022-00826-z, PMID:
    1. Liu J, Zhang X, Cao X. Dendritic cells in systemic lupus erythematosus: from pathogenesis to therapeutic applications. J Autoimmun. (2022) 132:102856. doi: 10.1016/j.jaut.2022.102856, PMID:
    1. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science. (2001) 294:1540–3. doi: 10.1126/science.1064890, PMID:
    1. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity. (2003) 19:225–34. doi: 10.1016/S1074-7613(03)00208-5, PMID:
    1. Poeck H, Wagner M, Battiany J, Rothenfusser S, Wellisch D, Hornung V, et al. . Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood. (2004) 103:3058–64. doi: 10.1182/blood-2003-08-2972, PMID:
    1. Soni C, Perez OA, Voss WN, Pucella JN, Serpas L, Mehl J, et al. . Plasmacytoid dendritic cells and type I interferon promote Extrafollicular B cell responses to extracellular self-DNA. Immunity. (2020) 52:1022–38.e7. doi: 10.1016/j.immuni.2020.04.015, PMID:
    1. Tsuchida Y, Shoda H, Nakano M, Ota M, Okamura T, Yamamoto K, et al. . Autotaxin is a potential link between genetic risk factors and immunological disturbances of plasmacytoid dendritic cells in systematic lupus erythematosus. Lupus. (2022) 31:1578–85. doi: 10.1177/09612033221128494, PMID:
    1. Nikitopoulou I, Fanidis D, Ntatsoulis K, Moulos P, Mpekoulis G, Evangelidou M, et al. . Increased Autotaxin levels in severe COVID-19, correlating with IL-6 levels, endothelial dysfunction biomarkers, and impaired functions of dendritic cells. Int J Mol Sci. (2021) 22:10006. doi: 10.3390/ijms221810006, PMID:
    1. Grzes KM, Sanin DE, Kabat AM, Stanczak MA, Edwards-Hicks J, Matsushita M, et al. . Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity. (2021) 54:2514–30.e7. doi: 10.1016/j.immuni.2021.10.009, PMID:
    1. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. (2008) 9:559. doi: 10.1186/1471-2105-9-559, PMID:
    1. Kariuki SN, Franek BS, Kumar AA, Arrington J, Mikolaitis RA, Utset TO, et al. . Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res Ther. (2010) 12:R151. doi: 10.1186/ar3101, PMID:
    1. Kwant LE, Vegting Y, Tsang ASMWP, Kwakernaak AJ, Vogt L, Voskuyl AE, et al. . Macrophages in lupus nephritis: exploring a potential new therapeutic avenue. Autoimmun Rev. (2022) 21:103211. doi: 10.1016/j.autrev.2022.103211, PMID:
    1. Panther E, Idzko M, Corinti S, Ferrari D, Herouy Y, Mockenhaupt M, et al. . The influence of lysophosphatidic acid on the functions of human dendritic cells. J Immunol. (2002) 169:4129–35. doi: 10.4049/jimmunol.169.8.4129, PMID:
    1. Lee JH, Choi SY, Park SY, Jung NC, Noh KE, Nam JH, et al. . Enpp2 expression by dendritic cells is a key regulator in migration. Biomedicine. (2021) 9:1727 doi: 10.3390/biomedicines9111727, PMID:
    1. Chen R, Roman J, Guo J, West E, McDyer J, Williams MA, et al. . Lysophosphatidic acid modulates the activation of human monocyte-derived dendritic cells. Stem Cells Dev. (2006) 15:797–804. doi: 10.1089/scd.2006.15.797, PMID:
    1. Kanda H, Newton R, Klein R, Morita Y, Gunn MD, Rosen SD. Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nat Immunol. (2008) 9:415–23. doi: 10.1038/ni1573, PMID:
    1. Zhang Y, Chen YC, Krummel MF, Rosen SD. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J Immunol. (2012) 189:3914–24. doi: 10.4049/jimmunol.1201604, PMID:
    1. Knowlden SA, Capece T, Popovic M, Chapman TJ, Rezaee F, Kim M, et al. . Regulation of T cell motility in vitro and in vivo by LPA and LPA2. PLoS One. (2014) 9:e101655. doi: 10.1371/journal.pone.0101655, PMID:
    1. Katakai T, Kondo N, Ueda Y, Kinashi T. Autotaxin produced by stromal cells promotes LFA-1-independent and rho-dependent interstitial T cell motility in the lymph node paracortex. J Immunol. (2014) 193:617–26. doi: 10.4049/jimmunol.1400565, PMID:
    1. Kremer KN, Buser A, Thumkeo D, Narumiya S, Jacobelli J, Pelanda R, et al. . LPA suppresses T cell function by altering the cytoskeleton and disrupting immune synapse formation. Proc Natl Acad Sci U S A. (2022) 119:e2118816119. doi: 10.1073/pnas.2118816119, PMID:
    1. Lin S, Haque A, Raeman R, Guo L, He P, Denning TL, et al. . Autotaxin determines colitis severity in mice and is secreted by B cells in the colon. FASEB J. (2019) 33:3623–35. doi: 10.1096/fj.201801415RR, PMID:
    1. Hu J, Oda SK, Shotts K, Donovan EE, Strauch P, Pujanauski LM, et al. . Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response. J Immunol. (2014) 193:85–95. doi: 10.4049/jimmunol.1300429, PMID:
    1. Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun. (2022) 132:102870. doi: 10.1016/j.jaut.2022.102870, PMID:
    1. Olferiev M, Jacek E, Kirou KA, Crow MK. Novel molecular signatures in mononuclear cell populations from patients with systemic lupus erythematosus. Clin Immunol. (2016) 172:34–43. doi: 10.1016/j.clim.2016.08.018, PMID:
    1. Udhaya Kumar S, Thirumal Kumar D, Siva R, George Priya Doss C, Younes S, Younes N, et al. . Dysregulation of signaling pathways due to differentially expressed genes from the B-cell transcriptomes of systemic lupus erythematosus patients—a bioinformatics approach. Front Bioeng Biotechnol. (2020) 8:276. doi: 10.3389/fbioe.2020.00276
    1. Yurkovich M, Vostretsova K, Chen W, Aviña-Zubieta JA. Overall and cause-specific mortality in patients with systemic lupus erythematosus: a meta-analysis of observational studies. Arthritis Care Res. (2014) 66:608–16. doi: 10.1002/acr.22173, PMID:
    1. Lee YH, Choi SJ, Ji JD, Song GG. Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus. (2016) 25:727–34. doi: 10.1177/0961203315627202, PMID:
    1. Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. . EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. (2019) 78:1296–304. doi: 10.1136/annrheumdis-2019-215213, PMID:
    1. Hasse S, Julien AS, Duchez AC, Zhao C, Boilard E, Fortin PR, et al. . Red blood cell-derived phosphatidylserine positive extracellular vesicles are associated with past thrombotic events in patients with systemic erythematous lupus. Lupus Sci Med. (2022) 9:e000605. doi: 10.1136/lupus-2021-000605, PMID:
    1. Kuwajima K, Sumitani M, Kurano M, Kano K, Nishikawa M, Uranbileg B, et al. . Lysophosphatidic acid is associated with neuropathic pain intensity in humans: an exploratory study. PLoS One. (2018) 13:e0207310. doi: 10.1371/journal.pone.0207310, PMID:
    1. Uranbileg B, Ito N, Kurano M, Kano K, Uchida K, Sumitani M, et al. . Inhibition of autotaxin activity ameliorates neuropathic pain derived from lumbar spinal canal stenosis. Sci Rep. (2021) 11:3984. doi: 10.1038/s41598-021-83569-3, PMID:
    1. Nichilatti LP, Fernandes JM, Marques CP. Physiopathology of pain in systemic erythematosus lupus. Lupus. (2020) 29:721–6. doi: 10.1177/0961203320919872, PMID:
    1. Cornet A, Andersen J, Myllys K, Edwards A, Arnaud L. Living with systemic lupus erythematosus in 2020: a European patient survey. Lupus Sci Med. (2021) 8:e000469. doi: 10.1136/lupus-2020-000469, PMID:
    1. Morita Y, Kurano M, Morita E, Shimamoto S, Igarashi K, Sawabe M, et al. . Urinary autotaxin concentrations are associated with kidney injury. Clin Chim Acta. (2020) 509:156–65. doi: 10.1016/j.cca.2020.06.019, PMID:
    1. Murakami K, Tamada T, Saigusa D, Miyauchi E, Nara M, Ichinose M, et al. . Urine autotaxin levels reflect the disease activity of sarcoidosis. Sci Rep. (2022) 12:4372. doi: 10.1038/s41598-022-08388-6, PMID:
    1. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. . Trial of Anifrolumab in active systemic lupus erythematosus. N Engl J Med. (2020) 382:211–21. doi: 10.1056/NEJMoa1912196
    1. Vital EM, Merrill JT, Morand EF, Furie RA, Bruce IN, Tanaka Y, et al. . Anifrolumab efficacy and safety by type I interferon gene signature and clinical subgroups in patients with SLE: post hoc analysis of pooled data from two phase III trials. Ann Rheum Dis. (2022) 81:951–61. doi: 10.1136/annrheumdis-2021-221425, PMID:
    1. Nakamura K, Igarashi K, Ide K, Ohkawa R, Okubo S, Yokota H, et al. . Validation of an autotaxin enzyme immunoassay in human serum samples and its application to hypoalbuminemia differentiation. Clin Chim Acta. (2008) 388:51–8. doi: 10.1016/j.cca.2007.10.005, PMID:

Source: PubMed

3
Tilaa