Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus

Haitao Yu, Yasuo Nagafuchi, Keishi Fujio, Haitao Yu, Yasuo Nagafuchi, Keishi Fujio

Abstract

Systemic lupus erythematosus (SLE) is characterized by immune system dysfunction and is clinically heterogeneous, exhibiting renal, dermatological, neuropsychiatric, and cardiovascular symptoms. Clinical and physiological assessment is usually inadequate for diagnosing and assessing pathophysiological processes in SLE. Clinical and immunological biomarkers could play a critical role in improving diagnosis, assessment, and ultimately, control of SLE. This article reviews clinical and immunological biomarkers that could diagnose and monitor disease activity in SLE, with and without organ-specific injury. In addition, novel SLE biomarkers that have been discovered through "omics" research are also reviewed.

Keywords: biomarkers; diagnosis; monitoring; omics; systemic lupus erythematosus.

Conflict of interest statement

Y.H. declare no conflict of interest. Y.N. received financial support or fees from BMS, Chugai, Kissei, GlaxoSmithKline, and Pfizer. K. Fujio received grants, consulting fees, speaking fees, and/or honoraria from Takeda, BMS, Mitsubishi Tanabe, Asahi Kasei, Sanofi, Eli Lilly, Daiichi Sankyo, Ono, Janssen, AbbVie, Astellas, Eisai, Pfizer, Chugai, Novartis, UCB, Tsumura, Taisho Toyama, Nihon Kayaku, and Ayumi.

Figures

Figure 1
Figure 1
Common biomarkers for SLE and their measurement sites in patients with SLE. AhR ratio: the ratio of aryl hydrocarbon receptor in Th17 cells to that in Treg; anti-NMDAR: antibodies against N-methyl-D-aspartate receptor; anti-RibP: antibodies against ribosomal proteins; anti-SSA: antibodies against Sjogren’s syndrome A; dsDNA: double-stranded DNA; IgG: immunoglobulin G; IFN: interferon; IL: interleukin; IP-10: IFN-γ-inducible protein 10; MCP-1: monocyte chemotactic protein-1; MHR: monocyte-to-high-density lipoprotein cholesterol ratio; nLHR: low-density granulocytes-to-high-density lipoprotein cholesterol ratio; PON1: antibodies against paraoxonase1; Sm: Smith; TNF: tumor necrosis factor.

References

    1. Kiriakidou M., Ching C. Systemic Lupus Erythematosus. Ann. Intern. Med. 2020;172:ITC81–ITC96. doi: 10.7326/AITC202006020.
    1. Tsokos G.C. Systemic lupus erythematosus. N. Engl. J. Med. 2011;365:2110–2121. doi: 10.1056/NEJMra1100359.
    1. Gergianaki I., Fanouriakis A., Repa A., Tzanakakis M., Adamichou C., Pompieri A., Spirou G., Bertsias A., Kabouraki E., Tzanakis I., et al. Epidemiology and burden of systemic lupus erythematosus in a Southern European population: Data from the community-based lupus registry of Crete, Greece. Ann. Rheum. Dis. 2017;76:1992–2000. doi: 10.1136/annrheumdis-2017-211206.
    1. Rees F., Doherty M., Grainge M., Lanyon P., Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: A systematic review of epidemiological studies. Rheumatology. 2017;56:1945–1961. doi: 10.1093/rheumatology/kex260.
    1. Bertsias G., Karampli E., Sidiropoulos P., Gergianaki I., Drosos A., Sakkas L., Garyfallos A., Tzioufas A., Vassilopoulos D., Tsalapaki C., et al. Clinical and financial burden of active lupus in Greece: A nationwide study. Lupus. 2016;25:1385–1394. doi: 10.1177/0961203316642310.
    1. Murimi-Worstell I.B., Lin D.H., Kan H., Tierce J., Wang X., Nab H., Desta B., Alexander G.C., Hammond E.R. Healthcare Utilization and Costs of Systemic Lupus Erythematosus by Disease Severity in the United States. J. Rheumatol. 2021;48:385–393. doi: 10.3899/jrheum.191187.
    1. Doria A., Amoura Z., Cervera R., Khamastha M.A., Schneider M., Richter J., Guillemin F., Kobelt G., Maurel F., Garofano A., et al. Annual direct medical cost of active systemic lupus erythematosus in five European countries. Ann. Rheum. Dis. 2014;73:154–160. doi: 10.1136/annrheumdis-2012-202443.
    1. Szefler S.J., Wenzel S., Brown R., Erzurum S.C., Fahy J.V., Hamilton R.G., Hunt J.F., Kita H., Liu A.H., Panettieri R.A., Jr., et al. Asthma outcomes: Biomarkers. J. Allergy Clin. Immunol. 2012;129:S9–S23. doi: 10.1016/j.jaci.2011.12.979.
    1. González L.A., Ugarte-Gil M.F., Alarcón G.S. Systemic lupus erythematosus: The search for the ideal biomarker. Lupus. 2020:961203320979051. doi: 10.1177/0961203320979051.
    1. Bertolo M., Baumgart S., Durek P., Peddinghaus A., Mei H., Rose T., Enghard P., Grützkau A. Deep Phenotyping of Urinary Leukocytes by Mass Cytometry Reveals a Leukocyte Signature for Early and Non-Invasive Prediction of Response to Treatment in Active Lupus Nephritis. Front. Immunol. 2020;11:256. doi: 10.3389/fimmu.2020.00256.
    1. Narendra D., Blixt J., Hanania N. Immunological biomarkers in severe asthma. Semin. Immunol. 2019;46:101332. doi: 10.1016/j.smim.2019.101332.
    1. Liu C.-C., Ahearn J.M. The search for lupus biomarkers. Best Pract. Res. Clin. Rheumatol. 2009;23:507–523. doi: 10.1016/j.berh.2009.01.008.
    1. Illei G.G., Tackey E., Lapteva L., Lipsky P.E. Biomarkers in systemic lupus erythematosus. I. General overview of biomarkers and their applicability. Arthritis Rheum. 2004;50:1709–1720. doi: 10.1002/art.20344.
    1. Wu H., Zeng J., Yin J., Peng Q., Zhao M., Lu Q. Organ-specific biomarkers in lupus. Autoimmun. Rev. 2017;16:391–397. doi: 10.1016/j.autrev.2017.02.011.
    1. Liu C.-C., Kao A.H., Manzi S., Ahearn J.M. Biomarkers in systemic lupus erythematosus: Challenges and prospects for the future. Ther. Adv. Musculoskelet. Dis. 2013;5:210–233. doi: 10.1177/1759720X13485503.
    1. Tan E.M., Cohen A.S., Fries J.F., Masi A.T., McShane D.J., Rothfield N.F., Schaller J.G., Talal N., Winchester R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–1277. doi: 10.1002/art.1780251101.
    1. Hochberg M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. doi: 10.1002/art.1780400928.
    1. Petri M., Orbai A.-M., Alarcón G.S., Gordon C., Merrill J.T., Fortin P.R., Bruce I.N., Isenberg D., Wallace D.J., Nived O., et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–2686.
    1. Aringer M., Dörner T., Leuchten N., Johnson S. Toward new criteria for systemic lupus erythematosus-a standpoint. Lupus. 2016;25:805–811. doi: 10.1177/0961203316644338.
    1. Aringer M., Costenbader K., Daikh D., Brinks R., Mosca M., Ramsey-Goldman R., Smolen J.S., Wofsy D., Boumpas D.T., Kamen D.L., et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019;71:1400–1412. doi: 10.1002/art.40930.
    1. Adamichou C., Nikolopoulos D., Genitsaridi I., Bortoluzzi A., Fanouriakis A., Papastefanakis E., Kalogiannaki E., Gergianaki I., Sidiropoulos P., Boumpas D.T., et al. In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: Use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment. Ann. Rheum. Dis. 2020;79:232–241. doi: 10.1136/annrheumdis-2019-216155.
    1. Sacre K., Delaval L., Dossier A., Alexandra J.-F., Berleur M., Chauveheid M.-P., Ducrocq G., Goulenok T., van Gysel D., Rouzaud D., et al. New 2019 SLE EULAR/ACR classification criteria are valid for identifying patients with SLE among patients admitted for pericardial effusion. Ann. Rheum. Dis. 2019 doi: 10.1136/annrheumdis-2019-216712.
    1. Nikolopoulos D., Kostopoulou M., Pieta A., Karageorgas T., Tseronis D., Chavatza K., Flouda S., Rapsomaniki P., Banos A., Kremasmenou E., et al. Evolving phenotype of systemic lupus erythematosus in Caucasians: Low incidence of lupus nephritis, high burden of neuropsychiatric disease and increased rates of late-onset lupus in the ’Attikon’ cohort. Lupus. 2020;29:514–522. doi: 10.1177/0961203320908932.
    1. Larosa M., Iaccarino L., Gatto M., Punzi L., Doria A. Advances in the diagnosis and classification of systemic lupus erythematosus. Expert Rev. Clin. Immunol. 2016;12:1309–1320. doi: 10.1080/1744666X.2016.1206470.
    1. Damoiseaux J., Andrade L.E.C., Carballo O.G., Conrad K., Francescantonio P.L.C., Fritzler M.J., Garcia de la Torre I., Herold M., Klotz W., Cruvinel W.M., et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: The International Consensus on ANA patterns (ICAP) perspective. Ann. Rheum. Dis. 2019;78:879–889. doi: 10.1136/annrheumdis-2018-214436.
    1. Olsen N.J., Karp D.R. Autoantibodies and SLE: The threshold for disease. Nat. Rev. Rheumatol. 2014;10:181–186. doi: 10.1038/nrrheum.2013.184.
    1. Meroni P.L., Schur P.H. ANA screening: An old test with new recommendations. Ann. Rheum. Dis. 2010;69:1420–1422. doi: 10.1136/ard.2009.127100.
    1. Pisetsky D.S. Evolving story of autoantibodies in systemic lupus erythematosus. J. Autoimmun. 2020;110:102356. doi: 10.1016/j.jaut.2019.102356.
    1. Pisetsky D.S. Antinuclear antibody testing—Misunderstood or misbegotten? Nat. Rev. Rheumatol. 2017;13:495–502. doi: 10.1038/nrrheum.2017.74.
    1. Emlen W., O’Neill L. Clinical significance of antinuclear antibodies: Comparison of detection with immunofluorescence and enzyme-linked immunosorbent assays. Arthritis Rheum. 1997;40:1612–1618. doi: 10.1002/art.1780400910.
    1. Oke V., Wahren-Herlenius M. Cutaneous lupus erythematosus: Clinical aspects and molecular pathogenesis. J. Intern. Med. 2013;273:544–554. doi: 10.1111/joim.12057.
    1. Sjöwall C., Sturm M., Dahle C., Bengtsson A.A., Jönsen A., Sturfelt G., Skogh T. Abnormal antinuclear antibody titers are less common than generally assumed in established cases of systemic lupus erythematosus. J. Rheumatol. 2008;35:1994–2000.
    1. Choi M.Y., Clarke A.E., St Pierre Y., Hanly J.G., Urowitz M.B., Romero-Diaz J., Gordon C., Bae S.-C., Bernatsky S., Wallace D.J., et al. Antinuclear Antibody-Negative Systemic Lupus Erythematosus in an International Inception Cohort. Arthritis Care Res. 2019;71:893–902. doi: 10.1002/acr.23712.
    1. Pisetsky D.S., Rovin B.H., Lipsky P.E. New Perspectives in Rheumatology: Biomarkers as Entry Criteria for Clinical Trials of New Therapies for Systemic Lupus Erythematosus: The Example of Antinuclear Antibodies and Anti-DNA. Arthritis Rheumatol. 2017;69:487–493. doi: 10.1002/art.40008.
    1. Furie R., Petri M., Zamani O., Cervera R., Wallace D.J., Tegzová D., Sanchez-Guerrero J., Schwarting A., Merrill J.T., Chatham W.W., et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:3918–3930. doi: 10.1002/art.30613.
    1. Pisetsky D.S., Spencer D.M., Lipsky P.E., Rovin B.H. Assay variation in the detection of antinuclear antibodies in the sera of patients with established SLE. Ann. Rheum. Dis. 2018;77:911–913. doi: 10.1136/annrheumdis-2017-212599.
    1. Olsen N.J., Choi M.Y., Fritzler M.J. Emerging technologies in autoantibody testing for rheumatic diseases. Arthrit. Res. Ther. 2017;19:172. doi: 10.1186/s13075-017-1380-3.
    1. Pisetsky D.S., Lipsky P.E. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2020;16:565–579. doi: 10.1038/s41584-020-0480-7.
    1. Pisetsky D.S., Bossuyt X., Meroni P.L. ANA as an entry criterion for the classification of SLE. Autoimmun. Rev. 2019;18:102400. doi: 10.1016/j.autrev.2019.102400.
    1. Leffler J., Bengtsson A.A., Blom A.M. The complement system in systemic lupus erythematosus: An update. Ann. Rheum. Dis. 2014;73:1601–1606. doi: 10.1136/annrheumdis-2014-205287.
    1. Trouw L.A., Pickering M.C., Blom A.M. The complement system as a potential therapeutic target in rheumatic disease. Nat. Rev. Rheumatol. 2017;13:538–547. doi: 10.1038/nrrheum.2017.125.
    1. Li H., Lin S., Yang S., Chen L., Zheng X. Diagnostic value of serum complement C3 and C4 levels in Chinese patients with systemic lupus erythematosus. Clin. Rheumatol. 2015;34:471–477. doi: 10.1007/s10067-014-2843-4.
    1. Petri M.A., van Vollenhoven R.F., Buyon J., Levy R.A., Navarra S.V., Cervera R., Zhong Z.J., Freimuth W.W. Baseline predictors of systemic lupus erythematosus flares: Data from the combined placebo groups in the phase III belimumab trials. Arthritis Rheum. 2013;65:2143–2153. doi: 10.1002/art.37995.
    1. Ho A., Barr S.G., Magder L.S., Petri M. A decrease in complement is associated with increased renal and hematologic activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2001;44:2350–2357. doi: 10.1002/1529-0131(200110)44:10<2350::AID-ART398>;2-A.
    1. Gómez-Puerta J.A., Burlingame R.W., Cervera R. Anti-chromatin (anti-nucleosome) antibodies: Diagnostic and clinical value. Autoimmun. Rev. 2008;7:606–611. doi: 10.1016/j.autrev.2008.06.005.
    1. Bizzaro N., Villalta D., Giavarina D., Tozzoli R. Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systematic review and a study of metanalysis. Autoimmun. Rev. 2012;12:97–106. doi: 10.1016/j.autrev.2012.07.002.
    1. Dima A., Opris D., Jurcut C., Baicus C. Is there still a place for erythrocyte sedimentation rate and C-reactive protein in systemic lupus erythematosus? Lupus. 2016;25:1173–1179. doi: 10.1177/0961203316651742.
    1. Bertoli A.M., Vilá L.M., Reveille J.D., Alarcón G.S. Systemic lupus erythematosus in a multiethnic US cohort (LUMINA): LXI. Value of C-reactive protein as a marker of disease activity and damage. J. Rheumatol. 2008;35:2355–2358. doi: 10.3899/jrheum.080175.
    1. Stojan G., Fang H., Magder L., Petri M. Erythrocyte sedimentation rate is a predictor of renal and overall SLE disease activity. Lupus. 2013;22:827–834. doi: 10.1177/0961203313492578.
    1. Merrill J.T., Petri M.A., Buyon J., Ramsey-Goldman R., Kalunian K., Putterman C., Conklin J., Furie R.A., Dervieux T. Erythrocyte-bound C4d in combination with complement and autoantibody status for the monitoring of SLE. Lupus Sci. Med. 2018;5:e000263. doi: 10.1136/lupus-2018-000263.
    1. Alarcón G.S., Calvo-Alén J., McGwin G., Uribe A.G., Toloza S.M.A., Roseman J.M., Fernández M., Fessler B.J., Vilá L.M., Ahn C., et al. Systemic lupus erythematosus in a multiethnic cohort: LUMINA XXXV. Predictive factors of high disease activity over time. Ann. Rheum. Dis. 2006;65:1168–1174. doi: 10.1136/ard.2005.046896.
    1. Kavanaugh A.F., Solomon D.H. Guidelines for immunologic laboratory testing in the rheumatic diseases: Anti-DNA antibody tests. Arthritis Rheum. 2002;47:546–555. doi: 10.1002/art.10558.
    1. Amezcua-Guerra L.M., Higuera-Ortiz V., Arteaga-García U., Gallegos-Nava S., Hübbe-Tena C. Performance of the 2012 Systemic Lupus International Collaborating Clinics and the 1997 American College of Rheumatology classification criteria for systemic lupus erythematosus in a real-life scenario. Arthritis Care Res. 2015;67:437–441. doi: 10.1002/acr.22422.
    1. Frodlund M., Wetterö J., Dahle C., Dahlström Ö., Skogh T., Rönnelid J., Sjöwall C. Longitudinal anti-nuclear antibody (ANA) seroconversion in systemic lupus erythematosus: A prospective study of Swedish cases with recent-onset disease. Clin. Exp. Immunol. 2020;199:245–254. doi: 10.1111/cei.13402.
    1. Kwon O.C., Lee J.S., Ghang B., Kim Y.G., Lee C.K., Yoo B., Hong S. Predicting eventual development of lupus nephritis at the time of diagnosis of systemic lupus erythematosus. Semin. Arthritis Rheum. 2018;48:462–466. doi: 10.1016/j.semarthrit.2018.02.012.
    1. Ahn S.S., Yoo B.W., Song J.J., Park Y.B., Lee S.K., Lee S.W. Anti-Sm is associated with the early poor outcome of lupus nephritis. Int. J. Rheum. Dis. 2016;19:897–902. doi: 10.1111/1756-185X.12880.
    1. Ishizaki J., Saito K., Nawata M., Mizuno Y., Tokunaga M., Sawamukai N., Tamura M., Hirata S., Yamaoka K., Hasegawa H., et al. Low complements and high titre of anti-Sm antibody as predictors of histopathologically proven silent lupus nephritis without abnormal urinalysis in patients with systemic lupus erythematosus. Rheumatology. 2015;54:405–412. doi: 10.1093/rheumatology/keu343.
    1. Moroni G., Radice A., Giammarresi G., Quaglini S., Gallelli B., Leoni A., Li Vecchi M., Vecchi M.L., Messa P., Sinico R.A. Are laboratory tests useful for monitoring the activity of lupus nephritis? A 6-year prospective study in a cohort of 228 patients with lupus nephritis. Ann. Rheum. Dis. 2009;68:234–237. doi: 10.1136/ard.2008.094508.
    1. Matrat A., Veysseyre-Balter C., Trolliet P., Villar E., Dijoud F., Bienvenu J., Fabien N. Simultaneous detection of anti-C1q and anti-double stranded DNA autoantibodies in lupus nephritis: Predictive value for renal flares. Lupus. 2011;20:28–34. doi: 10.1177/0961203310379871.
    1. Trendelenburg M., Marfurt J., Gerber I., Tyndall A., Schifferli J.A. Lack of occurrence of severe lupus nephritis among anti-C1q autoantibody-negative patients. Arthritis Rheum. 1999;42:187–188. doi: 10.1002/1529-0131(199901)42:1<187::AID-ANR24>;2-U.
    1. Orbai A.M., Truedsson L., Sturfelt G., Nived O., Fang H., Alarcón G.S., Gordon C., Merrill J., Fortin P.R., Bruce I.N., et al. Anti-C1q antibodies in systemic lupus erythematosus. Lupus. 2015;24:42–49. doi: 10.1177/0961203314547791.
    1. Zhang Q., Sun L., Jin L. Spot urine protein/creatinine ratio is unreliable estimate of 24 h proteinuria in lupus nephritis when the histological scores of activity index are higher. Lupus. 2015;24:943–947. doi: 10.1177/0961203315570688.
    1. Guedes Marques M., Cotovio P., Ferrer F., Silva C., Botelho C., Lopes K., Maia P., Carreira A., Campos M. Random spot urine protein/creatinine ratio: A reliable method for monitoring lupus nephritis? Clin. Kidney J. 2013;6:590–594. doi: 10.1093/ckj/sft118.
    1. Schwartz N., Rubinstein T., Burkly L.C., Collins C.E., Blanco I., Su L., Hojaili B., Mackay M., Aranow C., Stohl W., et al. Urinary TWEAK as a biomarker of lupus nephritis: A multicenter cohort study. Arthrit. Res. Ther. 2009;11:R143. doi: 10.1186/ar2816.
    1. Howe H.S., Kong K.O., Thong B.Y.H., Law W.G., Chia F.L.A., Lian T.Y., Lau T.C., Chng H.H., Leung B.P.L. Urine sVCAM-1 and sICAM-1 levels are elevated in lupus nephritis. Int. J. Rheum. Dis. 2012;15:13–16. doi: 10.1111/j.1756-185X.2012.01720.x.
    1. Guo Liu R.-N., Cheng Q.-Y., Zhou H.-Y., Li B.-Z., Ye D.-Q. Elevated Blood and Urinary ICAM-1 is a Biomarker for Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. Immunol. Investig. 2020;49:15–31. doi: 10.1080/08820139.2019.1624769.
    1. Vanarsa K., Soomro S., Zhang T., Strachan B., Pedroza C., Nidhi M., Cicalese P., Gidley C., Dasari S., Mohan S., et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann. Rheum. Dis. 2020;79:1349–1361. doi: 10.1136/annrheumdis-2019-216312.
    1. Yu H., Jiang L., Liu R., Yang A., Yang X., Wang L., Zhang W., Che T. Association between the ratio of aryl hydrocarbon receptor (AhR) in Th17 cells to AhR in Treg cells and SLE skin lesions. Int. Immunopharmacol. 2019;69:257–262. doi: 10.1016/j.intimp.2019.01.039.
    1. Schulte-Pelkum J., Fritzler M., Mahler M. Latest update on the Ro/SS-A autoantibody system. Autoimmun. Rev. 2009;8:632–637. doi: 10.1016/j.autrev.2009.02.010.
    1. Billi A.C., Gharaee-Kermani M., Fullmer J., Tsoi L.C., Hill B.D., Gruszka D., Ludwig J., Xing X., Estadt S., Wolf S.J., et al. The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity. JCI Insight. 2019;4:e127291. doi: 10.1172/jci.insight.127291.
    1. Jeltsch-David H., Muller S. Neuropsychiatric systemic lupus erythematosus: Pathogenesis and biomarkers. Nat. Rev. Neurol. 2014;10:579–596. doi: 10.1038/nrneurol.2014.148.
    1. Ho R.C., Thiaghu C., Ong H., Lu Y., Ho C.S., Tam W.W., Zhang M.W. A meta-analysis of serum and cerebrospinal fluid autoantibodies in neuropsychiatric systemic lupus erythematosus. Autoimmun. Rev. 2016;15:124–138. doi: 10.1016/j.autrev.2015.10.003.
    1. Choi M.Y., FitzPatrick R.D., Buhler K., Mahler M., Fritzler M.J. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun. Rev. 2020;19:102463. doi: 10.1016/j.autrev.2020.102463.
    1. Hirohata S., Sakuma Y., Yanagida T., Yoshio T. Association of cerebrospinal fluid anti-Sm antibodies with acute confusional state in systemic lupus erythematosus. Arthrit. Res. Ther. 2014;16:450. doi: 10.1186/s13075-014-0450-z.
    1. Fujii T. Direct and indirect pathogenic roles of autoantibodies in systemic autoimmune diseases. Allergol. Int. 2014;63:515–522. doi: 10.2332/allergolint.14-RAI-0801.
    1. Arinuma Y., Yanagida T., Hirohata S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2008;58:1130–1135. doi: 10.1002/art.23399.
    1. Fragoso-Loyo H., Cabiedes J., Orozco-Narváez A., Dávila-Maldonado L., Atisha-Fregoso Y., Diamond B., Llorente L., Sánchez-Guerrero J. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS ONE. 2008;3:e3347. doi: 10.1371/journal.pone.0003347.
    1. Bertsias G.K., Boumpas D.T. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat. Rev. Rheumatol. 2010;6:358–367. doi: 10.1038/nrrheum.2010.62.
    1. Fragoso-Loyo H., Richaud-Patin Y., Orozco-Narváez A., Dávila-Maldonado L., Atisha-Fregoso Y., Llorente L., Sánchez-Guerrero J. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007;56:1242–1250. doi: 10.1002/art.22451.
    1. López P., Rodríguez-Carrio J., Martínez-Zapico A., Pérez-Álvarez Á.I., Suárez-Díaz S., Mozo L., Benavente L., Caminal-Montero L., Suárez A. Low-density granulocytes and monocytes as biomarkers of cardiovascular risk in systemic lupus erythematosus. Rheumatology. 2020;59:1752–1764. doi: 10.1093/rheumatology/keaa016.
    1. Chezel J., Costedoat-Chalumeau N., Laouénan C., Rouzaud D., Chenevier-Gobeaux C., Le Guern V., Mathian A., Belhadi D., de Almeida Chaves S., Duhaut P., et al. Highly sensitive serum cardiac troponin T and cardiovascular events in patients with systemic lupus erythematosus (TROPOPLUS study) Rheumatology. 2021;60:1210–1215. doi: 10.1093/rheumatology/keaa434.
    1. Winau L., Hinojar Baydes R., Braner A., Drott U., Burkhardt H., Sangle S., D’Cruz D.P., Carr-White G., Marber M., Schnoes K., et al. High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. Ann. Rheum. Dis. 2018;77:1590–1598. doi: 10.1136/annrheumdis-2018-213661.
    1. Kim S.Y., Yu M., Morin E.E., Kang J., Kaplan M.J., Schwendeman A. High-Density Lipoprotein in Lupus: Disease Biomarkers and Potential Therapeutic Strategy. Arthritis Rheumatol. 2020;72:20–30. doi: 10.1002/art.41059.
    1. López P., Rodríguez-Carrio J., Martínez-Zapico A., Pérez-Álvarez Á.I., López-Mejías R., Benavente L., Mozo L., Caminal-Montero L., González-Gay M.A., Suárez A. Serum Levels of Anti-PON1 and Anti-HDL Antibodies as Potential Biomarkers of Premature Atherosclerosis in Systemic Lupus Erythematosus. Thromb. Haemost. 2017;117:2194–2206. doi: 10.1160/TH17-03-0221.
    1. Domingues V., Magder L.S., Petri M. Assessment of the independent associations of IgG, IgM and IgA isotypes of anticardiolipin with thrombosis in SLE. Lupus Sci. Med. 2016;3:e000107. doi: 10.1136/lupus-2015-000107.
    1. Skeoch S., Haque S., Pemberton P., Bruce I.N. Cell adhesion molecules as potential biomarkers of nephritis, damage and accelerated atherosclerosis in patients with SLE. Lupus. 2014;23:819–824. doi: 10.1177/0961203314528061.
    1. Stanley S., Mok C.C., Vanarsa K., Habazi D., Li J., Pedroza C., Saxena R., Mohan C. Identification of Low-Abundance Urinary Biomarkers in Lupus Nephritis Using Electrochemiluminescence Immunoassays. Arthritis Rheumatol. 2019;71:744–755. doi: 10.1002/art.40813.
    1. Rovin B.H., Parikh S.V., Alvarado A. The kidney biopsy in lupus nephritis: Is it still relevant? Rheum. Dis. Clin. N. Am. 2014;40:537–552. doi: 10.1016/j.rdc.2014.04.004.
    1. Caster D.J., Merchant M.L., Klein J.B., Powell D.W. Precision medicine in lupus nephritis: Can biomarkers get us there? Transl. Res. 2018;201:26–39. doi: 10.1016/j.trsl.2018.08.002.
    1. Aragón C.C., Tafúr R.-A., Suárez-Avellaneda A., Martínez M.T., Salas A.L., Tobón G.J. Urinary biomarkers in lupus nephritis. J. Transl. Autoimmun. 2020;3:100042. doi: 10.1016/j.jtauto.2020.100042.
    1. Giannico G., Fogo A.B. Lupus nephritis: Is the kidney biopsy currently necessary in the management of lupus nephritis? Clin. J. Am. Soc. Nephrol. CJASN. 2013;8:138–145. doi: 10.2215/CJN.03400412.
    1. Pisetsky D.S. Anti-DNA antibodies--quintessential biomarkers of SLE. Nat. Rev. Rheumatol. 2016;12:102–110. doi: 10.1038/nrrheum.2015.151.
    1. Bombardier C., Gladman D.D., Urowitz M.B., Caron D., Chang C.H. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35:630–640. doi: 10.1002/art.1780350606.
    1. ter Borg E.J., Horst G., Hummel E.J., Limburg P.C., Kallenberg C.G. Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum. 1990;33:634–643. doi: 10.1002/art.1780330505.
    1. de Leeuw K., Bungener L., Roozendaal C., Bootsma H., Stegeman C.A. Auto-antibodies to double-stranded DNA as biomarker in systemic lupus erythematosus: Comparison of different assays during quiescent and active disease. Rheumatology. 2017;56:698–703. doi: 10.1093/rheumatology/kex314.
    1. Steiman A.J., Urowitz M.B., Ibañez D., Li T.T., Gladman D.D., Wither J. Anti-dsDNA and Antichromatin Antibody Isotypes in Serologically Active Clinically Quiescent Systemic Lupus Erythematosus. J. Rheumatol. 2015;42:810–816. doi: 10.3899/jrheum.140796.
    1. Schejbel L., Skattum L., Hagelberg S., Åhlin A., Schiller B., Berg S., Genel F., Truedsson L., Garred P. Molecular basis of hereditary C1q deficiency--revisited: Identification of several novel disease-causing mutations. Genes Immun. 2011;12:626–634. doi: 10.1038/gene.2011.39.
    1. Stojan G., Petri M. Anti-C1q in systemic lupus erythematosus. Lupus. 2016;25:873–877. doi: 10.1177/0961203316645205.
    1. Sinico R.A., Rimoldi L., Radice A., Bianchi L., Gallelli B., Moroni G. Anti-C1q autoantibodies in lupus nephritis. Ann. N. Y. Acad. Sci. 2009;1173:47–51. doi: 10.1111/j.1749-6632.2009.04746.x.
    1. Teruel M., Chamberlain C., Alarcón-Riquelme M.E. Omics studies: Their use in diagnosis and reclassification of SLE and other systemic autoimmune diseases. Rheumatolog. 2017;56:i78–i87. doi: 10.1093/rheumatology/kew339.
    1. Mathieu C., Lahesmaa R., Bonifacio E., Achenbach P., Tree T. Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia. 2018;61:2252–2258. doi: 10.1007/s00125-018-4726-8.
    1. Arriens C., Mohan C. Systemic lupus erythematosus diagnostics in the ’omics’ era. Int. J. Clin. Rheumtol. 2013;8:671–687. doi: 10.2217/ijr.13.59.
    1. Wang T.-Y., Wang Y.-F., Zhang Y., Shen J.J., Guo M., Yang J., Lau Y.L., Yang W. Identification of Regulatory Modules That Stratify Lupus Disease Mechanism through Integrating Multi-Omics Data. Mol. Ther. Nucleic Acids. 2020;19:318–329. doi: 10.1016/j.omtn.2019.11.019.
    1. Der E., Suryawanshi H., Morozov P., Kustagi M., Goilav B., Ranabothu S., Izmirly P., Clancy R., Belmont H.M., Koenigsberg M., et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 2019;20:915–927. doi: 10.1038/s41590-019-0386-1.
    1. Nehar-Belaid D., Hong S., Marches R., Chen G., Bolisetty M., Baisch J., Walters L., Punaro M., Rossi R.J., Chung C.-H., et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 2020;21:1094–1106. doi: 10.1038/s41590-020-0743-0.
    1. Arazi A., Rao D.A., Berthier C.C., Davidson A., Liu Y., Hoover P.J., Chicoine A., Eisenhaure T.M., Jonsson A.H., Li S., et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 2019;20:902–914. doi: 10.1038/s41590-019-0398-x.
    1. Jourde-Chiche N., Whalen E., Gondouin B., Speake C., Gersuk V., Dussol B., Burtey S., Pascual V., Chaussabel D., Chiche L. Modular transcriptional repertoire analyses identify a blood neutrophil signature as a candidate biomarker for lupus nephritis. Rheumatolog. 2017;56:477–487. doi: 10.1093/rheumatology/kew439.
    1. Banchereau R., Hong S., Cantarel B., Baldwin N., Baisch J., Edens M., Cepika A.M., Acs P., Turner J., Anguiano E., et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016;165:551–565. doi: 10.1016/j.cell.2016.03.008.
    1. Scharer C.D., Blalock E.L., Mi T., Barwick B.G., Jenks S.A., Deguchi T., Cashman K.S., Neary B.E., Patterson D.G., Hicks S.L., et al. Epigenetic programming underpins B cell dysfunction in human SLE. Nat. Immunol. 2019;20:1071–1082. doi: 10.1038/s41590-019-0419-9.
    1. Pernis A.B., Ivashkiv L.B. ’-Omics’ shed light on B cells in lupus. Nat. Immunol. 2019;20:946–948. doi: 10.1038/s41590-019-0446-6.
    1. Zhao M., Zhou Y., Zhu B., Wan M., Jiang T., Tan Q., Liu Y., Jiang J., Luo S., Tan Y., et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 2016;75:1998–2006. doi: 10.1136/annrheumdis-2015-208410.
    1. Wang Y.F., Zhang Y., Lin Z., Zhang H., Wang T.Y., Cao Y., Morris D.L., Sheng Y., Yin X., Zhong S.L., et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat. Commun. 2021;12:772. doi: 10.1038/s41467-021-21049-y.
    1. Reid S., Alexsson A., Frodlund M., Morris D., Sandling J., Bolin K., Svenungsson E., Jönsen A., Bengtsson C., Gunnarsson I., et al. High genetic risk score is associated with early disease onset, damage accrual and decreased survival in systemic lupus erythematosus. Ann. Rheum. Dis. 2020;79:363–369. doi: 10.1136/annrheumdis-2019-216227.
    1. Ota M., Nagafuchi Y., Hatano H., Ishigaki K., Terao C., Takeshima Y., Yanaoka H., Kobayashi S., Okubo M., Shirai H., et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell. 2021;184:3006–3021. doi: 10.1016/j.cell.2021.03.056.
    1. Chung S.A., Brown E.E., Williams A.H., Ramos P.S., Berthier C.C., Bhangale T., Alarcon-Riquelme M.E., Behrens T.W., Criswell L.A., Graham D.C., et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J. Am. Soc. Nephrol. 2014;25:2859–2870. doi: 10.1681/ASN.2013050446.
    1. Yang W., Zhao M., Hirankarn N., Lau C.S., Mok C.C., Chan T.M., Wong R.W.S., Lee K.W., Mok M.Y., Wong S.N., et al. ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum. Mol. Genet. 2009;18:2063–2070. doi: 10.1093/hmg/ddp118.
    1. Yan R., Jiang H., Gu S., Feng N., Zhang N., Lv L., Liu F. Fecal Metabolites Were Altered, Identified as Biomarkers and Correlated With Disease Activity in Patients With Systemic Lupus Erythematosus in a GC-MS-Based Metabolomics Study. Front. Immunol. 2020;11:2138. doi: 10.3389/fimmu.2020.02138.
    1. Nicolaou O., Sokratous K., Makowska Z., Morell M., De Groof A., Montigny P., Hadjisavvas A., Michailidou K., Oulas A., Spyrou G.M., et al. Proteomic analysis in lupus mice identifies Coronin-1A as a potential biomarker for lupus nephritis. Arthrit. Res. Ther. 2020;22:147. doi: 10.1186/s13075-020-02236-6.
    1. Kok H.M., van den Hoogen L.L., van Roon J.A.G., Adriaansen E.J.M., Fritsch-Stork R.D.E., Nguyen T.Q., Goldschmeding R., Radstake T.R.D.J., Bovenschen N. Systemic and local granzyme B levels are associated with disease activity, kidney damage and interferon signature in systemic lupus erythematosus. Rheumatology. 2017;56:2129–2134. doi: 10.1093/rheumatology/kex332.
    1. Brown M.A., Li Z., Cao K.-A.L. Biomarker development for axial spondyloarthritis. Nat. Rev. Rheumatol. 2020;16:448–463. doi: 10.1038/s41584-020-0450-0.

Source: PubMed

3
Tilaa