Clinical Application of Bioresorbable, Synthetic, Electrospun Matrix in Wound Healing

Matthew MacEwan, Lily Jeng, Tamás Kovács, Emily Sallade, Matthew MacEwan, Lily Jeng, Tamás Kovács, Emily Sallade

Abstract

Electrospun polymeric matrices have long been investigated as constructs for use in regenerative medicine, yet relatively few have been commercialized for human clinical use. In 2017, a novel electrospun matrix, composed of two synthetic biocompatible polymers, polyglactin 910 (PLGA 10:90) and polydioxanone (PDO) of varying pore and fiber sizes (i.e., hybrid-scale) was developed and cleared by the FDA for human clinical use. The present review aims to explain the mechanism of action and review the preclinical and clinical results to summarize the efficacy of the matrix across multiple use cases within the wound care setting, including an assessment of over 150 wounds of varying etiologies treated with the synthetic matrix. Clinical data demonstrated effective use of the synthetic hybrid-scale fiber matrix across a variety of wound etiologies, including diabetic foot and venous leg ulcers, pressure ulcers, burns, and surgical wounds. This review represents a comprehensive clinical demonstration of a synthetic, electrospun, hybrid-scale matrix and illustrates its value and versatility across multiple wound etiologies.

Keywords: Restrata; electrospinning; extracellular matrix; soft tissue repair; wound healing.

Conflict of interest statement

M.M., L.J., E.S. and T.K. declare employment and stock/stock options from Acera Surgical. M.M. is a patent holder for the synthetic hybrid-scale fiber technology discussed in this review (Restrata®).

Figures

Figure 1
Figure 1
A graphical abstract demonstrating the electrospinning process and the microscopic appearance of the synthetic hybrid-scale fiber matrix, as well as its appearance in the wound bed.
Figure 2
Figure 2
Synthetic hybrid-scale fiber matrix—(A) representative image of gross appearance and (B) scanning electron microscopy image.
Figure 3
Figure 3
Histology images of full-thickness wounds stained with hematoxylin and eosin (H&E) at days 15 (A,B) and 30 (C,D) treated with the synthetic matrix (A,C) or the bilayer xenograft (B,D). Results showed that the synthetic matrix had less inflammation and faster filling of the wound bed with granulation tissue compared to the xenograft matrix. G—granulation tissue; T—area of granulation tissue containing inflammation and wound matrix; A—area of abscessation; S in (B)—seroma (edema) formation; S in (D)—serocellular debris; I—inflammation within granulation tissue; arrowheads in (B)—hemorrhage within wound bed; arrowheads in (c)—epithelium; arrowheads in (D)—small microgranulomas; arrows—blood vessels.
Figure 4
Figure 4
Representative images of progressive healing following treatment with the synthetic hybrid-scale fiber matrix. Case 1 diabetic foot ulcer at (A) week 0, (B) week 2, (C) week 4, and (D) complete healing at week 6. The scale bar represents 1 cm. Case 2 diabetic foot ulcer at (E) week 0, (F) week 5, (G) week 8, and (H) complete healing at week 12. Case 3 diabetic foot ulcer at (I) week 0, (J) week 1, (K) week 2, and (L) complete healing at week 4.
Figure 5
Figure 5
Treatment of a representative 5-year venous leg ulcer using the synthetic hybrid-scale fiber matrix. (A) Week 0, (B) week 5, and (C) complete healing at week 24. Scale bars represent 1 cm.
Figure 6
Figure 6
(A) A representative wound after TMA surgery. A strip of the synthetic hybrid-scale fiber matrix was applied over the closed wound. (B) A representative image of a healed TMA wound after treatment with the synthetic matrix. Scale bar represents 1 cm.
Figure 7
Figure 7
A representative Post-Mohs wound that healed over time following treatment with the synthetic hybrid-scale fiber matrix. (A) Squamous cell carcinoma (SCC) at the left posterior helix, (B) the resultant Mohs defect post-micrographic surgery, and (C) 2 weeks, (D) 3 weeks, (E) 5 weeks, and (F) 7 weeks after application of the synthetic hybrid-scale fiber matrix. Complete re-epithelialization was observed at 7 weeks. Scale bar represents 1 cm.
Figure 8
Figure 8
Tendon repair using the synthetic hybrid-scale fiber matrix. Scale bar represents 1 cm.

References

    1. Frykberg R.G., Banks I. Challenges in the treatment of chronic wounds. Adv. Wound Care. 2015;118:560–582. doi: 10.1089/wound.2015.0635.
    1. Lalezari S., Lee C.J., Borovikova A.A., Banyard D., Paydar K.Z., Wirth G.A., Widgerow A.D. Deconstructing negative pressure wound therapy. Int. Wound J. 2017;14:649–657. doi: 10.1111/iwj.12658.
    1. Zarei F., Soleimaninejad M. Role of growth factors and biomaterials in wound healing. Artif. Cells Nanomed. Biotechnol. 2018;46:906–911. doi: 10.1080/21691401.2018.1439836.
    1. Alves R., Grimalt R. A review of platelet-rich plasma: History, biology, mechanism of action, and classification. Skin Appendage Disord. 2018;4:18–24. doi: 10.1159/000477353.
    1. Liu Z., Ramakrishna S., Liu X. Electrospinning and emerging healthcare and medicine possibilities. APL Bioeng. 2020;4:030901. doi: 10.1063/5.0012309.
    1. Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2005;59:1413–1433. doi: 10.1016/j.addr.2007.04.022.
    1. Sill T.J., Recum H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. doi: 10.1016/j.biomaterials.2008.01.011.
    1. Yu Y., Hua S., Yang M., Fu Z., Teng S., Niu K., Zhao Q., Yi C. Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv. 2016;6:110557–110565. doi: 10.1039/C6RA17718B.
    1. Chen W., Xu Y., Li Y., Jia L., Mo X., Jiang G., Zhou G. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem. Eng. J. 2020;382:122986. doi: 10.1016/j.cej.2019.122986.
    1. Kohli N., Sawadkar P., Ho S., Sharma V., Snow M., Powell S., Woodruff M.A., Hook L., García-Gareta E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised ex ovo chorioallantoic membrane model. J. Tissue Eng. 2020;11:2041731420901621. doi: 10.1177/2041731420901621.
    1. Kumbar S.G., Nukavarapu S.P., James R., Nair L.S., Laurencin C.T. Electrospun poly-lactic acid-co-glycolic acid scaffolds for skin tissue engineering. Biomaterials. 2008;29:4100–4107. doi: 10.1016/j.biomaterials.2008.06.028.
    1. Ottosson M., Jakobsson A., Johansson F. Accelerated wound closure—Differently organized nanofibers affect cell migration and hence the closure of artificial wounds in a cell based in vitro model. PLoS ONE. 2017;12:e0169419. doi: 10.1371/journal.pone.0169419.
    1. Jun I., Han H.-S., Edwards J.R., Jeon H. Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. Int. J. Mol. Sci. 2018;19:745. doi: 10.3390/ijms19030745.
    1. Gorth D., Webster T.J. Matrices for tissue engineering and regenerative medicine. In: Lysaght M., Webster T.J., editors. Biomaterial Artificial Organs. 1st ed. Woodhead Publishing; Cambridge, UK: 2011. pp. 270–286.
    1. Zhong S.P., Zhang Y.Z., Lim C.T. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:510–525. doi: 10.1002/wnan.100.
    1. Fukushima K., Feijoo J.L., Yang M. Comparison of abiotic and biotic degradation of PDLLA, PCL, and partially miscible PDLLA/PCL blend. Eur. Polym. J. 2013;49:706–717. doi: 10.1016/j.eurpolymj.2012.12.011.
    1. MacEwan M.R., MacEwan S., Kovacs T.R., Batts J. What makes the optimal wound healing material? A review of current science and introduction of a synthetic nanofabricated wound care scaffold. Cureus. 2017;9:e1736–e1748. doi: 10.7759/cureus.1736.
    1. Yang D., Jones K.S. Effect of alginate on innate immune activation of macrophages. J. Biomed. Mater. Res. Part A. 2009;90:411–418. doi: 10.1002/jbm.a.32096.
    1. Pham Q.P., Sharma U., Mikos A.G. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/ microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7:2796–2805. doi: 10.1021/bm060680j.
    1. Wang C., Chang T., Yang H., Cui M. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control. 2015;47:231–236. doi: 10.1016/j.foodcont.2014.06.034.
    1. Pasricha A., Bhalla P., Sharma K.B. Evaluation of lactic acid as an antibacterial agent. Indian J. Dermatol. Venereol. Leprol. 1979;45:159–161.
    1. Kruse C.R., Nuutila K., Lee C.C., Kiwanuka E., Singh M., Caterson E.J., Eriksson E., Sørensen J.A. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015;23:456–464. doi: 10.1111/wrr.12303.
    1. Watters C., Yuan C., Rumbaugh K. Beneficial and deleterious bacterial–host interactions in chronic wound pathophysiology. Chronic Wound Care Manag. Res. 2015;2:53–62.
    1. Hostacká A., Ciznár M., Stefkovicová M. Temperature and pH affect the production of bacterial biofilm. Folia Microbiol. 2010;55:75–78. doi: 10.1007/s12223-010-0012-y.
    1. Nagoba B.S., Suryawanshi N.M., Wadher B., Sohan S. Acidic environment and wound healing: A review. Wounds. 2015;27:5–11.
    1. Vilchez A., Acevedo F., Cea M., Seeger M., Navia R. Applications of electrospun nanofibers with antioxidant properties: A review. Nanomaterials. 2020;10:175. doi: 10.3390/nano10010175.
    1. Bhari N., Hashim N., Md Akim A., Maringgal B. Recent advances in honey-based nanoparticles for wound dressing: A review. Nanomaterials. 2022;12:2560. doi: 10.3390/nano12152560.
    1. Li T., Sun M., Wu S. State-of-the-Art review of electrospun Gelatin based nanofiber dressings for wound healing applications. Nanomaterials. 2022;12:784. doi: 10.3390/nano12050784.
    1. FDA 510(K) Premarket Notification. [(accessed on 2 November 2022)]; Available online: .
    1. MacEwan M.R., MacEwan S., Wright A.P., Kovacs T.R., Batts J., Zhang L. Comparison of a fully synthetic electrospun matrix to a bi-layered xenograft in healing full thickness cutaneous wounds in a porcine model. Cureus. 2017;9:E1614. doi: 10.7759/cureus.1614.
    1. Regulski M.J., MacEwan M.R. Implantable nanomedical scaffold facilitates healing of chronic lower extremity wounds. Wounds. 2018;30:E77–E80.
    1. Killeen A.L., Brock K.M., Loya R., Honculada C.S., Houston P., Walters J.L. Fully synthetic bioengineered nanomedical scaffold in chronic neuropathic foot ulcers. Wounds. 2018;30:E98–E101.
    1. Barton E.C., Abicht B.P. Lower extremity wounds treated with a synthetic hybrid-scale fiber matrix. Foot Ankle Surg. Tech. Rep. Cases. 2021;1:100076. doi: 10.1016/j.fastrc.2021.100076.
    1. Abicht B.P., Deitrick G.A., MacEwan M.R., Jeng L. Evaluation of wound healing of diabetic foot ulcers in a prospective clinical trial using a synthetic hybrid-scale fiber matrix. Foot Ankle Surg. Tech. Rep. Cases. 2022;2:100135. doi: 10.1016/j.fastrc.2021.100135.
    1. Herron K. Clinical impact of a novel synthetic nanofibre matrix to treat hard-to-heal wounds. J. Wound Care. 2022;31:962–968. doi: 10.12968/jowc.2022.31.11.962.
    1. Vallery M., Shannon T. Augmented flap reconstruction of complex pressure ulcers using synthetic hybrid-scale fiber matrix. Wounds. 2022;34:1–10. doi: 10.25270/wnds/121521.01.
    1. Husain K. Treatment of complex lower extremity wounds utilizing synthetic hybrid-scale fiber matrix. J. Am. Podiatr. Med. Assoc. 2023 in press .
    1. Tucker D. Clinical evaluation of a synthetic hybrid-scale matrix in the treatment of lower extremity surgical wounds. Cureus. 2022;14:e27452. doi: 10.7759/cureus.27452.
    1. Alexander J., Desai V., Denden S., Alianello N. Assessment of a novel augmented closure technique for surgical wounds associated with transmetatarsal amputation: A preliminary study. J. Am. Podiatr. Med. Assoc. 2022;112:20–256. doi: 10.7547/20-256.
    1. McGowan J. Reconstruction of post-Mohs surgical wounds using a novel nanofiber matrix. Wounds. 2022;34:209–215. doi: 10.25270/wnds/20150.
    1. Temple E., Jones N., Prusa R., Brandt M. Peroneal tendon repair using a synthetic hybrid-scale fiber matrix: A case series. Foot Ankle Surg. 2022;2:100221. doi: 10.1016/j.fastrc.2022.100221.
    1. Fernandez L., Shar A., Matthews M.R., Kim P., Thompson C., Williams N., Stutsman M. Synthetic hybrid-scale fiber matrix in the trauma and acute care surgical practice. Wounds. 2021;33:237–244. doi: 10.25270/wnds/2021.237244.
    1. Martini C.J., Burgess B., Ghodasra J.H. Treatment of traumatic crush injury using a synthetic hybrid-scale fiber matrix in conjunction with split-thickness skin graft. Foot Ankle Surg. Tech. Rep. Cases. 2022;2:100112. doi: 10.1016/j.fastrc.2021.100112.
    1. Temple E. Treatment of hematomas using a synthetic hybrid-scale fiber matrix. Cureus. 2022;14:e26491. doi: 10.7759/cureus.26491.
    1. Keyhani S., Mardani-Kivi M., Abbasian M., Tehrani M.E.M., Lahiji F.A. Achilles tendon repair, a modified technique. Arch. Bone. Jt. Surg. 2013;1:86–89.
    1. Greenwood J.E., Schmitt B.J., Wagstaff M.J. Experience with a synthetic bilayer biodegradable temporising matrix in significant burn injury. Burn. Open. 2018;2:17–34. doi: 10.1016/j.burnso.2017.08.001.
    1. Agarwal A., Weis T.L., Schurr M.J., Faith N.G., Czuprynski C.J., McAnulty J.F., Murphy C.J., Abbott N.L. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31:680–690. doi: 10.1016/j.biomaterials.2009.09.092.
    1. Driver V.R., Lavery L.A., Reyzelman A.M., Dutra T.G., Dove C.R., Kotsis S.V., Kim H.M., Chung K.C. A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regen. 2015;23:891–900. doi: 10.1111/wrr.12357.
    1. Margolis D.J., Kantor J., Berlin A. Healing of diabetic neuropathic foot ulcers receiving standard treatment. A meta-analysis. Diabetes Care. 1999;22:692–695. doi: 10.2337/diacare.22.5.692.
    1. Edmonds M. European and Australian Apligraf Diabetic Foot Ulcer Study Group. Apligraf in the treatment of neuropathic diabetic foot ulcers. Int. J. Low Extrem. Wounds. 2009;8:11–18. doi: 10.1177/1534734609331597.
    1. DiDomenico L., Landsman A.R., Emch K.J., Landsman A. A prospective comparison of diabetic foot ulcers treated with either a cryopreserved skin allograft or a bioengineered skin substitute. Wounds. 2011;23:184–189.
    1. Marston W.A., Hanft J., Norwood P., Pollak R., Dermagraft Diabetic Foot Ulcer Study Group The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: Results of a prospective randomized trial. Diabetes Care. 2003;26:1701–1705. doi: 10.2337/diacare.26.6.1701.
    1. Regulski M., Jacobstein D.A., Petranto R.D., Migliori V.J., Nair G., Pfeiffer D. A retrospective analysis of a human cellular repair matrix for the treatment of chronic wounds. Ostomy Wound Manag. 2013;59:38–42.
    1. Bianchi C., Cazzell S., Vayser D., Reyzelman A.M., Dosluoglu H., Tovmassian G., EpiFix VLU Study Group A multicentre randomised controlled trial evaluating the efficacy of dehydrated human amnion/chorion membrane (EpiFix®) allograft for the treatment of venous leg ulcers. Int. Wound J. 2018;15:114–122. doi: 10.1111/iwj.12843.
    1. Serena T.E., Carter M.J., Le L.T., Sabo M.J., DiMarco D.T., EpiFix VLU Study Group A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen. 2014;22:688–693. doi: 10.1111/wrr.12227.
    1. Harding K., Sumner M., Cardinal M. A prospective, multicentre, randomised controlled study of human fibroblast-derived dermal substitute (Dermagraft) in patients with venous leg ulcers. Int. Wound J. 2013;10:132–137. doi: 10.1111/iwj.12053.
    1. Brown-Etris M., Milne C.T., Hodde J.P. An extracellular matrix graft (Oasis® wound matrix) for treating full-thickness pressure ulcers: A randomized clinical trial. J. Tissue Viability. 2019;28:21–26. doi: 10.1016/j.jtv.2018.11.001.
    1. Alet J.M., Michot A., Desnouveaux E., Fleury M., Téot L., Fluieraru S., Casoli V. Collagen regeneration template in the management of full-thickness wounds: A prospective multicentre study. J. Wound Care. 2019;28:S22–S30. doi: 10.12968/jowc.2019.28.Sup8.S22.
    1. Thomas S.R., Perkins J.M., Magee T.R., Galland R.B. Transmetatarsal amputation: An 8-year experience. Ann. R. Coll. Surg. Engl. 2001;83:164–166.
    1. Landry G.J., Silverman D.A., Lie T.K., Mitchell E.L., Moneta G.L. Predictors of healing and functional outcome following transmetatarsal amputations. Arch. Surg. 2011;146:1005–1009. doi: 10.1001/archsurg.2011.206.
    1. Dudkiewicz I., Schwarz O., Heim M., Herman A., Siev-Ner I. Trans-metatarsal amputation in patients with a diabetic foot: Reviewing 10 years experience. Foot. 2019;19:201–204. doi: 10.1016/j.foot.2009.07.005.

Source: PubMed

3
Tilaa