The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence

Angelica Varesi, Salvatore Chirumbolo, Lucrezia Irene Maria Campagnoli, Elisa Pierella, Gaia Bavestrello Piccini, Adelaide Carrara, Giovanni Ricevuti, Catia Scassellati, Cristian Bonvicini, Alessia Pascale, Angelica Varesi, Salvatore Chirumbolo, Lucrezia Irene Maria Campagnoli, Elisa Pierella, Gaia Bavestrello Piccini, Adelaide Carrara, Giovanni Ricevuti, Catia Scassellati, Cristian Bonvicini, Alessia Pascale

Abstract

Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.

Keywords: aging; antioxidants; flavonoids; minerals; oxidative stress; reactive oxygen species; senescence; vitamins.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The interplay between oxidative stress (OS) and senescence. Excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS) trigger senescence through different mechanisms: (i) via NF-kB stimulation, which induces the transcription of the main factors composing the senescence-associated secretory phenotype (SASP); (ii) through DNA double strand brakes, which trigger a sustained DDR response; (iii) via telomere shortening, which is directly linked to cellular senescence; (iv) through a double cross-talk between mitochondria dysfunction and ROS/RNS production and (v) via the inhibition of Nrf2, a crucial antioxidant transcription factor. Antioxidant molecules and antioxidant enzymes (i.e., superoxide dismutase, catalase and glutathione peroxidase) can counteract senescence through the inhibition of OS. Abbreviations: ARE: antioxidant responsive element; CAT: catalase; DDR: DNA damage response; GCL: glutamate cysteine ligase; GPx: glutathione peroxidase; GST: glutathione transferase; H2O2: hydrogen peroxide; HO-1: heme oxygenase-1; HO•: hydroxyl radical; HOO•: hydroperoxyl radical; IL-1β: interleukin 1β; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells; NO•: nitric oxide radical; NO2•: nitrogen dioxide radical; NQO1: NAD(P)H quinone dehydrogenase 1; Nrf2: nuclear factor erythroid 2-related factor 2; O2•−: superoxide anion radical; ONOO−: peroxynitrite anion radical; PST: phenolsulfotransferase enzyme; SOD: superoxide dismutase; TNF-α: tumour necrosis factor α.
Figure 2
Figure 2
Antioxidants: classification. The figure illustrates the main classes of antioxidants capable of counteracting oxidative stress-induced senescence: enzymes, mitochondria-targeted antioxidants, vitamins, carotenoids, organosulfur compounds, nitrogen non protein compounds, flavonoids, minerals, non-flavonoids, and others.

References

    1. Hayflick L., Moorhead P.S. The Serial Cultivation of Human Diploid Cell Strains. Exp. Cell Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6.
    1. Calcinotto A., Kohli J., Zagato E., Pellegrini L., Demaria M., Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 2019;99:1047–1078. doi: 10.1152/physrev.00020.2018.
    1. Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179:813–827. doi: 10.1016/j.cell.2019.10.005.
    1. di Micco R., Krizhanovsky V., Baker D., d’Adda di Fagagna F. Cellular Senescence in Ageing: From Mechanisms to Therapeutic Opportunities. Nat. Rev. Mol. Cell Biol. 2021;22:75–95. doi: 10.1038/s41580-020-00314-w.
    1. Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Yee H., Zender L., Lowe S.W. Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell. 2008;134:657–667. doi: 10.1016/j.cell.2008.06.049.
    1. Sagiv A., Krizhanovsky V. Immunosurveillance of Senescent Cells: The Bright Side of the Senescence Program. Biogerontology. 2013;14:617–628. doi: 10.1007/s10522-013-9473-0.
    1. Lozano-Torres B., Estepa-Fernández A., Rovira M., Orzáez M., Serrano M., Martínez-Máñez R., Sancenón F. The Chemistry of Senescence. Nat. Rev. Chem. 2019;3:426–441. doi: 10.1038/s41570-019-0108-0.
    1. Gao X., Yu X., Zhang C., Wang Y., Sun Y., Sun H., Zhang H., Shi Y., He X. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-Related Diseases. Stem Cell Rev. Rep. 2022:1–13. doi: 10.1007/s12015-022-10370-8.
    1. Kumari R., Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cell Dev. Biol. 2021;9:645593. doi: 10.3389/fcell.2021.645593.
    1. Roger L., Tomas F., Gire V. Mechanisms and Regulation of Cellular Senescence. Int. J. Mol. Sci. 2021;22:13173. doi: 10.3390/ijms222313173.
    1. Casella G., Tsitsipatis D., Abdelmohsen K., Gorospe M. MRNA Methylation in Cell Senescence. WIREs RNA. 2019;10:e1547. doi: 10.1002/wrna.1547.
    1. Crouch J., Shvedova M., Thanapaul R.J.R.S., Botchkarev V., Roh D. Epigenetic Regulation of Cellular Senescence. Cells. 2022;11:672. doi: 10.3390/cells11040672.
    1. Lettieri-Barbato D., Aquilano K., Punziano C., Minopoli G., Faraonio R. MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants. 2022;11:480. doi: 10.3390/antiox11030480.
    1. Sun J., Cheng B., Su Y., Li M., Ma S., Zhang Y., Zhang A., Cai S., Bao Q., Wang S., et al. The Potential Role of M6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front. Genet. 2022;13:869950. doi: 10.3389/fgene.2022.869950.
    1. Harries L.W. Dysregulated RNA Processing and Metabolism: A New Hallmark of Ageing and Provocation for Cellular Senescence. FEBS J. 2022 doi: 10.1111/febs.16462.
    1. Gheitasi I., Azizi A., Omidifar N., Doustimotlagh A.H. Renoprotective Effects of Origanum Majorana Methanolic L and Carvacrol on Ischemia/Reperfusion-Induced Kidney Injury in Male Rats. Evid.-Based Complement. Altern. Med. 2020;2020:9785932. doi: 10.1155/2020/9785932.
    1. Gholami A., Emadi F., Amini A., Shokripour M., Chashmpoosh M., Omidifar N. Functionalization of Graphene Oxide Nanosheets Can Reduce Their Cytotoxicity to Dental Pulp Stem Cells. J. Nanomater. 2020;2020:6942707. doi: 10.1155/2020/6942707.
    1. Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513.
    1. Omidifar N., moghadami M., Mousavi S.M., Hashemi S.A., Gholami A., Shokripour M., Sohrabi Z. Trends in Natural Nutrients for Oxidative Stress and Cell Senescence. Oxidative Med. Cell. Longev. 2021;2021:7501424. doi: 10.1155/2021/7501424.
    1. Rangel-Zúñiga O.A., Corina A., Lucena-Porras B., Cruz-Teno C., Gómez-Delgado F., Jiménez-Lucena R., Alcalá-Díaz J.F., Haro-Mariscal C., Yubero-Serrano E.M., Delgado-Lista J., et al. TNFA Gene Variants Related to the Inflammatory Status and Its Association with Cellular Aging: From the CORDIOPREV Study. Exp. Gerontol. 2016;83:56–62. doi: 10.1016/j.exger.2016.07.015.
    1. Sriram S., Yuan C., Chakraborty S., Tay W., Park M., Shabbir A., Toh S.-A., Han W., Sugii S. Oxidative Stress Mediates Depot-Specific Functional Differences of Human Adipose-Derived Stem Cells. Stem Cell Res. Ther. 2019;10:141. doi: 10.1186/s13287-019-1240-y.
    1. Yu C., Xiao J.-H. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. Oxidative Med. Cell. Longev. 2021;2021:6635460. doi: 10.1155/2021/6635460.
    1. Lopes-Paciencia S., Saint-Germain E., Rowell M.-C., Ruiz A.F., Kalegari P., Ferbeyre G. The Senescence-Associated Secretory Phenotype and Its Regulation. Cytokine. 2019;117:15–22. doi: 10.1016/j.cyto.2019.01.013.
    1. Collado M., Serrano M. Senescence in Tumours: Evidence from Mice and Humans. Nat. Rev. Cancer. 2010;10:51–57. doi: 10.1038/nrc2772.
    1. Narita M., Nuñez S., Heard E., Narita M., Lin A.W., Hearn S.A., Spector D.L., Hannon G.J., Lowe S.W. Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell. 2003;113:703–716. doi: 10.1016/S0092-8674(03)00401-X.
    1. Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of P53 and P16INK4a. Cell. 1997;88:593–602. doi: 10.1016/S0092-8674(00)81902-9.
    1. Chapman J., Fielder E., Passos J.F. Mitochondrial Dysfunction and Cell Senescence: Deciphering a Complex Relationship. FEBS Lett. 2019;593:1566–1579. doi: 10.1002/1873-3468.13498.
    1. Zhu M., Meng P., Ling X., Zhou L. Advancements in Therapeutic Drugs Targeting of Senescence. Ther. Adv. Chronic Dis. 2020;11:204062232096412. doi: 10.1177/2040622320964125.
    1. Elsallabi O., Patruno A., Pesce M., Cataldi A., Carradori S., Gallorini M. Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules. 2022;27:738. doi: 10.3390/molecules27030738.
    1. Coling D., Chen S., Chi L.-H., Jamesdaniel S., Henderson D. Age-Related Changes in Antioxidant Enzymes Related to Hydrogen Peroxide Metabolism in Rat Inner Ear. Neurosci. Lett. 2009;464:22–25. doi: 10.1016/j.neulet.2009.08.015.
    1. Miller A.-F. Superoxide Dismutases: Ancient Enzymes and New Insights. FEBS Lett. 2012;586:585–595. doi: 10.1016/j.febslet.2011.10.048.
    1. Frye K.A., Sendra K.M., Waldron K.J., Kehl-Fie T.E. Old Dogs, New Tricks: New Insights into the Iron/Manganese Superoxide Dismutase Family. J. Inorg. Biochem. 2022;230:111748. doi: 10.1016/j.jinorgbio.2022.111748.
    1. Treiber N., Maity P., Singh K., Ferchiu F., Wlaschek M., Scharffetter-Kochanek K. The Role of Manganese Superoxide Dismutase in Skin Aging. Derm.-Endocrinol. 2012;4:232–235. doi: 10.4161/derm.21819.
    1. Fisher G.J., Varani J., Voorhees J.J. Looking Older. Arch. Dermatol. 2008;144:666–672. doi: 10.1001/archderm.144.5.666.
    1. Quan T., Shao Y., He T., Voorhees J.J., Fisher G.J. Reduced Expression of Connective Tissue Growth Factor (CTGF/CCN2) Mediates Collagen Loss in Chronologically Aged Human Skin. J. Investig. Dermatol. 2010;130:415–424. doi: 10.1038/jid.2009.224.
    1. Allen R.G., Tresini M., Keogh B.P., Doggett D.L., Cristofalo V.J. Differences in Electron Transport Potential, Antioxidant Defenses, and Oxidant Generation in Young and Senescent Fetal Lung Fibroblasts (WI-38) J. Cell Physiol. 1999;180:114–122. doi: 10.1002/(SICI)1097-4652(199907)180:1<114::AID-JCP13>;2-0.
    1. Borlon C., Debacq-Chainiaux F., Hinrichs C., Scharffetter-Kochanek K., Toussaint O., Wlaschek M. The Gene Expression Profile of Psoralen plus UVA-Induced Premature Senescence in Skin Fibroblasts Resembles a Combined DNA-Damage and Stress-Induced Cellular Senescence Response Phenotype. Exp. Gerontol. 2007;42:911–923. doi: 10.1016/j.exger.2007.04.009.
    1. Lu C.-Y., Lee H.-C., Fahn H.-J., Wei Y.-H. Oxidative Damage Elicited by Imbalance of Free Radical Scavenging Enzymes Is Associated with Large-Scale MtDNA Deletions in Aging Human Skin. Mutat. Res./Fundam. Mol. Mech. Mutagenesis. 1999;423:11–21. doi: 10.1016/S0027-5107(98)00220-6.
    1. Meewes C., Brenneisen P., Wenk J., Kuhr L., Ma W., Alikoski J., Poswig A., Krieg T., Scharffetter-Kochanek K. Adaptive Antioxidant Response Protects Dermal Fibroblasts from UVA-Induced Phototoxicity. Free Radic. Biol. Med. 2001;30:238–247. doi: 10.1016/S0891-5849(00)00463-9.
    1. Naderi-Hachtroudi L., Peters T., Brenneisen P., Meewes C., Hommel C., Razi-Wolf Z., Schneider L.A., Schüller J., Wlaschek M., Scharffetter-Kochanek K. Induction of Manganese Superoxide Dismutase in Human Dermal Fibroblasts. Arch. Dermatol. 2002;138:1473–1479. doi: 10.1001/archderm.138.11.1473.
    1. Mao C., Yuan J.-Q., Lv Y.-B., Gao X., Yin Z.-X., Kraus V.B., Luo J.-S., Chei C.-L., Matchar D.B., Zeng Y., et al. Associations between Superoxide Dismutase, Malondialdehyde and All-Cause Mortality in Older Adults: A Community-Based Cohort Study. BMC Geriatr. 2019;19:104. doi: 10.1186/s12877-019-1109-z.
    1. Mohammedi K., Bellili-Muñoz N., Marklund S.L., Driss F., le Nagard H., Patente T.A., Fumeron F., Roussel R., Hadjadj S., Marre M., et al. Plasma Extracellular Superoxide Dismutase Concentration, Allelic Variations in the SOD3 Gene and Risk of Myocardial Infarction and All-Cause Mortality in People with Type 1 and Type 2 Diabetes. Cardiovasc. Diabetol. 2015;14:845. doi: 10.1186/s12933-014-0163-2.
    1. Martini H., Passos J.F. Cellular Senescence: All Roads Lead to Mitochondria. FEBS J. 2022 doi: 10.1111/febs.16361.
    1. Treiber N., Maity P., Singh K., Kohn M., Keist A.F., Ferchiu F., Sante L., Frese S., Bloch W., Kreppel F., et al. Accelerated Aging Phenotype in Mice with Conditional Deficiency for Mitochondrial Superoxide Dismutase in the Connective Tissue. Aging Cell. 2011;10:239–254. doi: 10.1111/j.1474-9726.2010.00658.x.
    1. Zhang Y., Unnikrishnan A., Deepa S.S., Liu Y., Li Y., Ikeno Y., Sosnowska D., van Remmen H., Richardson A. A New Role for Oxidative Stress in Aging: The Accelerated Aging Phenotype in Sod1− Mice Is Correlated to Increased Cellular Senescence. Redox Biol. 2017;11:30–37. doi: 10.1016/j.redox.2016.10.014.
    1. Hajam Y.A., Rani R., Ganie S.Y., Sheikh T.A., Javaid D., Qadri S.S., Pramodh S., Alsulimani A., Alkhanani M.F., Harakeh S., et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells. 2022;11:552. doi: 10.3390/cells11030552.
    1. Ganini D., Santos J.H., Bonini M.G., Mason R.P. Switch of Mitochondrial Superoxide Dismutase into a Prooxidant Peroxidase in Manganese-Deficient Cells and Mice. Cell Chem. Biol. 2018;25:413–425.e6. doi: 10.1016/j.chembiol.2018.01.007.
    1. Naranuntarat A., Jensen L.T., Pazicni S., Penner-Hahn J.E., Culotta V.C. The Interaction of Mitochondrial Iron with Manganese Superoxide Dismutase. J. Biol. Chem. 2009;284:22633–22640. doi: 10.1074/jbc.M109.026773.
    1. Yang M., Cobine P.A., Molik S., Naranuntarat A., Lill R., Winge D.R., Culotta V.C. The Effects of Mitochondrial Iron Homeostasis on Cofactor Specificity of Superoxide Dismutase 2. EMBO J. 2006;25:1775–1783. doi: 10.1038/sj.emboj.7601064.
    1. Killilea D.W., Atamna H., Liao C., Ames B.N. Iron Accumulation During Cellular Senescence in Human Fibroblasts In Vitro. Antioxid. Redox Signal. 2003;5:507–516. doi: 10.1089/152308603770310158.
    1. Killilea D.W., Maier J.A.M. A Connection between Magnesium Deficiency and Aging: New Insights from Cellular Studies. Magnes Res. 2008;21:77–82.
    1. Cutler R.G. Oxidative Stress and Aging: Catalase Is a Longevity Determinant Enzyme. Rejuvenation Res. 2005;8:138–140. doi: 10.1089/rej.2005.8.138.
    1. Koepke J.I., Wood C.S., Terlecky L.J., Walton P.A., Terlecky S.R. Progeric Effects of Catalase Inactivation in Human Cells. Toxicol. Appl. Pharmacol. 2008;232:99–108. doi: 10.1016/j.taap.2008.06.004.
    1. Koepke J.I., Nakrieko K.-A., Wood C.S., Boucher K.K., Terlecky L.J., Walton P.A., Terlecky S.R. Restoration of Peroxisomal Catalase Import in a Model of Human Cellular Aging. Traffic. 2007;8:1590–1600. doi: 10.1111/j.1600-0854.2007.00633.x.
    1. Wood C.S., Koepke J.I., Teng H., Boucher K.K., Katz S., Chang P., Terlecky L.J., Papanayotou I., Walton P.A., Terlecky S.R. Hypocatalasemic Fibroblasts Accumulate Hydrogen Peroxide and Display Age-Associated Pathologies. Traffic. 2006;7:97–107. doi: 10.1111/j.1600-0854.2005.00358.x.
    1. Lin M.T., Beal M.F. Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292.
    1. Ahmed E., Donovan T., Yujiao L., Zhang Q. Mitochondrial Targeted Antioxidant in Cerebral Ischemia. J. Neurol. Neurosci. 2015;6:2. doi: 10.21767/2171-6625.100017.
    1. Tarry-Adkins J.L., Blackmore H.L., Martin-Gronert M.S., Fernandez-Twinn D.S., McConnell J.M., Hargreaves I.P., Giussani D.A., Ozanne S.E. Coenzyme Q10 Prevents Accelerated Cardiac Aging in a Rat Model of Poor Maternal Nutrition and Accelerated Postnatal Growth. Mol. Metab. 2013;2:480–490. doi: 10.1016/j.molmet.2013.09.004.
    1. Chen Y.-F., Hebert V.Y., Stadler K., Xue S.Y., Slaybaugh K., Luttrell-Williams E., Glover M.C., Krzywanski D.M., Dugas T.R. Coenzyme Q10 Alleviates Chronic Nucleoside Reverse Transcriptase Inhibitor-Induced Premature Endothelial Senescence. Cardiovasc. Toxicol. 2019;19:500–509. doi: 10.1007/s12012-019-09520-1.
    1. Ma D., Stokes K., Mahngar K., Domazet-Damjanov D., Sikorska M., Pandey S. Inhibition of Stress Induced Premature Senescence in Presenilin-1 Mutated Cells with Water Soluble Coenzyme Q10. Mitochondrion. 2014;17:106–115. doi: 10.1016/j.mito.2014.07.004.
    1. Xue R., Yang J., Wu J., Meng Q., Hao J. Coenzyme Q10 Inhibits the Activation of Pancreatic Stellate Cells through PI3K/AKT/MTOR Signaling Pathway. Oncotarget. 2017;8:92300–92311. doi: 10.18632/oncotarget.21247.
    1. Wu X., Liang S., Zhu X., Wu X., Dong Z. CoQ10 Suppression of Oxidative Stress and Cell Senescence Increases Bone Mass in Orchiectomized Mice. Am. J. Transl. Res. 2020;12:4314–4325.
    1. Mine Y., Takahashi T., Okamoto T. Protective Effects of Coenzyme Q10 on Cell Damage Induced by Hydrogen Peroxides in Cultured Skin Fibroblasts. J. Clin. Biochem. Nutr. 2021;69:20–185. doi: 10.3164/jcbn.20-185.
    1. Zhang D., Yan B., Yu S., Zhang C., Wang B., Wang Y., Wang J., Yuan Z., Zhang L., Pan J. Coenzyme Q10 Inhibits the Aging of Mesenchymal Stem Cells Induced by D-Galactose through Akt/MTOR Signaling. Oxidative Med. Cell. Longev. 2015;2015:867293. doi: 10.1155/2015/867293.
    1. Velichkovska M., Surnar B., Nair M., Dhar S., Toborek M. Targeted Mitochondrial COQ10 Delivery Attenuates Antiretroviral-Drug-Induced Senescence of Neural Progenitor Cells. Mol. Pharm. 2019;16:724–736. doi: 10.1021/acs.molpharmaceut.8b01014.
    1. Marcheggiani F., Kordes S., Cirilli I., Orlando P., Silvestri S., Vogelsang A., Möller N., Blatt T., Weise J.M., Damiani E., et al. Anti-Ageing Effects of Ubiquinone and Ubiquinol in a Senescence Model of Human Dermal Fibroblasts. Free Radic. Biol. Med. 2021;165:282–288. doi: 10.1016/j.freeradbiomed.2021.01.032.
    1. Huo J., Xu Z., Hosoe K., Kubo H., Miyahara H., Dai J., Mori M., Sawashita J., Higuchi K. Coenzyme Q10 Prevents Senescence and Dysfunction Caused by Oxidative Stress in Vascular Endothelial Cells. Oxidative Med. Cell. Longev. 2018;2018:3181759. doi: 10.1155/2018/3181759.
    1. Yan J., Fujii K., Yao J., Kishida H., Hosoe K., Sawashita J., Takeda T., Mori M., Higuchi K. Reduced Coenzyme Q10 Supplementation Decelerates Senescence in SAMP1 Mice. Exp. Gerontol. 2006;41:130–140. doi: 10.1016/j.exger.2005.11.007.
    1. Olivieri F., Lazzarini R., Babini L., Prattichizzo F., Rippo M.R., Tiano L., di Nuzzo S., Graciotti L., Festa R., Brugè F., et al. Anti-Inflammatory Effect of Ubiquinol-10 on Young and Senescent Endothelial Cells via MiR-146a Modulation. Free Radic. Biol. Med. 2013;63:410–420. doi: 10.1016/j.freeradbiomed.2013.05.033.
    1. Maruoka H., Fujii K., Inoue K., Kido S. Long-Term Effect of Ubiquinol on Exercise Capacity and the Oxidative Stress Regulation System in SAMP1 Mice. J. Phys. Ther. Sci. 2014;26:367–371. doi: 10.1589/jpts.26.367.
    1. Schmelzer C., Kubo H., Mori M., Sawashita J., Kitano M., Hosoe K., Boomgaarden I., Döring F., Higuchi K. Supplementation with the Reduced Form of Coenzyme Q10 Decelerates Phenotypic Characteristics of Senescence and Induces a Peroxisome Proliferator-Activated Receptor-α Gene Expression Signature in SAMP1 Mice. Mol. Nutr. Food Res. 2010;54:805–815. doi: 10.1002/mnfr.200900155.
    1. Cirilli I., Orlando P., Marcheggiani F., Dludla P.V., Silvestri S., Damiani E., Tiano L. The Protective Role of Bioactive Quinones in Stress-Induced Senescence Phenotype of Endothelial Cells Exposed to Cigarette Smoke Extract. Antioxidants. 2020;9:1008. doi: 10.3390/antiox9101008.
    1. Tian G., Sawashita J., Kubo H., Nishio S., Hashimoto S., Suzuki N., Yoshimura H., Tsuruoka M., Wang Y., Liu Y., et al. Ubiquinol-10 Supplementation Activates Mitochondria Functions to Decelerate Senescence in Senescence-Accelerated Mice. Antioxid. Redox Signal. 2014;20:2606–2620. doi: 10.1089/ars.2013.5406.
    1. Anisimov V.N., Bakeeva L.E., Egormin P.A., Filenko O.F., Isakova E.F., Manskikh V.N., Mikhelson V.M., Panteleeva A.A., Pasyukova E.G., Pilipenko D.I., et al. Mitochondria-Targeted Plastoquinone Derivatives as Tools to Interrupt Execution of the Aging Program. 5. SkQ1 Prolongs Lifespan and Prevents Development of Traits of Senescence. Biochemistry. 2008;73:1329–1342. doi: 10.1134/S0006297908120055.
    1. Skulachev M., Antonenko Y., Anisimov V., Chernyak B., Cherepanov D., Chistyakov V., Egorov M., Kolosova N., Korshunova G., Lyamzaev K., et al. Mitochondrial-Targeted Plastoquinone Derivatives. Effect on Senescence and Acute Age-Related Pathologies. Curr. Drug Targets. 2011;12:800–826. doi: 10.2174/138945011795528859.
    1. Kolosova N.G., Stefanova N.A., Muraleva N.A., Skulachev V.P. The Mitochondria-Targeted Antioxidant SkQ1 but Not N-Acetylcysteine Reverses Aging-Related Biomarkers in Rats. Aging. 2012;4:686–694. doi: 10.18632/aging.100493.
    1. Manskikh V.N., Gancharova O.S., Nikiforova A.I., Krasilshchikova M.S., Shabalina I.G., Egorov M.V., Karger E.M., Milanovsky G.E., Galkin I.I., Skulachev V.P., et al. Age-Associated Murine Cardiac Lesions Are Attenuated by the Mitochondria-Targeted Antioxidant SkQ1. Histol. Histopathol. 2015;30:353–360. doi: 10.14670/HH-30.353.
    1. Stefanova N.A., Muraleva N.A., Skulachev V.P., Kolosova N.G. Alzheimer’s Disease-Like Pathology in Senescence-Accelerated OXYS Rats Can Be Partially Retarded with Mitochondria-Targeted Antioxidant SkQ1. J. Alzheimer’s Dis. 2013;38:681–694. doi: 10.3233/JAD-131034.
    1. Atamna H., Nguyen A., Schultz C., Boyle K., Newberry J., Kato H., Ames B.N. Methylene Blue Delays Cellular Senescence and Enhances Key Mitochondrial Biochemical Pathways. FASEB J. 2008;22:703–712. doi: 10.1096/fj.07-9610com.
    1. Xiong Z.-M., O’Donovan M., Sun L., Choi J.Y., Ren M., Cao K. Anti-Aging Potentials of Methylene Blue for Human Skin Longevity. Sci. Rep. 2017;7:2475. doi: 10.1038/s41598-017-02419-3.
    1. Bertolo A., Capossela S., Fränkl G., Baur M., Pötzel T., Stoyanov J. Oxidative Status Predicts Quality in Human Mesenchymal Stem Cells. Stem Cell Res. Ther. 2017;8:3. doi: 10.1186/s13287-016-0452-7.
    1. Daudt D.R., Mueller B., Park Y.H., Wen Y., Yorio T. Methylene Blue Protects Primary Rat Retinal Ganglion Cells from Cellular Senescence. Investig. Opthalmol. Vis. Sci. 2012;53:4657. doi: 10.1167/iovs.12-9734.
    1. Hargreaves I., Heaton R.A., Mantle D. Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int. J. Mol. Sci. 2020;21:6695. doi: 10.3390/ijms21186695.
    1. Yubero D., Montero R., Martín M.A., Montoya J., Ribes A., Grazina M., Trevisson E., Rodriguez-Aguilera J.C., Hargreaves I.P., Salviati L., et al. Secondary Coenzyme Q 10 Deficiencies in Oxidative Phosphorylation (OXPHOS) and Non-OXPHOS Disorders. Mitochondrion. 2016;30:51–58. doi: 10.1016/j.mito.2016.06.007.
    1. Mantle D. Coenzyme Q10 Supplementation for Diabetes and Its Complications: An Overview. Br. J. Diabetes. 2017;17:145–148. doi: 10.15277/bjd.2017.149.
    1. Hargreaves I., Mantle D., Milford D. Chronic Kidney Disease and Coenzyme Q10 Supplementation. J. Kidney Care. 2019;4:82–90. doi: 10.12968/jokc.2019.4.2.82.
    1. Mantle D., Hargreaves I. Coenzyme Q10 and Degenerative Disorders Affecting Longevity: An Overview. Antioxidants. 2019;8:44. doi: 10.3390/antiox8020044.
    1. Emmanuele V., López L.C., Berardo A., Naini A., Tadesse S., Wen B., D’Agostino E., Solomon M., DiMauro S., Quinzii C., et al. Heterogeneity of Coenzyme Q10 Deficiency: Patient study and literature review. Arch. Neurol. 2012;69:978–983. doi: 10.1001/archneurol.2012.206.
    1. Yang S., Liu T., Li S., Zhang X., Ding Q., Que H., Yan X., Wei K., Liu S. Comparative Proteomic Analysis of Brains of Naturally Aging Mice. Neuroscience. 2008;154:1107–1120. doi: 10.1016/j.neuroscience.2008.04.012.
    1. Marcheggiani F., Cirilli I., Orlando P., Silvestri S., Vogelsang A., Knott A., Blatt T., Weise J.M., Tiano L. Modulation of Coenzyme Q10 Content and Oxidative Status in Human Dermal Fibroblasts Using HMG-CoA Reductase Inhibitor over a Broad Range of Concentrations. From Mitohormesis to Mitochondrial Dysfunction and Accelerated Aging. Aging. 2019;11:2565–2582. doi: 10.18632/aging.101926.
    1. Bliznakov E.G. Immunological Senescence in Mice and Its Reversal by Coenzyme Q10. Mech. Ageing Dev. 1978;7:189–197. doi: 10.1016/0047-6374(78)90065-9.
    1. Sohal R.S., Kamzalov S., Sumien N., Ferguson M., Rebrin I., Heinrich K.R., Forster M.J. Effect of Coenzyme Q10 Intake on Endogenous Coenzyme Q Content, Mitochondrial Electron Transport Chain, Antioxidative Defenses, and Life Span of Mice. Free Radic. Biol. Med. 2006;40:480–487. doi: 10.1016/j.freeradbiomed.2005.08.037.
    1. Sumien N., Heinrich K.R., Shetty R.A., Sohal R.S., Forster M.J. Prolonged Intake of Coenzyme Q10 Impairs Cognitive Functions in Mice. J. Nutr. 2009;139:1926–1932. doi: 10.3945/jn.109.110437.
    1. Mcdonald S.R., Sohal R.S., Forster M.J. Concurrent Administration of Coenzyme Q10 and α-Tocopherol Improves Learning in Aged Mice. Free Radic. Biol. Med. 2005;38:729–736. doi: 10.1016/j.freeradbiomed.2004.11.014.
    1. Shetty R.A., Forster M.J., Sumien N. Coenzyme Q10 Supplementation Reverses Age-Related Impairments in Spatial Learning and Lowers Protein Oxidation. Age. 2013;35:1821–1834. doi: 10.1007/s11357-012-9484-9.
    1. Andreani C., Bartolacci C., Guescini M., Battistelli M., Stocchi V., Orlando F., Provinciali M., Amici A., Marchini C., Tiano L., et al. Combination of Coenzyme Q10 Intake and Moderate Physical Activity Counteracts Mitochondrial Dysfunctions in a SAMP8 Mouse Model. Oxidative Med. Cell. Longev. 2018;2018:8936251. doi: 10.1155/2018/8936251.
    1. Skulachev V.P., Anisimov V.N., Antonenko Y.N., Bakeeva L.E., Chernyak B.V., Erichev V.P., Filenko O.F., Kalinina N.I., Kapelko V.I., Kolosova N.G., et al. An Attempt to Prevent Senescence: A Mitochondrial Approach. Biochim. Biophys. Acta (BBA)-Bioenerg. 2009;1787:437–461. doi: 10.1016/j.bbabio.2008.12.008.
    1. Obukhova L.A., Skulachev V.P., Kolosova N.G. Mitochondria-Targeted Antioxidant SkQ1 Inhibits Age-Dependent Involution of the Thymus in Normal and Senescence-Prone Rats. Aging. 2009;1:389–401. doi: 10.18632/aging.100043.
    1. Stefanova N.A., Ershov N.I., Kolosova N.G. Suppression of Alzheimer’s Disease-Like Pathology Progression by Mitochondria-Targeted Antioxidant SkQ1: A Transcriptome Profiling Study. Oxidative Med. Cell. Longev. 2019;2019:3984906. doi: 10.1155/2019/3984906.
    1. Muraleva N.A., Stefanova N.A., Kolosova N.G. SkQ1 Suppresses the P38 MAPK Signaling Pathway Involved in Alzheimer’s Disease-Like Pathology in OXYS Rats. Antioxidants. 2020;9:676. doi: 10.3390/antiox9080676.
    1. Loshchenova P.S., Sinitsyna O.I., Fedoseeva L.A., Stefanova N.A., Kolosova N.G. Influence of Antioxidant SkQ1 on Accumulation of Mitochondrial DNA Deletions in the Hippocampus of Senescence-Accelerated OXYS Rats. Biochemistry. 2015;80:596–603. doi: 10.1134/S0006297915050120.
    1. Ježek J., Engstová H., Ježek P. Antioxidant Mechanism of Mitochondria-Targeted Plastoquinone SkQ1 Is Suppressed in Aglycemic HepG2 Cells Dependent on Oxidative Phosphorylation. Biochim. Biophys. Acta (BBA)-Bioenerg. 2017;1858:750–762. doi: 10.1016/j.bbabio.2017.05.005.
    1. Xue H., Thaivalappil A., Cao K. The Potentials of Methylene Blue as an Anti-Aging Drug. Cells. 2021;10:3379. doi: 10.3390/cells10123379.
    1. Atamna H., Atamna W., Al-Eyd G., Shanower G., Dhahbi J.M. Combined Activation of the Energy and Cellular-Defense Pathways May Explain the Potent Anti-Senescence Activity of Methylene Blue. Redox Biol. 2015;6:426–435. doi: 10.1016/j.redox.2015.09.004.
    1. Sadowska-Bartosz I., Bartosz G. Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro. Oxidative Med. Cell. Longev. 2020;2020:6423783. doi: 10.1155/2020/6423783.
    1. Dawson M.I. The Importance of Vitamin A in Nutrition. Curr Pharm Des. 2000;6:311–325. doi: 10.2174/1381612003401190.
    1. Bar-El Dadon S., Reifen R. Vitamin A and the Epigenome. Crit. Rev. Food Sci. Nutr. 2017;57:2404–2411. doi: 10.1080/10408398.2015.1060940.
    1. Shudo K., Fukasawa H., Nakagomi M., Yamagata N. Towards Retinoid Therapy for Alzheimers Disease. Curr. Alzheimer Res. 2009;6:302–311. doi: 10.2174/156720509788486581.
    1. Kitaoka K., Shimizu N., Ono K., Chikahisa S., Nakagomi M., Shudo K., Ishimura K., Séi H., Yoshizaki K. The Retinoic Acid Receptor Agonist Am80 Increases Hippocampal ADAM10 in Aged SAMP8 Mice. Neuropharmacology. 2013;72:58–65. doi: 10.1016/j.neuropharm.2013.04.009.
    1. Fukasawa H., Nakagomi M., Yamagata N., Katsuki H., Kawahara K., Kitaoka K., Miki T., Shudo K. Tamibarotene: A Candidate Retinoid Drug for Alzheimer’s Disease. Biol. Pharm. Bull. 2012;35:1206–1212. doi: 10.1248/bpb.b12-00314.
    1. Malaspina A., Michael-Titus A.T. Is the Modulation of Retinoid and Retinoid-Associated Signaling a Future Therapeutic Strategy in Neurological Trauma and Neurodegeneration? J. Neurochem. 2008;104:584–595. doi: 10.1111/j.1471-4159.2007.05071.x.
    1. Li Y., Yao J., Han C., Yang J., Chaudhry M., Wang S., Liu H., Yin Y. Quercetin, Inflammation and Immunity. Nutrients. 2016;8:167. doi: 10.3390/nu8030167.
    1. Fang J., Liang W. ASCs-Derived Exosomes Loaded with Vitamin A and Quercetin Inhibit Rapid Senescence-like Response after Acute Liver Injury. Biochem. Biophys. Res. Commun. 2021;572:125–130. doi: 10.1016/j.bbrc.2021.07.059.
    1. Naidu K.A. Vitamin C in Human Health and Disease Is Still a Mystery? An Overview. Nutr. J. 2003;2:7. doi: 10.1186/1475-2891-2-7.
    1. Padayatty S.J., Katz A., Wang Y., Eck P., Kwon O., Lee J.-H., Chen S., Corpe C., Dutta A., Dutta S.K., et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003;22:18–35. doi: 10.1080/07315724.2003.10719272.
    1. Monacelli F., Acquarone E., Giannotti C., Borghi R., Nencioni A. Vitamin C, Aging and Alzheimer’s Disease. Nutrients. 2017;9:670. doi: 10.3390/nu9070670.
    1. Ammar M.A., Ammar A.A., Condeni M.S., Bell C.M. Vitamin C for Sepsis and Septic Shock. Am. J. 2021;28:e649–e679. doi: 10.1097/MJT.0000000000001423.
    1. Kashiouris M.G., L’Heureux M., Cable C.A., Fisher B.J., Leichtle S.W., Fowler A.A. The Emerging Role of Vitamin C as a Treatment for Sepsis. Nutrients. 2020;12:292. doi: 10.3390/nu12020292.
    1. Teng J., Pourmand A., Mazer-Amirshahi M. Vitamin C: The next Step in Sepsis Management? J. Crit. Care. 2018;43:230–234. doi: 10.1016/j.jcrc.2017.09.031.
    1. Fritz H., Flower G., Weeks L., Cooley K., Callachan M., McGowan J., Skidmore B., Kirchner L., Seely D. Intravenous Vitamin C and Cancer. Integr. Cancer Ther. 2014;13:280–300. doi: 10.1177/1534735414534463.
    1. van Gorkom G.N.Y., Lookermans E.L., van Elssen C.H.M.J., Bos G.M.J. The Effect of Vitamin C (Ascorbic Acid) in the Treatment of Patients with Cancer: A Systematic Review. Nutrients. 2019;11:977. doi: 10.3390/nu11050977.
    1. Uchio R., Hirose Y., Murosaki S., Yamamoto Y., Ishigami A. High Dietary Intake of Vitamin C Suppresses Age-Related Thymic Atrophy and Contributes to the Maintenance of Immune Cells in Vitamin C-Deficient Senescence Marker Protein-30 Knockout Mice. Br. J. Nutr. 2015;113:603–609. doi: 10.1017/S0007114514003857.
    1. Hwang W.-S., Park S.-H., Kim H.-S., Kang H.-J., Kim M.-J., Oh S.-J., Park J.-B., Kim J., Kim S.C., Lee J.-Y. Ascorbic Acid Extends Replicative Life Span of Human Embryonic Fibroblast by Reducing DNA and Mitochondrial Damages. Nutr. Res. Pract. 2007;1:105–112. doi: 10.4162/nrp.2007.1.2.105.
    1. Furumoto K., Inoue E., Nagao N., Hiyama E., Miwa N. Age-Dependent Telomere Shortening Is Slowed down by Enrichment of Intracellular Vitamin C via Suppression of Oxidative Stress. Life Sci. 1998;63:935–948. doi: 10.1016/S0024-3205(98)00351-8.
    1. Chang Z., Huo L., Li P., Wu Y., Zhang P. Ascorbic Acid Provides Protection for Human Chondrocytes against Oxidative Stress. Mol. Med. Rep. 2015;12:7086–7092. doi: 10.3892/mmr.2015.4231.
    1. Burger M., Steinitz A., Geurts J., Pippenger B., Schaefer D., Martin I., Barbero A., Pelttari K. Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts. Int. J. Mol. Sci. 2017;18:2517. doi: 10.3390/ijms18122517.
    1. Kim S.-M., Lim S.-M., Yoo J.-A., Woo M.-J., Cho K.-H. Consumption of High-Dose Vitamin C (1250 Mg per Day) Enhances Functional and Structural Properties of Serum Lipoprotein to Improve Anti-Oxidant, Anti-Atherosclerotic, and Anti-Aging Effects via Regulation of Anti-Inflammatory MicroRNA. Food Funct. 2015;6:3604–3612. doi: 10.1039/C5FO00738K.
    1. Cho K.-H. Biomedicinal Implications of High-Density Lipoprotein: Its Composition, Structure, Functions, and Clinical Applications. BMB Rep. 2009;42:393–400. doi: 10.5483/BMBRep.2009.42.7.393.
    1. Ferretti G., Bacchetti T., Nègre-Salvayre A., Salvayre R., Dousset N., Curatola G. Structural Modifications of HDL and Functional Consequences. Atherosclerosis. 2006;184:1–7. doi: 10.1016/j.atherosclerosis.2005.08.008.
    1. Taniguchi M., Arai N., Kohno K., Ushio S., Fukuda S. Anti-Oxidative and Anti-Aging Activities of 2-O-α-Glucopyranosyl-L-Ascorbic Acid on Human Dermal Fibroblasts. Eur. J. Pharm. 2012;674:126–131. doi: 10.1016/j.ejphar.2011.11.013.
    1. Burton G.W., Traber M.G. Vitamin E: Antioxidant Activity, Biokinetics, and Bioavailability. Annu. Rev. Nutr. 1990;10:357–382. doi: 10.1146/annurev.nu.10.070190.002041.
    1. Shen J., Gammon M.D., Terry M.B., Wang Q., Bradshaw P., Teitelbaum S.L., Neugut A.I., Santella R.M. Telomere Length, Oxidative Damage, Antioxidants and Breast Cancer Risk. Int. J. Cancer. 2009;124:1637–1643. doi: 10.1002/ijc.24105.
    1. Corina A., Rangel-Zúñiga O.A., Jiménez-Lucena R., Alcalá-Díaz J.F., Quintana-Navarro G., Yubero-Serrano E.M., López-Moreno J., Delgado-Lista J., Tinahones F., Ordovás J.M., et al. Low Intake of Vitamin E Accelerates Cellular Aging in Patients With Established Cardiovascular Disease: The CORDIOPREV Study. J. Gerontol. Ser. A. 2019;74:770–777. doi: 10.1093/gerona/gly195.
    1. Shearer M.J., Newman P. Recent Trends in the Metabolism and Cell Biology of Vitamin K with Special Reference to Vitamin K Cycling and MK-4 Biosynthesis. J. Lipid Res. 2014;55:345–362. doi: 10.1194/jlr.R045559.
    1. Kaisar M.A., Prasad S., Cucullo L. Protecting the BBB Endothelium against Cigarette Smoke-Induced Oxidative Stress Using Popular Antioxidants: Are They Really Beneficial? Brain Res. 2015;1627:90–100. doi: 10.1016/j.brainres.2015.09.018.
    1. Berendsen A., Santoro A., Pini E., Cevenini E., Ostan R., Pietruszka B., Rolf K., Cano N., Caille A., Lyon-Belgy N., et al. A Parallel Randomized Trial on the Effect of a Healthful Diet on Inflammageing and Its Consequences in European Elderly People: Design of the NU-AGE Dietary Intervention Study. Mech. Ageing Dev. 2013;134:523–530. doi: 10.1016/j.mad.2013.10.002.
    1. Santoro A., Pini E., Scurti M., Palmas G., Berendsen A., Brzozowska A., Pietruszka B., Szczecinska A., Cano N., Meunier N., et al. Combating Inflammaging through a Mediterranean Whole Diet Approach: The NU-AGE Project’s Conceptual Framework and Design. Mech. Ageing Dev. 2014;136–137:3–13. doi: 10.1016/j.mad.2013.12.001.
    1. Ohsaki Y., Shirakawa H., Miura A., Giriwono P.E., Sato S., Ohashi A., Iribe M., Goto T., Komai M. Vitamin K Suppresses the Lipopolysaccharide-Induced Expression of Inflammatory Cytokines in Cultured Macrophage-like Cells via the Inhibition of the Activation of Nuclear Factor ΚB through the Repression of IKKα/β Phosphorylation. J. Nutr. Biochem. 2010;21:1120–1126. doi: 10.1016/j.jnutbio.2009.09.011.
    1. Wei N., Lu L., Zhang H., Gao M., Ghosh S., Liu Z., Qi J., Wang J., Chen J., Huang H. Warfarin Accelerates Aortic Calcification by Upregulating Senescence-Associated Secretory Phenotype Maker Expression. Oxidative Med. Cell. Longev. 2020;2020:2043762. doi: 10.1155/2020/2043762.
    1. Nakano-Kurimoto R., Ikeda K., Uraoka M., Nakagawa Y., Yutaka K., Koide M., Takahashi T., Matoba S., Yamada H., Okigaki M., et al. Replicative Senescence of Vascular Smooth Muscle Cells Enhances the Calcification through Initiating the Osteoblastic Transition. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1673-84. doi: 10.1152/ajpheart.00455.2009.
    1. Young A., Lowe G. Carotenoids—Antioxidant Properties. Antioxidants. 2018;7:28. doi: 10.3390/antiox7020028.
    1. Ross A.C., Caballero B.H., Cousins R.J., Tucker K.L., Ziegler T.R. Modern Nutrition in Health and Disease. 11th ed. Wolters Kluwer Health Adis (ESP); Alphen aan den Rijn, The Netherlands: 2012.
    1. Mezzomo N., Ferreira S.R.S. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. J. Chem. 2016;2016:3164312. doi: 10.1155/2016/3164312.
    1. Rafi M.M., Kanakasabai S., Gokarn S.V., Krueger E.G., Bright J.J. Dietary Lutein Modulates Growth and Survival Genes in Prostate Cancer Cells. J. Med. Food. 2015;18:173–181. doi: 10.1089/jmf.2014.0003.
    1. Cao W., Zeng F., Li B., Lin J., Liang Y., Chen Y. Higher Dietary Carotenoid Intake Associated with Lower Risk of Hip Fracture in Middle-Aged and Elderly Chinese: A Matched Case-Control Study. Bone. 2018;111:116–122. doi: 10.1016/j.bone.2018.03.023.
    1. Akbaraly T.N., Fontbonne A., Favier A., Berr C. Plasma Carotenoids and Onset of Dysglycemia in an Elderly Population. Diabetes Care. 2008;31:1355–1359. doi: 10.2337/dc07-2113.
    1. Leermakers E.T., Darweesh S.K., Baena C.P., Moreira E.M., Melo van Lent D., Tielemans M.J., Muka T., Vitezova A., Chowdhury R., Bramer W.M., et al. The Effects of Lutein on Cardiometabolic Health across the Life Course: A Systematic Review and Meta-Analysis1,2. Am. J. Clin. Nutr. 2016;103:481–494. doi: 10.3945/ajcn.115.120931.
    1. Sandmann G. Carotenoids of Biotechnological Importance. Adv. Biochem. Eng. Biotechnol. 2014;148:449–467. doi: 10.1007/10_2014_277.
    1. Milani A., Basirnejad M., Shahbazi S., Bolhassani A. Carotenoids: Biochemistry, Pharmacology and Treatment. Br. J. Pharmacol. 2017;174:1290–1324. doi: 10.1111/bph.13625.
    1. Ames B.N. Prolonging Healthy Aging: Longevity Vitamins and Proteins. Proc. Natl. Acad. Sci. USA. 2018;115:10836–10844. doi: 10.1073/pnas.1809045115.
    1. Mária J., Ingrid Ž. Effects of Bioactive Compounds on Senescence and Components of Senescence Associated Secretory Phenotypes in Vitro. Food Funct. 2017;8:2394–2418. doi: 10.1039/C7FO00161D.
    1. Chisté R.C., Freitas M., Mercadante A.Z., Fernandes E. Carotenoids Inhibit Lipid Peroxidation and Hemoglobin Oxidation, but Not the Depletion of Glutathione Induced by ROS in Human Erythrocytes. Life Sci. 2014;99:52–60. doi: 10.1016/j.lfs.2014.01.059.
    1. Flori E., Mastrofrancesco A., Kovacs D., Ramot Y., Briganti S., Bellei B., Paus R., Picardo M. 2,4,6-Octatrienoic Acid Is a Novel Promoter of Melanogenesis and Antioxidant Defence in Normal Human Melanocytes via PPAR-γ Activation. Pigment Cell Melanoma Res. 2011;24:618–630. doi: 10.1111/j.1755-148X.2011.00887.x.
    1. Wertz K., Seifert N., Hunziker P.B., Riss G., Wyss A., Lankin C., Goralczyk R. β-Carotene Inhibits UVA-Induced Matrix Metalloprotease 1 and 10 Expression in Keratinocytes by a Singlet Oxygen-Dependent Mechanism. Free Radic. Biol. Med. 2004;37:654–670. doi: 10.1016/j.freeradbiomed.2004.05.018.
    1. Fiedor J., Burda K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients. 2014;6:466–488. doi: 10.3390/nu6020466.
    1. Ribeiro D., Freitas M., Silva A.M.S., Carvalho F., Fernandes E. Antioxidant and Pro-Oxidant Activities of Carotenoids and Their Oxidation Products. Food Chem. Toxicol. 2018;120:681–699. doi: 10.1016/j.fct.2018.07.060.
    1. Feeney J., O’Leary N., Moran R., O’Halloran A.M., Nolan J.M., Beatty S., Young I.S., Kenny R.A. Plasma Lutein and Zeaxanthin Are Associated With Better Cognitive Function Across Multiple Domains in a Large Population-Based Sample of Older Adults: Findings from The Irish Longitudinal Study on Aging. J. Gerontol. Ser. A. 2017;72:1431–1436. doi: 10.1093/gerona/glw330.
    1. Li L.H., Lee J.C.-Y., Leung H.H., Lam W.C., Fu Z., Lo A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients. 2020;12:1721. doi: 10.3390/nu12061721.
    1. Jia Y.-P., Sun L., Yu H.-S., Liang L.-P., Li W., Ding H., Song X.-B., Zhang L.-J. The Pharmacological Effects of Lutein and Zeaxanthin on Visual Disorders and Cognition Diseases. Molecules. 2017;22:610. doi: 10.3390/molecules22040610.
    1. Stringham J.M., Johnson E.J., Hammond B.R. Lutein across the Lifespan: From Childhood Cognitive Performance to the Aging Eye and Brain. Curr. Dev. Nutr. 2019;3:nzz066. doi: 10.1093/cdn/nzz066.
    1. Weber D., Kochlik B., Demuth I., Steinhagen-Thiessen E., Grune T., Norman K. Plasma Carotenoids, Tocopherols and Retinol-Association with Age in the Berlin Aging Study II. Redox Biol. 2020;32:101461. doi: 10.1016/j.redox.2020.101461.
    1. Lindbergh C.A., Renzi-Hammond L.M., Hammond B.R., Terry D.P., Mewborn C.M., Puente A.N., Miller L.S. Lutein and Zeaxanthin Influence Brain Function in Older Adults: A Randomized Controlled Trial. J. Int. Neuropsychol. Soc. 2018;24:77–90. doi: 10.1017/S1355617717000534.
    1. Mewborn C.M., Lindbergh C.A., Hammond B.R., Renzi-Hammond L.M., Miller L.S. The Effects of Lutein and Zeaxanthin Supplementation on Brain Morphology in Older Adults: A Randomized, Controlled Trial. J. Aging Res. 2019;2019:3709402. doi: 10.1155/2019/3709402.
    1. Chae S., Park S., Park G. Lutein Protects Human Retinal Pigment Epithelial Cells from Oxidative Stress-induced Cellular Senescence. Mol. Med. Rep. 2018;18:5182–5190. doi: 10.3892/mmr.2018.9538.
    1. Sommerburg O., Keunen J.E.E., Bird A.C., van Kuijk F.J.G.M. Fruits and Vegetables That Are Sources for Lutein and Zeaxanthin: The Macular Pigment in Human Eyes. Br. J. Ophthalmol. 1998;82:907–910. doi: 10.1136/bjo.82.8.907.
    1. Carpentier S., Knaus M., Suh M. Associations between Lutein, Zeaxanthin, and Age-Related Macular Degeneration: An Overview. Crit. Rev. Food Sci. Nutr. 2009;49:313–326. doi: 10.1080/10408390802066979.
    1. Paiva S.A.R., Russell R.M. β-Carotene and Other Carotenoids as Antioxidants. J. Am. Coll. Nutr. 1999;18:426–433. doi: 10.1080/07315724.1999.10718880.
    1. Leh H.E., Lee L.K. Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. Molecules. 2022;27:2335. doi: 10.3390/molecules27072335.
    1. Chen P., Zhang W., Wang X., Zhao K., Negi D.S., Zhuo L., Qi M., Wang X., Zhang X. Lycopene and Risk of Prostate Cancer. Medicine. 2015;94:e1260. doi: 10.1097/MD.0000000000001260.
    1. Li J., Zhang Y., Zeng X., Cheng Y., Tang L., Hong D., Yang X. Lycopene Ameliorates Insulin Resistance and Increases Muscle Capillary Density in Aging via Activation of SIRT1. J. Nutr. Biochem. 2022;99:108862. doi: 10.1016/j.jnutbio.2021.108862.
    1. Chen D., Huang C., Chen Z. A Review for the Pharmacological Effect of Lycopene in Central Nervous System Disorders. Biomed. Pharmacother. 2019;111:791–801. doi: 10.1016/j.biopha.2018.12.151.
    1. Kim J.Y., Lee J.-S., Han Y.-S., Lee J.H., Bae I., Yoon Y.M., Kwon S.M., Lee S.H. Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells. Biomol. Ther. 2015;23:517–524. doi: 10.4062/biomolther.2015.085.
    1. Yeh S.-L., Hu M.-L., Huang C.-S. Lycopene Enhances UVA–Induced DNA Damage and Expression of Heme Oxygenase–1 in Cultured Mouse Embryo Fibroblasts. Eur. J. Nutr. 2005;44:365–370. doi: 10.1007/s00394-004-0536-5.
    1. Fernández-García E. Photoprotection of Human Dermal Fibroblasts against Ultraviolet Light by Antioxidant Combinations Present in Tomato. Food Funct. 2014;5:285–290. doi: 10.1039/C3FO60471C.
    1. Liu X., DILXAT T., Shi Q., Qiu T., Lin J. The Combination of Nicotinamide Mononucleotide and Lycopene Prevents Cognitive Impairment and Attenuates Oxidative Damage in D-Galactose Induced Aging Models via Keap1-Nrf2 Signaling. Gene. 2022;822:146348. doi: 10.1016/j.gene.2022.146348.
    1. Gaucher C., Boudier A., Bonetti J., Clarot I., Leroy P., Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants. 2018;7:62. doi: 10.3390/antiox7050062.
    1. Lv H., Zhen C., Liu J., Yang P., Hu L., Shang P. Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy. Oxidative Med. Cell. Longev. 2019;2019:3150145. doi: 10.1155/2019/3150145.
    1. Wu G., Fang Y.-Z., Yang S., Lupton J.R., Turner N.D. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004;134:489–492. doi: 10.1093/jn/134.3.489.
    1. Traverso N., Ricciarelli R., Nitti M., Marengo B., Furfaro A.L., Pronzato M.A., Marinari U.M., Domenicotti C. Role of Glutathione in Cancer Progression and Chemoresistance. Oxidative Med. Cell. Longev. 2013;2013:972913. doi: 10.1155/2013/972913.
    1. Staal F.J.T., Ela S.W., Roederer M., Anderson M.T., Herzenberg L.A., Herzenberg L.A. Glutathione Deficiency and Human Immunodeficiency Virus Infection. Lancet. 1992;339:909–912. doi: 10.1016/0140-6736(92)90939-Z.
    1. Waris S., Patel A., Ali A., Mahmood R. Acetaldehyde-Induced Oxidative Modifications and Morphological Changes in Isolated Human Erythrocytes: An in Vitro Study. Environ. Sci. Pollut. Res. 2020;27:16268–16281. doi: 10.1007/s11356-020-08044-4.
    1. Rusu M.E., Georgiu C., Pop A., Mocan A., Kiss B., Vostinaru O., Fizesan I., Stefan M.-G., Gheldiu A.-M., Mates L., et al. Antioxidant Effects of Walnut (Juglans regia L.) Kernel and Walnut Septum Extract in a D-Galactose-Induced Aging Model and in Naturally Aged Rats. Antioxidants. 2020;9:424. doi: 10.3390/antiox9050424.
    1. Morin D., Long R., Panel M., Laure L., Taranu A., Gueguen C., Pons S., Leoni V., Caccia C., Vatner S.F., et al. Hsp22 Overexpression Induces Myocardial Hypertrophy, Senescence and Reduced Life Span through Enhanced Oxidative Stress. Free Radic. Biol. Med. 2019;137:194–200. doi: 10.1016/j.freeradbiomed.2019.04.035.
    1. Armeni T., Ercolani L., Urbanelli L., Magini A., Magherini F., Pugnaloni A., Piva F., Modesti A., Emiliani C., Principato G. Cellular Redox Imbalance and Changes of Protein S-Glutathionylation Patterns Are Associated with Senescence Induced by Oncogenic H-Ras. PLoS ONE. 2012;7:e52151. doi: 10.1371/journal.pone.0052151.
    1. Redondo J., Sarkar P., Kemp K., Heesom K.J., Wilkins A., Scolding N.J., Rice C.M. Dysregulation of Mesenchymal Stromal Cell Antioxidant Responses in Progressive Multiple Sclerosis. Stem Cells Transl. Med. 2018;7:748–758. doi: 10.1002/sctm.18-0045.
    1. Huang C., Gao J., Wei T., Shen W. Angiotensin II-Induced Erythrocyte Senescence Contributes to Oxidative Stress. Rejuvenation Res. 2022;25:30–38. doi: 10.1089/rej.2021.0054.
    1. Kurz D.J., Decary S., Hong Y., Trivier E., Akhmedov A., Erusalimsky J.D. Chronic Oxidative Stress Compromises Telomere Integrity and Accelerates the Onset of Senescence in Human Endothelial Cells. J. Cell Sci. 2004;117:2417–2426. doi: 10.1242/jcs.01097.
    1. Chen Y., Johansson E., Fan Y., Shertzer H.G., Vasiliou V., Nebert D.W., Dalton T.P. Early Onset Senescence Occurs When Fibroblasts Lack the Glutamate–Cysteine Ligase Modifier Subunit. Free Radic. Biol. Med. 2009;47:410–418. doi: 10.1016/j.freeradbiomed.2009.05.003.
    1. Probin V., Wang Y., Zhou D. Busulfan-Induced Senescence Is Dependent on ROS Production Upstream of the MAPK Pathway. Free Radic. Biol. Med. 2007;42:1858–1865. doi: 10.1016/j.freeradbiomed.2007.03.020.
    1. Fafián-Labora J.A., Rodríguez-Navarro J.A., O’Loghlen A. Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. Cell Metab. 2020;32:71–86.e5. doi: 10.1016/j.cmet.2020.06.004.
    1. Tong J., Fitzmaurice P.S., Moszczynska A., Mattina K., Ang L.-C., Boileau I., Furukawa Y., Sailasuta N., Kish S.J. Do Glutathione Levels Decline in Aging Human Brain? Free Radic. Biol. Med. 2016;93:110–117. doi: 10.1016/j.freeradbiomed.2016.01.029.
    1. Barilani M., Lovejoy C., Piras R., Abramov A.Y., Lazzari L., Angelova P.R. Age-related Changes in the Energy of Human Mesenchymal Stem Cells. J. Cell. Physiol. 2022;237:1753–1767. doi: 10.1002/jcp.30638.
    1. Martin-de-Pablos A., Córdoba-Fernández A., Fernández-Espejo E. Analysis of Neurotrophic and Antioxidant Factors Related to Midbrain Dopamine Neuronal Loss and Brain Inflammation in the Cerebrospinal Fluid of the Elderly. Exp. Gerontol. 2018;110:54–60. doi: 10.1016/j.exger.2018.05.009.
    1. Liu J., Mori A. Age-Associated Changes in Superoxide Dismutase Activity, Thiobarbituric Acid Reactivity and Reduced Glutathione Level in the Brain and Liver in Senescence Accelerated Mice (SAM): A Comparison with DdY Mice. Mech. Ageing Dev. 1993;71:23–30. doi: 10.1016/0047-6374(93)90032-M.
    1. Iskusnykh I.Y., Zakharova A.A., Pathak D. Glutathione in Brain Disorders and Aging. Molecules. 2022;27:324. doi: 10.3390/molecules27010324.
    1. Barardo D., Thornton D., Thoppil H., Walsh M., Sharifi S., Ferreira S., Anžič A., Fernandes M., Monteiro P., Grum T., et al. The DrugAge Database of Aging-Related Drugs. Aging Cell. 2017;16:594–597. doi: 10.1111/acel.12585.
    1. Rebrin I., Zicker S., Wedekind K.J., Paetau-Robinson I., Packer L., Sohal R.S. Effect of Antioxidant-Enriched Diets on Glutathione Redox Status in Tissue Homogenates and Mitochondria of the Senescence-Accelerated Mouse. Free Radic. Biol. Med. 2005;39:549–557. doi: 10.1016/j.freeradbiomed.2005.04.008.
    1. Homma T., Fujii J. Application of Glutathione as Anti-Oxidative and Anti-Aging Drugs. Curr. Drug Metab. 2015;16:560–571. doi: 10.2174/1389200216666151015114515.
    1. Kumar P., Osahon O.W., Sekhar R.V. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage. Nutrients. 2022;14:1114. doi: 10.3390/nu14051114.
    1. Sekhar R.V., Patel S.G., Guthikonda A.P., Reid M., Balasubramanyam A., Taffet G.E., Jahoor F. Deficient Synthesis of Glutathione Underlies Oxidative Stress in Aging and Can Be Corrected by Dietary Cysteine and Glycine Supplementation. Am. J. Clin. Nutr. 2011;94:847–853. doi: 10.3945/ajcn.110.003483.
    1. Sekhar R.V. GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging. J. Nutr. 2021;151:3606–3616. doi: 10.1093/jn/nxab309.
    1. Ansary J., Forbes-Hernández T.Y., Gil E., Cianciosi D., Zhang J., Elexpuru-Zabaleta M., Simal-Gandara J., Giampieri F., Battino M. Potential Health Benefit of Garlic Based on Human Intervention Studies: A Brief Overview. Antioxidants. 2020;9:619. doi: 10.3390/antiox9070619.
    1. El-Saber Batiha G., Magdy Beshbishy A., G. Wasef L., Elewa Y.H.A., A. Al-Sagan A., Abd El-Hack M.E., Taha A.E., M. Abd-Elhakim Y., Prasad Devkota H. Chemical Constituents and Pharmacological Activities of Garlic (Allium Sativum L.): A Review. Nutrients. 2020;12:872. doi: 10.3390/nu12030872.
    1. Elosta A., Slevin M., Rahman K., Ahmed N. Aged Garlic Has More Potent Antiglycation and Antioxidant Properties Compared to Fresh Garlic Extract in Vitro. Sci. Rep. 2017;7:39613. doi: 10.1038/srep39613.
    1. Moriguchi T., Saito H., Nishiyama N. Aged Garlic Extract Prolongs Longevity and Improves Spatial Memory Deficit in Senescence-Accelerated Mouse. Biol. Pharm. Bull. 1996;19:305–307. doi: 10.1248/bpb.19.305.
    1. Moriguchi T., Takashina K., Chu P., Saito H., Nishiyama N. Prolongation of Life Span and Improved Learning in the Senescence Accelerated Mouse Produced by Aged Garlic Extract. Biol. Pharm. Bull. 1994;17:1589–1594. doi: 10.1248/bpb.17.1589.
    1. Nishimura H., Higuchi O., Tateshita K., Tomobe K., Okuma Y., Nomura Y. Antioxidative Activity and Ameliorative Effects of Memory Impairment of Sulfur-Containing Compounds in Allium Species. BioFactors. 2006;26:135–146. doi: 10.1002/biof.5520260204.
    1. Hashimoto M., Nakai T., Masutani T., Unno K., Akao Y. Improvement of Learning and Memory in Senescence-Accelerated Mice by S-Allylcysteine in Mature Garlic Extract. Nutrients. 2020;12:1834. doi: 10.3390/nu12061834.
    1. Chen P., Chang C., Lin W., Nagabhushanam K., Ho C., Pan M. S-Allylcysteine Ameliorates Aging Features via Regulating Mitochondrial Dynamics in Naturally Aged C57BL/6J Mice. Mol. Nutr. Food Res. 2022;66:2101077. doi: 10.1002/mnfr.202101077.
    1. Borek C. Antioxidant Health Effects of Aged Garlic Extract. J. Nutr. 2001;131:1010S–1015S. doi: 10.1093/jn/131.3.1010S.
    1. Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E. CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Nature. 2011;471:602–607. doi: 10.1038/nature09886.
    1. Kim H. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes. Nutrients. 2016;8:464. doi: 10.3390/nu8080464.
    1. Miki S., Suzuki J., Takashima M., Ishida M., Kokubo H., Yoshizumi M. S-1-Propenylcysteine Promotes IL-10-Induced M2c Macrophage Polarization through Prolonged Activation of IL-10R/STAT3 Signaling. Sci. Rep. 2021;11:22469. doi: 10.1038/s41598-021-01866-3.
    1. Roumeliotis S., Roumeliotis A., Dounousi E., Eleftheriadis T., Liakopoulos V. Dietary Antioxidant Supplements and Uric Acid in Chronic Kidney Disease: A Review. Nutrients. 2019;11:1911. doi: 10.3390/nu11081911.
    1. Sánchez-Lozada L.G. The Pathophysiology of Uric Acid on Renal Diseases. Contrib. Neprhol. 2018;192:17–24. doi: 10.1159/000484274.
    1. Kang D.-H., Ha S.-K. Uric Acid Puzzle: Dual Role as Anti-Oxidantand Pro-Oxidant. Electrolytes Blood Press. 2014;12:1. doi: 10.5049/EBP.2014.12.1.1.
    1. Vazirpanah N., Radstake T., Broen J. Inflamm-Ageing and Senescence in Gout: The Tale of an Old King’s Disease. Curr. Aging Sci. 2015;8:186–201. doi: 10.2174/1874609808666150727112434.
    1. Goldberg E.L., Dixit V.D. Drivers of Age-Related Inflammation and Strategies for Healthspan Extension. Immunol. Rev. 2015;265:63–74. doi: 10.1111/imr.12295.
    1. Fan Y., Xia J., Jia D., Zhang M., Zhang Y., Huang G., Wang Y. Mechanism of Ginsenoside Rg1 Renal Protection in a Mouse Model of D-Galactose-Induced Subacute Damage. Pharm. Biol. 2016;54:1815–1821. doi: 10.3109/13880209.2015.1129543.
    1. Cheong K., Lee A. Guanine Deaminase Stimulates Ultraviolet-Induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites. Acta Derm. Venereol. 2020;100:1–10. doi: 10.2340/00015555-3473.
    1. Yu M.-A., Sánchez-Lozada L.G., Johnson R.J., Kang D.-H. Oxidative Stress with an Activation of the Renin-Angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. J. Hypertens. 2010;28:1234–1242. doi: 10.1097/HJH.0b013e328337da1d.
    1. Battelli M.G., Bortolotti M., Bolognesi A., Polito L. Pro-Aging Effects of Xanthine Oxidoreductase Products. Antioxidants. 2020;9:839. doi: 10.3390/antiox9090839.
    1. Chen I.-C., Kuo C.-S., Wu C.-C., Tsai H.-Y., Lin C.-P., Li S.-Y., Chou R.-H., Huang P.-H., Chen J.-W., Lin S.-J. Chronic Hyperuricemia Impairs Blood Flow Recovery in the Ischemic Hindlimb through Suppression of Endothelial Progenitor Cells. Oncotarget. 2018;9:9285–9298. doi: 10.18632/oncotarget.24290.
    1. Mladenov M., Gokik M., Hadzi-Petrushev N., Gjorgoski I., Jankulovski N. The Relationship Between Antioxidant Enzymes and Lipid Peroxidation in Senescent Rat Erythrocytes. Physiol. Res. 2015;64:891. doi: 10.33549/physiolres.932890.
    1. Park K.H., Shin D.G., Kim J.R., Cho K.H. Senescence-Related Truncation and Multimerization of Apolipoprotein A-I in High-Density Lipoprotein With an Elevated Level of Advanced Glycated End Products and Cholesteryl Ester Transfer Activity. J. Gerontol. Ser. A: Biomed. Sci. Med. Sci. 2010;65:600–610. doi: 10.1093/gerona/glq034.
    1. Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41.
    1. Khan H., Belwal T., Efferth T., Farooqi A.A., Sanches-Silva A., Vacca R.A., Nabavi S.F., Khan F., Prasad Devkota H., Barreca D., et al. Targeting Epigenetics in Cancer: Therapeutic Potential of Flavonoids. Crit. Rev. Food Sci. Nutr. 2021;61:1616–1639. doi: 10.1080/10408398.2020.1763910.
    1. Rufino A.T., Costa V.M., Carvalho F., Fernandes E. Flavonoids as Antiobesity Agents: A Review. Med. Res. Rev. 2021;41:556–585. doi: 10.1002/med.21740.
    1. Kim J.M., Lee E.K., Kim D.H., Yu B.P., Chung H.Y. Kaempferol Modulates Pro-Inflammatory NF-ΚB Activation by Suppressing Advanced Glycation Endproducts-Induced NADPH Oxidase. Age. 2010;32:197–208. doi: 10.1007/s11357-009-9124-1.
    1. Hua Y.Q., Zeng Y., Xu J., Xu X. le Naringenin Alleviates Nonalcoholic Steatohepatitis in Middle-Aged Apoe−/−mice: Role of SIRT1. Phytomedicine. 2021;81:153412. doi: 10.1016/j.phymed.2020.153412.
    1. Chattopadhyay D., Sen S., Chatterjee R., Roy D., James J., Thirumurugan K. Context- and Dose-Dependent Modulatory Effects of Naringenin on Survival and Development of Drosophila Melanogaster. Biogerontology. 2016;17:383–393. doi: 10.1007/s10522-015-9624-6.
    1. Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., et al. The Achilles’ Heel of Senescent Cells: From Transcriptome to Senolytic Drugs. Aging Cell. 2015;14:644–658. doi: 10.1111/acel.12344.
    1. Ogrodnik M., Evans S.A., Fielder E., Victorelli S., Kruger P., Salmonowicz H., Weigand B.M., Patel A.D., Pirtskhalava T., Inman C.L., et al. Whole-body Senescent Cell Clearance Alleviates Age-related Brain Inflammation and Cognitive Impairment in Mice. Aging Cell. 2021;20:e13296. doi: 10.1111/acel.13296.
    1. Dookun E., Passos J.F., Arthur H.M., Richardson G.D. Therapeutic Potential of Senolytics in Cardiovascular Disease. Cardiovasc. Drugs Ther. 2022;36:187–196. doi: 10.1007/s10557-020-07075-w.
    1. Yousefzadeh M.J., Zhu Y., McGowan S.J., Angelini L., Fuhrmann-Stroissnigg H., Xu M., Ling Y.Y., Melos K.I., Pirtskhalava T., Inman C.L., et al. Fisetin Is a Senotherapeutic That Extends Health and Lifespan. EBioMedicine. 2018;36:18–28. doi: 10.1016/j.ebiom.2018.09.015.
    1. Chen T., Shen L., Yu J., Wan H., Guo A., Chen J., Long Y., Zhao J., Pei G. Rapamycin and Other Longevity-Promoting Compounds Enhance the Generation of Mouse Induced Pluripotent Stem Cells. Aging Cell. 2011;10:908–911. doi: 10.1111/j.1474-9726.2011.00722.x.
    1. Perrott K.M., Wiley C.D., Desprez P.-Y., Campisi J. Apigenin Suppresses the Senescence-Associated Secretory Phenotype and Paracrine Effects on Breast Cancer Cells. Geroscience. 2017;39:161–173. doi: 10.1007/s11357-017-9970-1.
    1. Cai Q., Ji S., Li M., Zheng S., Zhou X., Guo H., Deng S., Zhu J., Li D., Xie Z. Theaflavin-Regulated Imd Condensates Control Drosophila Intestinal Homeostasis and Aging. iScience. 2021;24:102150. doi: 10.1016/j.isci.2021.102150.
    1. Xiao Y.-Z., Yang M., Xiao Y., Guo Q., Huang Y., Li C.-J., Cai D., Luo X.-H. Reducing Hypothalamic Stem Cell Senescence Protects against Aging-Associated Physiological Decline. Cell Metab. 2020;31:534–548.e5. doi: 10.1016/j.cmet.2020.01.002.
    1. Büchter C., Ackermann D., Havermann S., Honnen S., Chovolou Y., Fritz G., Kampkötter A., Wätjen W. Myricetin-Mediated Lifespan Extension in Caenorhabditis Elegans Is Modulated by DAF-16. Int. J. Mol. Sci. 2013;14:11895–11914. doi: 10.3390/ijms140611895.
    1. Jung H.-Y., Lee D., Ryu H.G., Choi B.-H., Go Y., Lee N., Lee D., Son H.G., Jeon J., Kim S.-H., et al. Myricetin Improves Endurance Capacity and Mitochondrial Density by Activating SIRT1 and PGC-1α. Sci. Rep. 2017;7:6237. doi: 10.1038/s41598-017-05303-2.
    1. Chattopadhyay D., Thirumurugan K. Longevity-Promoting Efficacies of Rutin in High Fat Diet Fed Drosophila Melanogaster. Biogerontology. 2020;21:653–668. doi: 10.1007/s10522-020-09882-y.
    1. Li T., Chen S., Feng T., Dong J., Li Y., Li H. Rutin Protects against Aging-Related Metabolic Dysfunction. Food Funct. 2016;7:1147–1154. doi: 10.1039/C5FO01036E.
    1. Yu X.-L., Li Y.-N., Zhang H., Su Y.-J., Zhou W.-W., Zhang Z.-P., Wang S.-W., Xu P.-X., Wang Y.-J., Liu R.-T. Rutin Inhibits Amylin-Induced Neurocytotoxicity and Oxidative Stress. Food Funct. 2015;6:3296–3306. doi: 10.1039/C5FO00500K.
    1. Burton M.D., Rytych J.L., Amin R., Johnson R.W. Dietary Luteolin Reduces Proinflammatory Microglia in the Brain of Senescent Mice. Rejuvenation Res. 2016;19:286–292. doi: 10.1089/rej.2015.1708.
    1. Sun K., Xiang L., Ishihara S., Matsuura A., Sakagami Y., Qi J. Anti-Aging Effects of Hesperidin on Saccharomyces Cerevisiae via Inhibition of Reactive Oxygen Species and UTH1 Gene Expression. Biosci. Biotechnol. Biochem. 2012;76:640–645. doi: 10.1271/bbb.110535.
    1. Elavarasan J., Velusamy P., Ganesan T., Ramakrishnan S.K., Rajasekaran D., Periandavan K. Hesperidin-Mediated Expression of Nrf2 and Upregulation of Antioxidant Status in Senescent Rat Heart. J. Pharm. Pharmacol. 2012;64:1472–1482. doi: 10.1111/j.2042-7158.2012.01512.x.
    1. Fan X., Zeng Y., Fan Z., Cui L., Song W., Wu Q., Gao Y., Yang D., Mao X., Zeng B., et al. Dihydromyricetin Promotes Longevity and Activates the Transcription Factors FOXO and AOP in Drosophila. Aging. 2021;13:460–476. doi: 10.18632/aging.202156.
    1. Qian J., Wang X., Cao J., Zhang W., Lu C., Chen X. Dihydromyricetin Attenuates D-Galactose-Induced Brain Aging of Mice via Inhibiting Oxidative Stress and Neuroinflammation. Neurosci. Lett. 2021;756:135963. doi: 10.1016/j.neulet.2021.135963.
    1. Martínez-Coria H., Mendoza-Rojas M.X., Arrieta-Cruz I., López-Valdés H.E. Preclinical Research of Dihydromyricetin for Brain Aging and Neurodegenerative Diseases. Front. Pharmacol. 2019;10:1334. doi: 10.3389/fphar.2019.01334.
    1. Ramirez-Sanchez I., Mansour C., Navarrete-Yañez V., Ayala-Hernandez M., Guevara G., Castillo C., Loredo M., Bustamante M., Ceballos G., Villarreal F.J. (−)-Epicatechin Induced Reversal of Endothelial Cell Aging and Improved Vascular Function: Underlying Mechanisms. Food Funct. 2018;9:4802–4813. doi: 10.1039/C8FO00483H.
    1. Si H., Wang X., Zhang L., Parnell L.D., Ahmed B., LeRoith T., Ansah T.-A., Zhang L., Li J., Ordovás J.M., et al. Dietary Epicatechin Improves Survival and Delays Skeletal Muscle Degeneration in Aged Mice. FASEB J. 2019;33:965–977. doi: 10.1096/fj.201800554RR.
    1. Navarrete-Yañez V., Garate-Carrillo A., Rodriguez A., Mendoza-Lorenzo P., Ceballos G., Calzada-Mendoza C., Hogan M.C., Villarreal F., Ramirez-Sanchez I. Effects of (−)-Epicatechin on Neuroinflammation and Hyperphosphorylation of Tau in the Hippocampus of Aged Mice. Food Funct. 2020;11:10351–10361. doi: 10.1039/D0FO02438D.
    1. Lee K.Y., Kim J.-R., Choi H.C. Genistein-Induced LKB1–AMPK Activation Inhibits Senescence of VSMC through Autophagy Induction. Vasc. Pharmacol. 2016;81:75–82. doi: 10.1016/j.vph.2016.02.007.
    1. Kim J.M., Uehara Y., Choi Y.J., Ha Y.M., Ye B.H., Yu B.P., Chung H.Y. Mechanism of Attenuation of Pro-Inflammatory Ang II-Induced NF-ΚB Activation by Genistein in the Kidneys of Male Rats during Aging. Biogerontology. 2011;12:537–550. doi: 10.1007/s10522-011-9345-4.
    1. Bonet-Costa V., Herranz-Pérez V., Blanco-Gandía M., Mas-Bargues C., Inglés M., Garcia-Tarraga P., Rodriguez-Arias M., Miñarro J., Borras C., Garcia-Verdugo J.M., et al. Clearing Amyloid-β through PPARγ/ApoE Activation by Genistein Is a Treatment of Experimental Alzheimer’s Disease. J. Alzheimer’s Dis. 2016;51:701–711. doi: 10.3233/JAD-151020.
    1. Fan X., Fan Z., Yang Z., Huang T., Tong Y., Yang D., Mao X., Yang M. Flavonoids—Natural Gifts to Promote Health and Longevity. Int. J. Mol. Sci. 2022;23:2176. doi: 10.3390/ijms23042176.
    1. Zhang J., Hong Y., Liuyang Z., Li H., Jiang Z., Tao J., Liu H., Xie A., Feng Y., Dong X., et al. Quercetin Prevents Radiation-Induced Oral Mucositis by Upregulating BMI-1. Oxidative Med. Cell. Longev. 2021;2021:2231680. doi: 10.1155/2021/2231680.
    1. Smith M.J., Fowler M., Naftalin R.J., Siow R.C.M. UVA Irradiation Increases Ferrous Iron Release from Human Skin Fibroblast and Endothelial Cell Ferritin: Consequences for Cell Senescence and Aging. Free Radic. Biol. Med. 2020;155:49–57. doi: 10.1016/j.freeradbiomed.2020.04.024.
    1. Li S., Cao H., Shen D., Jia Q., Chen C., Xing S. Quercetin Protects against Ox-LDL-induced Injury via Regulation of ABCAl, LXR-α and PCSK9 in RAW264.7 Macrophages. Mol. Med. Rep. 2018;18:799–806. doi: 10.3892/mmr.2018.9048.
    1. Sohn E.-J., Kim J.M., Kang S.-H., Kwon J., An H.J., Sung J.-S., Cho K.A., Jang I.-S., Choi J.-S. Restoring Effects of Natural Anti-Oxidant Quercetin on Cellular Senescent Human Dermal Fibroblasts. Am. J. Chin. Med. 2018;46:853–873. doi: 10.1142/S0192415X18500453.
    1. Zoico E., Nori N., Darra E., Tebon M., Rizzatti V., Policastro G., de Caro A., Rossi A.P., Fantin F., Zamboni M. Senolytic Effects of Quercetin in an in Vitro Model of Pre-Adipocytes and Adipocytes Induced Senescence. Sci. Rep. 2021;11:23237. doi: 10.1038/s41598-021-02544-0.
    1. Wei Y., Fu J., Wu W., Ma P., Ren L., Yi Z., Wu J. Quercetin Prevents Oxidative Stress-Induced Injury of Periodontal Ligament Cells and Alveolar Bone Loss in Periodontitis. Drug Des. Dev. Ther. 2021;15:3509–3522. doi: 10.2147/DDDT.S315249.
    1. Zefzoufi M., Fdil R., Bouamama H., Gadhi C., Katakura Y., Mouzdahir A., Sraidi K. Effect of Extracts and Isolated Compounds Derived from Retama Monosperma (L.) Boiss. on Anti-Aging Gene Expression in Human Keratinocytes and Antioxidant Activity. J. Ethnopharmacol. 2021;280:114451. doi: 10.1016/j.jep.2021.114451.
    1. Chondrogianni N., Kapeta S., Chinou I., Vassilatou K., Papassideri I., Gonos E.S. Anti-Ageing and Rejuvenating Effects of Quercetin. Exp. Gerontol. 2010;45:763–771. doi: 10.1016/j.exger.2010.07.001.
    1. Hickson L.J., Langhi Prata L.G.P., Bobart S.A., Evans T.K., Giorgadze N., Hashmi S.K., Herrmann S.M., Jensen M.D., Jia Q., Jordan K.L., et al. Corrigendum to ‘Senolytics Decrease Senescent Cells in Humans: Preliminary Report from a Clinical Trial of Dasatinib plus Quercetin in Individuals with Diabetic Kidney Disease’ EBioMedicine 47 (2019) 446–456. EBioMedicine. 2020;52:102595. doi: 10.1016/j.ebiom.2019.12.004.
    1. Abharzanjani F., Hemmati M. Protective Effects of Quercetin and Resveratrol on Aging Markers in Kidney under High Glucose Condition: In Vivo and in Vitro Analysis. Mol. Biol. Rep. 2021;48:5435–5442. doi: 10.1007/s11033-021-06550-3.
    1. Xu M., Pirtskhalava T., Farr J.N., Weigand B.M., Palmer A.K., Weivoda M.M., Inman C.L., Ogrodnik M.B., Hachfeld C.M., Fraser D.G., et al. Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nat. Med. 2018;24:1246–1256. doi: 10.1038/s41591-018-0092-9.
    1. Saccon T.D., Nagpal R., Yadav H., Cavalcante M.B., de Nunes A.D.C., Schneider A., Gesing A., Hughes B., Yousefzadeh M., Tchkonia T., et al. Senolytic Combination of Dasatinib and Quercetin Alleviates Intestinal Senescence and Inflammation and Modulates the Gut Microbiome in Aged Mice. J. Gerontol. Ser. A. 2021;76:1895–1905. doi: 10.1093/gerona/glab002.
    1. Molagoda I.M.N., Kavinda M.H.D., Choi Y.H., Lee H., Kang C.-H., Lee M.-H., Lee C.-M., Kim G.-Y. Fisetin Protects HaCaT Human Keratinocytes from Fine Particulate Matter (PM2.5)-Induced Oxidative Stress and Apoptosis by Inhibiting the Endoplasmic Reticulum Stress Response. Antioxidants. 2021;10:1492. doi: 10.3390/antiox10091492.
    1. Giri S., Takada A., Paudel D., Yoshida K., Furukawa M., Kuramitsu Y., Matsushita K., Abiko Y., Furuichi Y. An in Vitro Senescence Model of Gingival Epithelial Cell Induced by Hydrogen Peroxide Treatment. Odontology. 2022;110:44–53. doi: 10.1007/s10266-021-00630-3.
    1. Singh S., Garg G., Singh A.K., Bissoyi A., Rizvi S.I. Fisetin, a Potential Caloric Restriction Mimetic, Attenuates Senescence Biomarkers in Rat Erythrocytes. Biochem. Cell Biol. 2019;97:480–487. doi: 10.1139/bcb-2018-0159.
    1. Mitchell S.J., Bernier M., Mattison J.A., Aon M.A., Kaiser T.A., Anson R.M., Ikeno Y., Anderson R.M., Ingram D.K., de Cabo R. Daily Fasting Improves Health and Survival in Male Mice Independent of Diet Composition and Calories. Cell Metab. 2019;29:221–228.e3. doi: 10.1016/j.cmet.2018.08.011.
    1. Singh S., Garg G., Singh A.K., Tripathi S.S., Rizvi S.I. Fisetin, a Potential Caloric Restriction Mimetic, Modulates Ionic Homeostasis in Senescence Induced and Naturally Aged Rats. Arch. Physiol. Biochem. 2022;128:51–58. doi: 10.1080/13813455.2019.1662452.
    1. Boesten D.M.P.H.J., de Vos-Houben J.M.J., Timmermans L., den Hartog G.J.M., Bast A., Hageman G.J. Accelerated Aging during Chronic Oxidative Stress: A Role for PARP-1. Oxidative Med. Cell. Longev. 2013;2013:680414. doi: 10.1155/2013/680414.
    1. Mas-Bargues C., Borrás C., Viña J. Genistein, a Tool for Geroscience. Mech. Ageing Dev. 2022;204:111665. doi: 10.1016/j.mad.2022.111665.
    1. Wang Y.N., Wu W., Chen H.C., Fang H. Genistein Protects against UVB-Induced Senescence-like Characteristics in Human Dermal Fibroblast by P66Shc down-Regulation. J. Dermatol. Sci. 2010;58:19–27. doi: 10.1016/j.jdermsci.2010.02.002.
    1. Zhang H., Pang X., Yu H., Zhou H. Genistein Suppresses Ox-LDL-elicited Oxidative Stress and Senescence in HUVECs through the SIRT1-p66shc-Foxo3a Pathways. J. Biochem. Mol. Toxicol. 2022;36:e22939. doi: 10.1002/jbt.22939.
    1. Prasanth M., Sivamaruthi B., Chaiyasut C., Tencomnao T. A Review of the Role of Green Tea (Camellia Sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients. 2019;11:474. doi: 10.3390/nu11020474.
    1. Kochman J., Jakubczyk K., Antoniewicz J., Mruk H., Janda K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules. 2020;26:85. doi: 10.3390/molecules26010085.
    1. Cabrera C., Artacho R., Giménez R. Beneficial Effects of Green Tea—A Review. J. Am. Coll Nutr. 2006;25:79–99. doi: 10.1080/07315724.2006.10719518.
    1. Levine B., Kroemer G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell. 2019;176:11–42. doi: 10.1016/j.cell.2018.09.048.
    1. Li F., Wang Y., Li D., Chen Y., Qiao X., Fardous R., Lewandowski A., Liu J., Chan T.-H., Dou Q.P. Perspectives on the Recent Developments with Green Tea Polyphenols in Drug Discovery. Expert Opin. Drug. Discov. 2018;13:643–660. doi: 10.1080/17460441.2018.1465923.
    1. Khan N., Mukhtar H. Tea Polyphenols in Promotion of Human Health. Nutrients. 2018;11:39. doi: 10.3390/nu11010039.
    1. Unno K., Takabayashi F., Yoshida H., Choba D., Fukutomi R., Kikunaga N., Kishido T., Oku N., Hoshino M. Daily Consumption of Green Tea Catechin Delays Memory Regression in Aged Mice. Biogerontology. 2007;8:89–95. doi: 10.1007/s10522-006-9036-8.
    1. Unno K., Ishikawa Y., Takabayashi F., Sasaki T., Takamori N., Iguchi K., Hoshino M. Daily Ingestion of Green Tea Catechins from Adulthood Suppressed Brain Dysfunction in Aged Mice. Biofactors. 2008;34:263–271. doi: 10.1002/biof.5520340402.
    1. Unno K., Takabayashi F., Kishido T., Oku N. Suppressive Effect of Green Tea Catechins on Morphologic and Functional Regression of the Brain in Aged Mice with Accelerated Senescence (SAMP10) Exp. Gerontol. 2004;39:1027–1034. doi: 10.1016/j.exger.2004.03.033.
    1. Hsu Y.-W., Chen W.-K., Tsai C.-F. Senescence-Mediated Redox Imbalance in Liver and Kidney: Antioxidant Rejuvenating Potential of Green Tea Extract. Int. J. Environ. Res. Public Health. 2021;19:260. doi: 10.3390/ijerph19010260.
    1. Kishido T., Unno K., Yoshida H., Choba D., Fukutomi R., Asahina S., Iguchi K., Oku N., Hoshino M. Decline in Glutathione Peroxidase Activity Is a Reason for Brain Senescence: Consumption of Green Tea Catechin Prevents the Decline in Its Activity and Protein Oxidative Damage in Ageing Mouse Brain. Biogerontology. 2007;8:423–430. doi: 10.1007/s10522-007-9085-7.
    1. Srividhya R., Jyothilakshmi V., Arulmathi K., Senthilkumaran V., Kalaiselvi P. Attenuation of Senescence-induced Oxidative Exacerbations in Aged Rat Brain by (−)-epigallocatechin-3-gallate. Int. J. Dev. Neurosci. 2008;26:217–223. doi: 10.1016/j.ijdevneu.2007.12.003.
    1. Marrazzo P., Angeloni C., Freschi M., Lorenzini A., Prata C., Maraldi T., Hrelia S. Combination of Epigallocatechin Gallate and Sulforaphane Counteracts In Vitro Oxidative Stress and Delays Stemness Loss of Amniotic Fluid Stem Cells. Oxidative Med. Cell. Longev. 2018;2018:5263985. doi: 10.1155/2018/5263985.
    1. Shin J.-H., Jeon H.-J., Park J., Chang M.-S. Epigallocatechin-3-Gallate Prevents Oxidative Stress-Induced Cellular Senescence in Human Mesenchymal Stem Cells via Nrf2. Int. J. Mol. Med. 2016;38:1075–1082. doi: 10.3892/ijmm.2016.2694.
    1. Chang Y.-C., Liu H.-W., Chan Y.-C., Hu S.-H., Liu M.-Y., Chang S.-J. The Green Tea Polyphenol Epigallocatechin-3-Gallate Attenuates Age-Associated Muscle Loss via Regulation of MiR-486-5p and Myostatin. Arch. Biochem. Biophys. 2020;692:108511. doi: 10.1016/j.abb.2020.108511.
    1. Mao X., Gu C., Chen D., Yu B., He J. Oxidative Stress-Induced Diseases and Tea Polyphenols. Oncotarget. 2017;8:81649–81661. doi: 10.18632/oncotarget.20887.
    1. Chanet A., Milenkovic D., Manach C., Mazur A., Morand C. Citrus Flavanones: What Is Their Role in Cardiovascular Protection? J. Agric. Food Chem. 2012;60:8809–8822. doi: 10.1021/jf300669s.
    1. Chularojmontri L., Gerdprasert O., Wattanapitayakul S.K. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence. Evid.-Based Complement. Altern. Med. 2013;2013:254835. doi: 10.1155/2013/254835.
    1. Mulero J., Bernabé J., Cerdá B., García-Viguera C., Moreno D.A., Albaladejo M.D., Avilés F., Parra S., Abellán J., Zafrilla P. Variations on Cardiovascular Risk Factors in Metabolic Syndrome after Consume of a Citrus-Based Juice. Clin. Nutr. 2012;31:372–377. doi: 10.1016/j.clnu.2011.11.014.
    1. Buachan P., Chularojmontri L., Wattanapitayakul S. Selected Activities of Citrus Maxima Merr. Fruits on Human Endothelial Cells: Enhancing Cell Migration and Delaying Cellular Aging. Nutrients. 2014;6:1618–1634. doi: 10.3390/nu6041618.
    1. Testai L., Piragine E., Piano I., Flori L., da Pozzo E., Miragliotta V., Pirone A., Citi V., di Cesare Mannelli L., Brogi S., et al. The Citrus Flavonoid Naringenin Protects the Myocardium from Ageing-Dependent Dysfunction: Potential Role of SIRT1. Oxidative Med. Cell. Longev. 2020;2020:4650207. doi: 10.1155/2020/4650207.
    1. da Pozzo E., Costa B., Cavallini C., Testai L., Martelli A., Calderone V., Martini C. The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage. Oxidative Med. Cell. Longev. 2017;2017:9536148. doi: 10.1155/2017/9536148.
    1. Zhang Y., Liu B., Chen X., Zhang N., Li G., Zhang L.-H., Tan L.-Y. Naringenin Ameliorates Behavioral Dysfunction and Neurological Deficits in a D-Galactose-Induced Aging Mouse Model Through Activation of PI3K/Akt/Nrf2 Pathway. Rejuvenation Res. 2017;20:462–472. doi: 10.1089/rej.2017.1960.
    1. Nakajima A., Aoyama Y., Nguyen T.-T.L., Shin E.-J., Kim H.-C., Yamada S., Nakai T., Nagai T., Yokosuka A., Mimaki Y., et al. Nobiletin, a Citrus Flavonoid, Ameliorates Cognitive Impairment, Oxidative Burden, and Hyperphosphorylation of Tau in Senescence-Accelerated Mouse. Behav. Brain Res. 2013;250:351–360. doi: 10.1016/j.bbr.2013.05.025.
    1. Nakajima A., Aoyama Y., Shin E.-J., Nam Y., Kim H.-C., Nagai T., Yokosuka A., Mimaki Y., Yokoi T., Ohizumi Y., et al. Nobiletin, a Citrus Flavonoid, Improves Cognitive Impairment and Reduces Soluble Aβ Levels in a Triple Transgenic Mouse Model of Alzheimer’s Disease (3XTg-AD) Behav. Brain Res. 2015;289:69–77. doi: 10.1016/j.bbr.2015.04.028.
    1. da Pozzo E., de Leo M., Faraone I., Milella L., Cavallini C., Piragine E., Testai L., Calderone V., Pistelli L., Braca A., et al. Antioxidant and Antisenescence Effects of Bergamot Juice. Oxidative Med. Cell. Longev. 2018;2018:9395804. doi: 10.1155/2018/9395804.
    1. Kashyap P., Shikha D., Thakur M., Aneja A. Functionality of Apigenin as a Potent Antioxidant with Emphasis on Bioavailability, Metabolism, Action Mechanism and in Vitro and in Vivo Studies: A Review. J. Food Biochem. 2022;46:e13950. doi: 10.1111/jfbc.13950.
    1. Choi S., Youn J., Kim K., Joo D.H., Shin S., Lee J., Lee H.K., An I.-S., Kwon S., Youn H.J., et al. Apigenin Inhibits UVA-Induced Cytotoxicity in Vitro and Prevents Signs of Skin Aging in Vivo. Int. J. Mol. Med. 2016;38:627–634. doi: 10.3892/ijmm.2016.2626.
    1. Salehi B., Venditti A., Sharifi-Rad M., Kręgiel D., Sharifi-Rad J., Durazzo A., Lucarini M., Santini A., Souto E., Novellino E., et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019;20:1305. doi: 10.3390/ijms20061305.
    1. Li B.S., Zhu R.Z., Lim S.-H., Seo J.H., Choi B.-M. Apigenin Alleviates Oxidative Stress-Induced Cellular Senescence via Modulation of the SIRT1-NAD+-CD38 Axis. Am. J. Chin. Med. 2021;49:1235–1250. doi: 10.1142/S0192415X21500592.
    1. Sang Y., Zhang F., Wang H., Yao J., Chen R., Zhou Z., Yang K., Xie Y., Wan T., Ding H. Apigenin Exhibits Protective Effects in a Mouse Model of D-Galactose-Induced Aging via Activating the Nrf2 Pathway. Food Funct. 2017;8:2331–2340. doi: 10.1039/C7FO00037E.
    1. Cháirez-Ramírez M.H., de la Cruz-López K.G., García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharmacol. 2021;12:710304. doi: 10.3389/fphar.2021.710304.
    1. Sharma M., Hunter K.D., Fonseca F.P., Radhakrishnan R. Emerging Role of Cellular Senescence in the Pathogenesis of Oral Submucous Fibrosis and Its Malignant Transformation. Head Neck. 2021;43:3153–3164. doi: 10.1002/hed.26805.
    1. Li J., Zhao R., Zhao H., Chen G., Jiang Y., Lyu X., Wu T. Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK–MTOR Signaling Pathway in Aged Female Rats. J. Agric. Food Chem. 2019;67:7832–7843. doi: 10.1021/acs.jafc.9b02567.
    1. Gao J., Wu Y., He D., Zhu X., Li H., Liu H., Liu H. Anti-Aging Effects of Ribes Meyeri Anthocyanins on Neural Stem Cells and Aging Mice. Aging. 2020;12:17738–17753. doi: 10.18632/aging.103955.
    1. Shih P.-H., Chan Y.-C., Liao J.-W., Wang M.-F., Yen G.-C. Antioxidant and Cognitive Promotion Effects of Anthocyanin-Rich Mulberry (Morus Atropurpurea L.) on Senescence-Accelerated Mice and Prevention of Alzheimer’s Disease. J. Nutr. Biochem. 2010;21:598–605. doi: 10.1016/j.jnutbio.2009.03.008.
    1. Lee G., Hoang T., Jung E., Jung S., Han S., Chung M., Chae S., Chae H. Anthocyanins Attenuate Endothelial Dysfunction through Regulation of Uncoupling of Nitric Oxide Synthase in Aged Rats. Aging Cell. 2020;19:e13279. doi: 10.1111/acel.13279.
    1. Parzonko A., Oświt A., Bazylko A., Naruszewicz M. Anthocyans-Rich Aronia Melanocarpa Extract Possesses Ability to Protect Endothelial Progenitor Cells against Angiotensin II Induced Dysfunction. Phytomedicine. 2015;22:1238–1246. doi: 10.1016/j.phymed.2015.10.009.
    1. Tosti V., Bertozzi B., Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A. 2018;73:318–326. doi: 10.1093/gerona/glx227.
    1. Gantenbein K.V., Kanaka-Gantenbein C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients. 2021;13:1951. doi: 10.3390/nu13061951.
    1. Singla R.K., Dubey A.K., Garg A., Sharma R.K., Fiorino M., Ameen S.M., Haddad M.A., Al-Hiary M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019;102:1397–1400. doi: 10.5740/jaoacint.19-0133.
    1. Liu Y., Chen X., Li J. Resveratrol Protects against Oxidized Low-Density Lipoprotein-Induced Human Umbilical Vein Endothelial Cell Apoptosis via Inhibition of Mitochondrial-Derived Oxidative Stress. Mol. Med. Rep. 2017;15:2457–2464. doi: 10.3892/mmr.2017.6304.
    1. Liu G.-S., Zhang Z.-S., Yang B., He W. Resveratrol Attenuates Oxidative Damage and Ameliorates Cognitive Impairment in the Brain of Senescence-Accelerated Mice. Life Sci. 2012;91:872–877. doi: 10.1016/j.lfs.2012.08.033.
    1. Tung B.T., Rodríguez-Bies E., Talero E., Gamero-Estévez E., Motilva V., Navas P., López-Lluch G. Anti-Inflammatory Effect of Resveratrol in Old Mice Liver. Exp. Gerontol. 2015;64:1–7. doi: 10.1016/j.exger.2015.02.004.
    1. Rahimifard M., Baeeri M., Bahadar H., Moini-Nodeh S., Khalid M., Haghi-Aminjan H., Mohammadian H., Abdollahi M. Therapeutic Effects of Gallic Acid in Regulating Senescence and Diabetes; an In Vitro Study. Molecules. 2020;25:5875. doi: 10.3390/molecules25245875.
    1. Hwang E., Park S.-Y., Lee H.J., Lee T.Y., Sun Z., Yi T.H. Gallic Acid Regulates Skin Photoaging in UVB-Exposed Fibroblast and Hairless Mice. Phytother. Res. 2014;28:1778–1788. doi: 10.1002/ptr.5198.
    1. Chen P., Chen F., Zhou B. Antioxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Ellagic Acid in Liver and Brain of Rats Treated by D-Galactose. Sci. Rep. 2018;8:1465. doi: 10.1038/s41598-018-19732-0.
    1. Hahn H.J., Kim K.B., Bae S., Choi B.G., An S., Ahn K.J., Kim S.Y. Pretreatment of Ferulic Acid Protects Human Dermal Fibroblasts against Ultraviolet A Irradiation. Ann. Dermatol. 2016;28:740. doi: 10.5021/ad.2016.28.6.740.
    1. Huang X., You Y., Xi Y., Ni B., Chu X., Zhang R., You H. P-Coumaric Acid Attenuates IL-1β-Induced Inflammatory Responses and Cellular Senescence in Rat Chondrocytes. Inflammation. 2020;43:619–628. doi: 10.1007/s10753-019-01142-7.
    1. Shen Y., Song X., Li L., Sun J., Jaiswal Y., Huang J., Liu C., Yang W., Williams L., Zhang H., et al. Protective Effects of P-Coumaric Acid against Oxidant and Hyperlipidemia-an in Vitro and in Vivo Evaluation. Biomed. Pharmacother. 2019;111:579–587. doi: 10.1016/j.biopha.2018.12.074.
    1. Sun C.Y., Qi S.S., Zhou P., Cui H.R., Chen S.X., Dai K.Y., Tang M.L. Neurobiological and Pharmacological Validity of Curcumin in Ameliorating Memory Performance of Senescence-Accelerated Mice. Pharmacol. Biochem. Behav. 2013;105:76–82. doi: 10.1016/j.pbb.2013.02.002.
    1. Takano K., Tatebe J., Washizawa N., Morita T. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet. Nutrients. 2018;10:1476. doi: 10.3390/nu10101476.
    1. Yu S., Lin S., Yu Y., Chien M., Su K., Lin C., Way T., Yiang G., Lin C., Chan D., et al. Isochaihulactone Protects PC12 Cell against H2O2 Induced Oxidative Stress and Exerts the Potent Anti-Aging Effects in D-Galactose Aging Mouse Model. Acta Pharmacol. Sin. 2010;31:1532–1540. doi: 10.1038/aps.2010.152.
    1. Jang H.-J., Yang K.E., Oh W.K., Lee S.-I., Hwang I.-H., Ban K.-T., Yoo H.-S., Choi J.-S., Yeo E.-J., Jang I.-S. Nectandrin B-Mediated Activation of the AMPK Pathway Prevents Cellular Senescence in Human Diploid Fibroblasts by Reducing Intracellular ROS Levels. Aging. 2019;11:3731–3749. doi: 10.18632/aging.102013.
    1. Chong J., Poutaraud A., Hugueney P. Metabolism and Roles of Stilbenes in Plants. Plant Sci. 2009;177:143–155. doi: 10.1016/j.plantsci.2009.05.012.
    1. Flamini R., de Rosso M. High-Resolution Mass Spectrometry and Biological Properties of Grapevine and Wine Stilbenoids. Stud. Nat. Prod. Chem. 2019;61:175–210.
    1. Griñán-Ferré C., Bellver-Sanchis A., Izquierdo V., Corpas R., Roig-Soriano J., Chillón M., Andres-Lacueva C., Somogyvári M., Sőti C., Sanfeliu C., et al. The Pleiotropic Neuroprotective Effects of Resveratrol in Cognitive Decline and Alzheimer’s Disease Pathology: From Antioxidant to Epigenetic Therapy. Ageing Res. Rev. 2021;67:101271. doi: 10.1016/j.arr.2021.101271.
    1. Li B., Hou D., Guo H., Zhou H., Zhang S., Xu X., Liu Q., Zhang X., Zou Y., Gong Y., et al. Resveratrol Sequentially Induces Replication and Oxidative Stresses to Drive P53-CXCR2 Mediated Cellular Senescence in Cancer Cells. Sci. Rep. 2017;7:208. doi: 10.1038/s41598-017-00315-4.
    1. Baur J.A., Sinclair D.A. Therapeutic Potential of Resveratrol: The in Vivo Evidence. Nat. Rev. Drug Discov. 2006;5:493–506. doi: 10.1038/nrd2060.
    1. Lu X., Ma L., Ruan L., Kong Y., Mou H., Zhang Z., Wang Z., Wang J.M., Le Y. Resveratrol Differentially Modulates Inflammatory Responses of Microglia and Astrocytes. J. Neuroinflamm. 2010;7:46. doi: 10.1186/1742-2094-7-46.
    1. Carrizzo A., Forte M., Damato A., Trimarco V., Salzano F., Bartolo M., Maciag A., Puca A.A., Vecchione C. Antioxidant Effects of Resveratrol in Cardiovascular, Cerebral and Metabolic Diseases. Food Chem. Toxicol. 2013;61:215–226. doi: 10.1016/j.fct.2013.07.021.
    1. Simão F., Matté A., Pagnussat A.S., Netto C.A., Salbego C.G. Resveratrol Prevents CA1 Neurons against Ischemic Injury by Parallel Modulation of Both GSK-3β and CREB through PI3-K/Akt Pathways. Eur. J. Neurosci. 2012;36:2899–2905. doi: 10.1111/j.1460-9568.2012.08229.x.
    1. Chen C.-Y., Jang J.-H., Li M.-H., Surh Y.-J. Resveratrol Upregulates Heme Oxygenase-1 Expression via Activation of NF-E2-Related Factor 2 in PC12 Cells. Biochem. Biophys. Res. Commun. 2005;331:993–1000. doi: 10.1016/j.bbrc.2005.03.237.
    1. Singh A.P., Singh R., Verma S.S., Rai V., Kaschula C.H., Maiti P., Gupta S.C. Health Benefits of Resveratrol: Evidence from Clinical Studies. Med. Res. Rev. 2019;39:1851–1891. doi: 10.1002/med.21565.
    1. Cao W., Dou Y., Li A. Resveratrol Boosts Cognitive Function by Targeting SIRT1. Neurochem. Res. 2018;43:1705–1713. doi: 10.1007/s11064-018-2586-8.
    1. Ohtsu A., Shibutani Y., Seno K., Iwata H., Kuwayama T., Shirasuna K. Advanced Glycation End Products and Lipopolysaccharides Stimulate Interleukin-6 Secretion via the RAGE/TLR4-NF-κB-ROS Pathways and Resveratrol Attenuates These Inflammatory Responses in Mouse Macrophages. Exp. Ther. Med. 2017;14:4363–4370. doi: 10.3892/etm.2017.5045.
    1. Zhang N., Li Z., Xu K., Wang Y., Wang Z. Resveratrol Protects against High-Fat Diet Induced Renal Pathological Damage and Cell Senescence by Activating SIRT1. Biol. Pharm. Bull. 2016;39:1448–1454. doi: 10.1248/bpb.b16-00085.
    1. Li Y.-R., Li S., Lin C.-C. Effect of Resveratrol and Pterostilbene on Aging and Longevity. BioFactors. 2018;44:69–82. doi: 10.1002/biof.1400.
    1. Ali D., Chen L., Kowal J.M., Okla M., Manikandan M., AlShehri M., AlMana Y., AlObaidan R., AlOtaibi N., Hamam R., et al. Resveratrol Inhibits Adipocyte Differentiation and Cellular Senescence of Human Bone Marrow Stromal Stem Cells. Bone. 2020;133:115252. doi: 10.1016/j.bone.2020.115252.
    1. Subedi L., Lee T.H., Wahedi H.M., Baek S.-H., Kim S.Y. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades. Oxidative Med. Cell. Longev. 2017;2017:8379539. doi: 10.1155/2017/8379539.
    1. Kilic Eren M., Kilincli A., Eren Ö. Resveratrol Induced Premature Senescence Is Associated with DNA Damage Mediated SIRT1 and SIRT2 Down-Regulation. PLoS ONE. 2015;10:e0124837. doi: 10.1371/journal.pone.0124837.
    1. Martins L.A.M., Coelho B.P., Behr G., Pettenuzzo L.F., Souza I.C.C., Moreira J.C.F., Borojevic R., Gottfried C., Guma F.C.R. Resveratrol Induces Pro-Oxidant Effects and Time-Dependent Resistance to Cytotoxicity in Activated Hepatic Stellate Cells. Cell Biochem. Biophys. 2014;68:247–257. doi: 10.1007/s12013-013-9703-8.
    1. Heiss E.H., Schilder Y.D.C., Dirsch V.M. Chronic Treatment with Resveratrol Induces Redox Stress- and Ataxia Telangiectasia-Mutated (ATM)-Dependent Senescence in P53-Positive Cancer Cells. J. Biol. Chem. 2007;282:26759–26766. doi: 10.1074/jbc.M703229200.
    1. Chandrasekara A. Encyclopedia of Food Chemistry. Elsevier; Amsterdam, The Netherlands: 2019. Phenolic Acids; pp. 535–545.
    1. Guo L., Cao J., Wei T., Li J., Feng Y., Wang L., Sun Y., Chai Y. Gallic Acid Attenuates Thymic Involution in the D-Galactose Induced Accelerated Aging Mice. Immunobiology. 2020;225:151870. doi: 10.1016/j.imbio.2019.11.005.
    1. Liao C.-C., Chen S.-C., Huang H.-P., Wang C.-J. Gallic Acid Inhibits Bladder Cancer Cell Proliferation and Migration via Regulating Fatty Acid Synthase (FAS) J. Food Drug Anal. 2018;26:620–627. doi: 10.1016/j.jfda.2017.06.006.
    1. Punithavathi V.R., Stanely Mainzen Prince P., Kumar M.R., Selvakumari C.J. Protective Effects of Gallic Acid on Hepatic Lipid Peroxide Metabolism, Glycoprotein Components and Lipids in Streptozotocin-Induced Type II Diabetic Wistar Rats. J. Biochem. Mol. Toxicol. 2011;25:68–76. doi: 10.1002/jbt.20360.
    1. Szwajgier D., Borowiec K., Pustelniak K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients. 2017;9:477. doi: 10.3390/nu9050477.
    1. Moghtaderi H., Sepehri H., Delphi L., Attari F. Gallic Acid and Curcumin Induce Cytotoxicity and Apoptosis in Human Breast Cancer Cell MDA-MB-231. BioImpacts. 2018;8:185–194. doi: 10.15171/bi.2018.21.
    1. Gao J., Hu J., Hu D., Yang X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat. Prod. Commun. 2019;14:1934578X1987417. doi: 10.1177/1934578X19874174.
    1. Dludla P., Nkambule B., Jack B., Mkandla Z., Mutize T., Silvestri S., Orlando P., Tiano L., Louw J., Mazibuko-Mbeje S. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients. 2018;11:23. doi: 10.3390/nu11010023.
    1. Varma S.R., Sivaprakasam T.O., Mishra A., Kumar L.M.S., Prakash N.S., Prabhu S., Ramakrishnan S. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes. PLoS ONE. 2016;11:e0145921. doi: 10.1371/journal.pone.0145921.
    1. Baek B., Lee S.H., Kim K., Lim H.-W., Lim C.-J. Ellagic Acid Plays a Protective Role against UV-B-Induced Oxidative Stress by up-Regulating Antioxidant Components in Human Dermal Fibroblasts. Korean J. Physiol. Pharmacol. 2016;20:269. doi: 10.4196/kjpp.2016.20.3.269.
    1. Vattem D.A., Shetty K. Biological Functionality of Ellagic Acid: A Review. J. Food Biochem. 2005;29:234–266. doi: 10.1111/j.1745-4514.2005.00031.x.
    1. Hwang J.M., Cho J.S., Kim T.H., Lee Y.I. Ellagic Acid Protects Hepatocytes from Damage by Inhibiting Mitochondrial Production of Reactive Oxygen Species. Biomed. Pharmacother. 2010;64:264–270. doi: 10.1016/j.biopha.2009.06.013.
    1. Uzar E., Alp H., Cevik M.U., Fırat U., Evliyaoglu O., Tufek A., Altun Y. Ellagic Acid Attenuates Oxidative Stress on Brain and Sciatic Nerve and Improves Histopathology of Brain in Streptozotocin-Induced Diabetic Rats. Neurol. Sci. 2012;33:567–574. doi: 10.1007/s10072-011-0775-1.
    1. Baeeri M., Momtaz S., Navaei-Nigjeh M., Niaz K., Rahimifard M., Ghasemi-Niri S.F., Sanadgol N., Hodjat M., Sharifzadeh M., Abdollahi M. Molecular Evidence on the Protective Effect of Ellagic Acid on Phosalone-Induced Senescence in Rat Embryonic Fibroblast Cells. Food Chem. Toxicol. 2017;100:8–23. doi: 10.1016/j.fct.2016.12.008.
    1. Muthaiyah B., Essa M.M., Lee M., Chauhan V., Kaur K., Chauhan A. Dietary Supplementation of Walnuts Improves Memory Deficits and Learning Skills in Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2014;42:1397–1405. doi: 10.3233/JAD-140675.
    1. Ou L., Kong L.-Y., Zhang X.-M., Niwa M. Oxidation of Ferulic Acid by Momordica Charantia Peroxidase and Related Anti-Inflammation Activity Changes. Biol. Pharm. Bull. 2003;26:1511–1516. doi: 10.1248/bpb.26.1511.
    1. Zhang X., Lin D., Jiang R., Li H., Wan J., Li H. Ferulic Acid Exerts Antitumor Activity and Inhibits Metastasis in Breast Cancer Cells by Regulating Epithelial to Mesenchymal Transition. Oncol. Rep. 2016;36:271–278. doi: 10.3892/or.2016.4804.
    1. Hong Q., Ma Z.-C., Huang H., Wang Y.-G., Tan H.-L., Xiao C.-R., Liang Q.-D., Zhang H.-T., Gao Y. Antithrombotic Activities of Ferulic Acid via Intracellular Cyclic Nucleotide Signaling. Eur. J. Pharmacol. 2016;777:1–8. doi: 10.1016/j.ejphar.2016.01.005.
    1. Borges A., Ferreira C., Saavedra M.J., Simões M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microb. Drug Resist. 2013;19:256–265. doi: 10.1089/mdr.2012.0244.
    1. Wagle S., Sim H.-J., Bhattarai G., Choi K.-C., Kook S.-H., Lee J.-C., Jeon Y.-M. Supplemental Ferulic Acid Inhibits Total Body Irradiation-Mediated Bone Marrow Damage, Bone Mass Loss, Stem Cell Senescence, and Hematopoietic Defect in Mice by Enhancing Antioxidant Defense Systems. Antioxidants. 2021;10:1209. doi: 10.3390/antiox10081209.
    1. Zduńska K., Dana A., Kolodziejczak A., Rotsztejn H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Ski. Pharmacol. Physiol. 2018;31:332–336. doi: 10.1159/000491755.
    1. Balasubashini M.S., Rukkumani R., Viswanathan P., Menon V.P. Ferulic Acid Alleviates Lipid Peroxidation in Diabetic Rats. Phytother. Res. 2004;18:310–314. doi: 10.1002/ptr.1440.
    1. Ren Z., Zhang R., Li Y., Li Y., Yang Z., Yang H. Ferulic Acid Exerts Neuroprotective Effects against Cerebral Ischemia/Reperfusion-Induced Injury via Antioxidant and Anti-Apoptotic Mechanisms In Vitro and In Vivo. Int. J. Mol. Med. 2017;40:1444–1456. doi: 10.3892/ijmm.2017.3127.
    1. Meng G., Meng X., Ma X., Zhang G., Hu X., Jin A., Zhao Y., Liu X. Application of Ferulic Acid for Alzheimer’s Disease: Combination of Text Mining and Experimental Validation. Front. Neuroinform. 2018;12:31. doi: 10.3389/fninf.2018.00031.
    1. Narasimhan A., Chinnaiyan M., Karundevi B. Ferulic Acid Exerts Its Antidiabetic Effect by Modulating Insulin-Signalling Molecules in the Liver of High-Fat Diet and Fructose-Induced Type-2 Diabetic Adult Male Rat. Appl. Physiol. Nutr. Metab. 2015;40:769–781. doi: 10.1139/apnm-2015-0002.
    1. Stompor-Gorący M., Machaczka M. Recent Advances in Biological Activity, New Formulations and Prodrugs of Ferulic Acid. Int. J. Mol. Sci. 2021;22:12889. doi: 10.3390/ijms222312889.
    1. Kim S., Kim J., Lee Y.I., Jang S., Song S.Y., Lee W.J., Lee J.H. Particulate Matter-induced Atmospheric Skin Aging Is Aggravated by UVA and Inhibited by a Topical L-Ascorbic Acid Compound. Photodermatol. Photoimmunol. Photomed. 2022;38:123–131. doi: 10.1111/phpp.12725.
    1. Igarashi K., Kurata D. Effect of High-Oleic Peanut Intake on Aging and Its Hippocampal Markers in Senescence-Accelerated Mice (SAMP8) Nutrients. 2020;12:3461. doi: 10.3390/nu12113461.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727.
    1. Pei K., Ou J., Huang J., Ou S. P-Coumaric Acid and Its Conjugates: Dietary Sources, Pharmacokinetic Properties and Biological Activities. J. Sci. Food Agric. 2016;96:2952–2962. doi: 10.1002/jsfa.7578.
    1. Lou Z., Wang H., Rao S., Sun J., Ma C., Li J. P-Coumaric Acid Kills Bacteria through Dual Damage Mechanisms. Food Control. 2012;25:550–554. doi: 10.1016/j.foodcont.2011.11.022.
    1. Amalan V., Vijayakumar N., Indumathi D., Ramakrishnan A. Antidiabetic and Antihyperlipidemic Activity of P-Coumaric Acid in Diabetic Rats, Role of Pancreatic GLUT 2: In Vivo Approach. Biomed. Pharmacother. 2016;84:230–236. doi: 10.1016/j.biopha.2016.09.039.
    1. Nasr Bouzaiene N., Kilani Jaziri S., Kovacic H., Chekir-Ghedira L., Ghedira K., Luis J. The Effects of Caffeic, Coumaric and Ferulic Acids on Proliferation, Superoxide Production, Adhesion and Migration of Human Tumor Cells in Vitro. Eur. J. Pharmacol. 2015;766:99–105. doi: 10.1016/j.ejphar.2015.09.044.
    1. Kook S.-H., Cheon S.-R., Kim J.-H., Choi K.-C., Kim M.-K., Lee J.-C. Dietary Hydroxycinnamates Prevent Oxidative Damages to Liver, Spleen, and Bone Marrow Cells in Irradiation-Exposed Mice. Food Sci. Biotechnol. 2017;26:279–285. doi: 10.1007/s10068-017-0037-y.
    1. Widowati W., Fauziah N., Herdiman H., Afni M., Afifah E., Kusuma H.S.W., Nufus H., Arumwardana S., Rihibiha D.D. Antioxidant and Anti Aging Assays of Oryza Sativa Extracts, Vanillin and Coumaric Acid. J. Nat. Remedies. 2016;16:88. doi: 10.18311/jnr/2016/7220.
    1. Pieńkowska N., Bartosz G., Pichla M., Grzesik-Pietrasiewicz M., Gruchala M., Sadowska-Bartosz I. Effect of Antioxidants on the H2O2-Induced Premature Senescence of Human Fibroblasts. Aging. 2020;12:1910–1927. doi: 10.18632/aging.102730.
    1. Morita H., Abe I., Noguchi H. Comprehensive Natural Products II. Elsevier; Amsterdam, The Netherlands: 2010. Plant Type III PKS; pp. 171–225.
    1. Amalraj A., Pius A., Gopi S., Gopi S. Biological Activities of Curcuminoids, Other Biomolecules from Turmeric and Their Derivatives—A Review. J. Tradit. Complement. Med. 2017;7:205–233. doi: 10.1016/j.jtcme.2016.05.005.
    1. Tsuda T. Curcumin as a Functional Food-Derived Factor: Degradation Products, Metabolites, Bioactivity, and Future Perspectives. Food Funct. 2018;9:705–714. doi: 10.1039/C7FO01242J.
    1. Tomeh M., Hadianamrei R., Zhao X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019;20:1033. doi: 10.3390/ijms20051033.
    1. Adamczak A., Ożarowski M., Karpiński T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals. 2020;13:153. doi: 10.3390/ph13070153.
    1. Nabavi S., Thiagarajan R., Rastrelli L., Daglia M., Sobarzo-Sanchez E., Alinezhad H., Nabavi S. Curcumin: A Natural Product for Diabetes and Its Complications. Curr. Top. Med. Chem. 2015;15:2445–2455. doi: 10.2174/1568026615666150619142519.
    1. Donatus I.A., Sardjoko, Vermeulen N.P.E. Cytotoxic and Cytoprotective Activities of Curcumin. Biochem. Pharmacol. 1990;39:1869–1875. doi: 10.1016/0006-2952(90)90603-I.
    1. Zia A., Farkhondeh T., Pourbagher-Shahri A.M., Samarghandian S. The Role of Curcumin in Aging and Senescence: Molecular Mechanisms. Biomed. Pharmacother. 2021;134:111119. doi: 10.1016/j.biopha.2020.111119.
    1. Rahmani A., Alsahli M., Aly S., Khan M., Aldebasi Y. Role of Curcumin in Disease Prevention and Treatment. Adv. Biomed. Res. 2018;7:38. doi: 10.4103/abr.abr_147_16.
    1. Lee J., Kim Y.S., Kim E., Kim Y., Kim Y. Curcumin and Hesperetin Attenuate D-Galactose-Induced Brain Senescence In Vitro and In Vivo. Nutr. Res. Pract. 2020;14:438. doi: 10.4162/nrp.2020.14.5.438.
    1. Lee S.-J., Chandrasekran P., Mazucanti C.H., O’Connell J.F., Egan J.M., Kim Y. Dietary Curcumin Restores Insulin Homeostasis in Diet-Induced Obese Aged Mice. Aging. 2022;14:225–239. doi: 10.18632/aging.203821.
    1. Santos-Parker J.R., Lubieniecki K.L., Rossman M.J., van Ark H.J., Bassett C.J., Strahler T.R., Chonchol M.B., Justice J.N., Seals D.R. Curcumin Supplementation and Motor-Cognitive Function in Healthy Middle-Aged and Older Adults. Nutr. Healthy Aging. 2018;4:323–333. doi: 10.3233/NHA-170029.
    1. Tavakol S., Zare S., Hoveizi E., Tavakol B., Rezayat S.M. The Impact of the Particle Size of Curcumin Nanocarriers and the Ethanol on Beta_1-Integrin Overexpression in Fibroblasts: A Regenerative Pharmaceutical Approach in Skin Repair and Anti-Aging Formulations. DARU J. Pharm. Sci. 2019;27:159–168. doi: 10.1007/s40199-019-00258-3.
    1. Schiborr C., P. Eckert G., Weissenberger J., E. Muller W., Schwamm D., Grune T., Rimbach G., Frank J. Cardiac Oxidative Stress and Inflammation Are Similar in SAMP8 and SAMR1 Mice and Unaltered by Curcumin and Ginkgo Biloba Extract Intake. Curr. Pharm. Biotechnol. 2010;11:861–867. doi: 10.2174/138920110793262006.
    1. Yoder S.C., Lancaster S.M., Hullar M.A.J., Lampe J.W. Diet-Microbe Interactions in the Gut. Elsevier; Amsterdam, The Netherlands: 2015. Gut Microbial Metabolism of Plant Lignans; pp. 103–117.
    1. Adolphe J.L., Whiting S.J., Juurlink B.H.J., Thorpe L.U., Alcorn J. Health Effects with Consumption of the Flax Lignan Secoisolariciresinol Diglucoside. Br. J. Nutr. 2010;103:929–938. doi: 10.1017/S0007114509992753.
    1. Le T.D., Nakahara Y., Ueda M., Okumura K., Hirai J., Sato Y., Takemoto D., Tomimori N., Ono Y., Nakai M., et al. Sesamin Suppresses Aging Phenotypes in Adult Muscular and Nervous Systems and Intestines in a Drosophila Senescence-Accelerated Model. Eur. Rev. Med. Pharm. Sci. 2019;23:1826–1839. doi: 10.26355/eurrev_201902_17146.
    1. Sowndhararajan K., Deepa P., Kim M., Park S.J., Kim S. An Overview of Neuroprotective and Cognitive Enhancement Properties of Lignans from Schisandra Chinensis. Biomed. Pharmacother. 2018;97:958–968. doi: 10.1016/j.biopha.2017.10.145.
    1. Velalopoulou A., Chatterjee S., Pietrofesa R., Koziol-White C., Panettieri R., Lin L., Tuttle S., Berman A., Koumenis C., Christofidou-Solomidou M. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage. Int. J. Mol. Sci. 2017;18:2525. doi: 10.3390/ijms18122525.
    1. Shenkin A. Micronutrients in Health and Disease. Postgrad. Med. J. 2006;82:559–567. doi: 10.1136/pgmj.2006.047670.
    1. Mehri A. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020;11:2. doi: 10.4103/ijpvm.IJPVM_48_19.
    1. Rudolf E., Rudolf K. Low Zinc Environment Induces Stress Signaling, Senescence and Mixed Cell Death Modalities in Colon Cancer Cells. Apoptosis. 2015;20:1651–1665. doi: 10.1007/s10495-015-1182-5.
    1. Rudolf E., Cervinka M. Stress Responses of Human Dermal Fibroblasts Exposed to Zinc Pyrithione. Toxicol. Lett. 2011;204:164–173. doi: 10.1016/j.toxlet.2011.04.028.
    1. Malavolta M., Costarelli L., Giacconi R., Basso A., Piacenza F., Pierpaoli E., Provinciali M., Ogo O.A., Ford D. Changes in Zn Homeostasis during Long Term Culture of Primary Endothelial Cells and Effects of Zn on Endothelial Cell Senescence. Exp. Gerontol. 2017;99:35–45. doi: 10.1016/j.exger.2017.09.006.
    1. Legrain Y., Touat-Hamici Z., Chavatte L. Interplay between Selenium Levels, Selenoprotein Expression, and Replicative Senescence in WI-38 Human Fibroblasts. J. Biol. Chem. 2014;289:6299–6310. doi: 10.1074/jbc.M113.526863.
    1. Jobeili L., Rousselle P., Béal D., Blouin E., Roussel A.-M., Damour O., Rachidi W. Selenium Preserves Keratinocyte Stemness and Delays Senescence by Maintaining Epidermal Adhesion. Aging. 2017;9:2302–2315. doi: 10.18632/aging.101322.
    1. Wu R.T.Y., Cao L., Chen B.P.C., Cheng W.-H. Selenoprotein H Suppresses Cellular Senescence through Genome Maintenance and Redox Regulation. J. Biol. Chem. 2014;289:34378–34388. doi: 10.1074/jbc.M114.611970.
    1. Wu R.T., Cao L., Mattson E., Witwer K.W., Cao J., Zeng H., He X., Combs G.F., Cheng W. Opposing Impacts on Healthspan and Longevity by Limiting Dietary Selenium in Telomere Dysfunctional Mice. Aging Cell. 2017;16:125–135. doi: 10.1111/acel.12529.
    1. Dickens B.F., Weglicki W.B., Li Y.-S., Mak I.T. Magnesium Deficiency in Vitro Enhances Free Radical-Induced Intracellular Oxidation and Cytotoxicity in Endothelial Cells. FEBS Lett. 1992;311:187–191. doi: 10.1016/0014-5793(92)81098-7.
    1. Wolf F.I., Trapani V., Simonacci M., Ferré S., Maier J.A.M. Magnesium Deficiency and Endothelial Dysfunction: Is Oxidative Stress Involved? Magnes Res. 2008;21:58–64.
    1. Yang Y., Wu Z., Chen Y., Qiao J., Gao M., Yuan J., Nie W., Guo Y. Magnesium Deficiency Enhances Hydrogen Peroxide Production and Oxidative Damage in Chick Embryo Hepatocyte In Vitro. BioMetals. 2006;19:71–81. doi: 10.1007/s10534-005-6898-1.
    1. Killilea D.W., Ames B.N. Magnesium Deficiency Accelerates Cellular Senescence in Cultured Human Fibroblasts. Proc. Natl. Acad. Sci. USA. 2008;105:5768–5773. doi: 10.1073/pnas.0712401105.
    1. Blache D., Devaux S., Joubert O., Loreau N., Schneider M., Durand P., Prost M., Gaume V., Adrian M., Laurant P., et al. Long-Term Moderate Magnesium-Deficient Diet Shows Relationships between Blood Pressure, Inflammation and Oxidant Stress Defense in Aging Rats. Free Radic. Biol. Med. 2006;41:277–284. doi: 10.1016/j.freeradbiomed.2006.04.008.
    1. Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E. Zinc and Human Health: An Update. Arch. Toxicol. 2012;86:521–534. doi: 10.1007/s00204-011-0775-1.
    1. Cousins R.J., Blanchard R.K., Moore J.B., Cui L., Green C.L., Liuzzi J.P., Cao J., Bobo J.A. Regulation of Zinc Metabolism and Genomic Outcomes. J. Nutr. 2003;133:1521S–1526S. doi: 10.1093/jn/133.5.1521S.
    1. Maret W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. 2013;4:82–91. doi: 10.3945/an.112.003038.
    1. Choi S., Liu X., Pan Z. Zinc Deficiency and Cellular Oxidative Stress: Prognostic Implications in Cardiovascular Diseases. Acta Pharmacol. Sin. 2018;39:1120–1132. doi: 10.1038/aps.2018.25.
    1. Lee S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxidative Med. Cell. Longev. 2018;2018:9156285. doi: 10.1155/2018/9156285.
    1. Marreiro D., Cruz K., Morais J., Beserra J., Severo J., de Oliveira A. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants. 2017;6:24. doi: 10.3390/antiox6020024.
    1. Yu K.-N., Yoon T.-J., Minai-Tehrani A., Kim J.-E., Park S.J., Jeong M.S., Ha S.-W., Lee J.-K., Kim J.S., Cho M.-H. Zinc Oxide Nanoparticle Induced Autophagic Cell Death and Mitochondrial Damage via Reactive Oxygen Species Generation. Toxicol. Vitr. 2013;27:1187–1195. doi: 10.1016/j.tiv.2013.02.010.
    1. O’Dell B.L. Role of Zinc in Plasma Membrane Function. J. Nutr. 2000;130:1432S–1436S. doi: 10.1093/jn/130.5.1432S.
    1. Eide D.J. The Oxidative Stress of Zinc Deficiency. Metallomics. 2011;3:1124. doi: 10.1039/c1mt00064k.
    1. Cho J.H., Kim M.J., Kim K.J., Kim J.-R. POZ/BTB and AT-Hook-Containing Zinc Finger Protein 1 (PATZ1) Inhibits Endothelial Cell Senescence through a P53 Dependent Pathway. Cell Death Differ. 2012;19:703–712. doi: 10.1038/cdd.2011.142.
    1. Hu H., Ji Q., Song M., Ren J., Liu Z., Wang Z., Liu X., Yan K., Hu J., Jing Y., et al. ZKSCAN3 Counteracts Cellular Senescence by Stabilizing Heterochromatin. Nucleic Acids Res. 2020;48:6001–6018. doi: 10.1093/nar/gkaa425.
    1. Igata T., Tanaka H., Etoh K., Hong S., Tani N., Koga T., Nakao M. Loss of the Transcription Repressor ZHX3 Induces Senescence-Associated Gene Expression and Mitochondrial-Nucleolar Activation. PLoS ONE. 2022;17:e0262488. doi: 10.1371/journal.pone.0262488.
    1. Liu C., la Rosa S., Hagos E.G. Oxidative DNA Damage Causes Premature Senescence in Mouse Embryonic Fibroblasts Deficient for Krüppel-like Factor 4. Mol. Carcinog. 2015;54:889–899. doi: 10.1002/mc.22161.
    1. Gao B., Li K., Wei Y.-Y., Zhang J., Li J., Zhang L., Gao J.-P., Li Y.-Y., Huang L.-G., Lin P., et al. Zinc Finger Protein 637 Protects Cells against Oxidative Stress-Induced Premature Senescence by MTERT-Mediated Telomerase Activity and Telomere Maintenance. Cell Death Dis. 2014;5:e1334. doi: 10.1038/cddis.2014.298.
    1. Yang J., Lu Y., Yang P., Chen Q., Wang Y., Ding Q., Xu T., Li X., Li C., Huang C., et al. MicroRNA-145 Induces the Senescence of Activated Hepatic Stellate Cells through the Activation of P53 Pathway by ZEB2. J. Cell. Physiol. 2019;234:7587–7599. doi: 10.1002/jcp.27521.
    1. Yi Y., Xie H., Xiao X., Wang B., Du R., Liu Y., Li Z., Wang J., Sun L., Deng Z., et al. Ultraviolet A Irradiation Induces Senescence in Human Dermal Fibroblasts by Down-Regulating DNMT1 via ZEB1. Aging. 2018;10:212–228. doi: 10.18632/aging.101383.
    1. Poirier A., Gagné A., Laflamme P., Marcoux M., Orain M., Plante S., Joubert D., Joubert P., Laplante M. ZNF768 Expression Associates with High Proliferative Clinicopathological Features in Lung Adenocarcinoma. Cancers. 2021;13:4136. doi: 10.3390/cancers13164136.
    1. Salazar G. NADPH Oxidases and Mitochondria in Vascular Senescence. Int. J. Mol. Sci. 2018;19:1327. doi: 10.3390/ijms19051327.
    1. Reich H.J., Hondal R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016;11:821–841. doi: 10.1021/acschembio.6b00031.
    1. Alehagen U., Opstad T.B., Alexander J., Larsson A., Aaseth J. Impact of Selenium on Biomarkers and Clinical Aspects Related to Ageing. A Review. Biomolecules. 2021;11:1478. doi: 10.3390/biom11101478.
    1. Hariharan S., Dharmaraj S. Selenium and Selenoproteins: It’s Role in Regulation of Inflammation. Inflammopharmacology. 2020;28:667–695. doi: 10.1007/s10787-020-00690-x.
    1. Selenius M., Rundlöf A.-K., Olm E., Fernandes A.P., Björnstedt M. Selenium and the Selenoprotein Thioredoxin Reductase in the Prevention, Treatment and Diagnostics of Cancer. Antioxid. Redox Signal. 2010;12:867–880. doi: 10.1089/ars.2009.2884.
    1. Ebert R., Ulmer M., Zeck S., Meissner-Weigl J., Schneider D., Stopper H., Schupp N., Kassem M., Jakob F. Selenium Supplementation Restores the Antioxidative Capacity and Prevents Cell Damage in Bone Marrow Stromal Cells In Vitro. Stem cells. 2006;24:1226–1235. doi: 10.1634/stemcells.2005-0117.
    1. Hartwig A. Role of Magnesium in Genomic Stability. Mutat. Res./Fundam. Mol. Mech. Mutagenesis. 2001;475:113–121. doi: 10.1016/S0027-5107(01)00074-4.
    1. Maguire D., Neytchev O., Talwar D., McMillan D., Shiels P. Telomere Homeostasis: Interplay with Magnesium. Int. J. Mol. Sci. 2018;19:157. doi: 10.3390/ijms19010157.
    1. Mazur A., Maier J.A.M., Rock E., Gueux E., Nowacki W., Rayssiguier Y. Magnesium and the Inflammatory Response: Potential Physiopathological Implications. Arch. Biochem. Biophys. 2007;458:48–56. doi: 10.1016/j.abb.2006.03.031.
    1. Altobelli G.G., van Noorden S., Balato A., Cimini V. Copper/Zinc Superoxide Dismutase in Human Skin: Current Knowledge. Front. Med. 2020;7:183. doi: 10.3389/fmed.2020.00183.
    1. Kinnula V.L., Crapo J.D. Superoxide Dismutases in the Lung and Human Lung Diseases. Am. J. Respir. Crit. Care Med. 2003;167:1600–1619. doi: 10.1164/rccm.200212-1479SO.
    1. Zajac D. Mineral Micronutrients in Asthma. Nutrients. 2021;13:4001. doi: 10.3390/nu13114001.
    1. Majidinia M., Reiter R.J., Shakouri S.K., Yousefi B. The Role of Melatonin, a Multitasking Molecule, in Retarding the Processes of Ageing. Ageing Res. Rev. 2018;47:198–213. doi: 10.1016/j.arr.2018.07.010.
    1. Lahiri D.K., Ghosh C. Interactions between Melatonin, Reactive Oxygen Species, and Nitric Oxide. Ann. N. Y. Acad. Sci. 1999;893:325–330. doi: 10.1111/j.1749-6632.1999.tb07847.x.
    1. Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int. J. Mol. Sci. 2019;20:1223. doi: 10.3390/ijms20051223.
    1. Huang H., Liu X., Chen D., Lu Y., Li J., Du F., Zhang C., Lu L. Melatonin Prevents Endothelial Dysfunction in SLE by Activating the Nuclear Receptor Retinoic Acid-Related Orphan Receptor-α. Int. Immunopharmacol. 2020;83:106365. doi: 10.1016/j.intimp.2020.106365.
    1. Radogna F., Diederich M., Ghibelli L. Melatonin: A Pleiotropic Molecule Regulating Inflammation. Biochem. Pharmacol. 2010;80:1844–1852. doi: 10.1016/j.bcp.2010.07.041.
    1. Lee J.H., Yoon Y.M., Song K., Noh H., Lee S.H. Melatonin Suppresses Senescence-derived Mitochondrial Dysfunction in Mesenchymal Stem Cells via the HSPA1L–Mitophagy Pathway. Aging Cell. 2020;19:e13111. doi: 10.1111/acel.13111.
    1. Chen Z., Zhao C., Liu P., Huang H., Zhang S., Wang X. Anti-Apoptosis and Autophagy Effects of Melatonin Protect Rat Chondrocytes against Oxidative Stress via Regulation of AMPK/Foxo3 Pathways. CARTILAGE. 2021;13:1041S–1053S. doi: 10.1177/19476035211038748.
    1. Wu K.K. Control of Mesenchymal Stromal Cell Senescence by Tryptophan Metabolites. Int. J. Mol. Sci. 2021;22:697. doi: 10.3390/ijms22020697.
    1. Cai B., Ma W., Bi C., Yang F., Zhang L., Han Z., Huang Q., Ding F., Li Y., Yan G., et al. Long Noncoding RNA H19 Mediates Melatonin Inhibition of Premature Senescence of C-Kit+ Cardiac Progenitor Cells by Promoting MiR-675. J. Pineal Res. 2016;61:82–95. doi: 10.1111/jpi.12331.
    1. Zhou L., Chen X., Liu T., Gong Y., Chen S., Pan G., Cui W., Luo Z.-P., Pei M., Yang H., et al. Melatonin Reverses H2O2-Induced Premature Senescence in Mesenchymal Stem Cells via the SIRT1-Dependent Pathway. J. Pineal Res. 2015;59:190–205. doi: 10.1111/jpi.12250.
    1. Liao N., Shi Y., Zhang C., Zheng Y., Wang Y., Zhao B., Zeng Y., Liu X., Liu J. Antioxidants Inhibit Cell Senescence and Preserve Stemness of Adipose Tissue-Derived Stem Cells by Reducing ROS Generation during Long-Term In Vitro Expansion. Stem Cell Res. Ther. 2019;10:306. doi: 10.1186/s13287-019-1404-9.
    1. Shuai Y., Liao L., Su X., Yu Y., Shao B., Jing H., Zhang X., Deng Z., Jin Y. Melatonin Treatment Improves Mesenchymal Stem Cells Therapy by Preserving Stemness during Long-Term In Vitro Expansion. Theranostics. 2016;6:1899–1917. doi: 10.7150/thno.15412.
    1. Puig Á., Rancan L., Paredes S.D., Carrasco A., Escames G., Vara E., Tresguerres J.A.F. Melatonin Decreases the Expression of Inflammation and Apoptosis Markers in the Lung of a Senescence-Accelerated Mice Model. Exp. Gerontol. 2016;75:1–7. doi: 10.1016/j.exger.2015.11.021.
    1. Parisotto E.B., Vidal V., García-Cerro S., Lantigua S., Wilhelm Filho D., Sanchez-Barceló E.J., Martínez-Cué C., Rueda N. Chronic Melatonin Administration Reduced Oxidative Damage and Cellular Senescence in the Hippocampus of a Mouse Model of Down Syndrome. Neurochem. Res. 2016;41:2904–2913. doi: 10.1007/s11064-016-2008-8.
    1. Okatani Y., Wakatsuki A., Reiter R.J., Miyahara Y. Melatonin Reduces Oxidative Damage of Neural Lipids and Proteins in Senescence-Accelerated Mouse. Neurobiol. Aging. 2002;23:639–644. doi: 10.1016/S0197-4580(02)00005-2.
    1. Sumsuzzman D.M., Khan Z.A., Choi J., Hong Y. Differential Role of Melatonin in Healthy Brain Aging: A Systematic Review and Meta-Analysis of the SAMP8 Model. Aging. 2021;13:9373–9397. doi: 10.18632/aging.202894.
    1. Bin-Jaliah I., Sakr H. Melatonin Ameliorates Brain Oxidative Stress and Upregulates Senescence Marker Protein-30 and Osteopontin in a Rat Model of Vascular Dementia. Physiol. Int. 2018;105:38–52. doi: 10.1556/2060.105.2018.1.1.
    1. Singh P.P., Demmitt B.A., Nath R.D., Brunet A. The Genetics of Aging: A Vertebrate Perspective. Cell. 2019;177:200–220. doi: 10.1016/j.cell.2019.02.038.
    1. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The Hallmarks of Aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Redman L.M., Smith S.R., Burton J.H., Martin C.K., Il’yasova D., Ravussin E. Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab. 2018;27:805–815.e4. doi: 10.1016/j.cmet.2018.02.019.
    1. Mazzotti D.R., Guindalini C., dos Moraes W.A.S., Andersen M.L., Cendoroglo M.S., Ramos L.R., Tufik S. Human Longevity Is Associated with Regular Sleep Patterns, Maintenance of Slow Wave Sleep, and Favorable Lipid Profile. Front. Aging Neurosci. 2014;6:134. doi: 10.3389/fnagi.2014.00134.
    1. Epel E.S., Lithgow G.J. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014;69:S10–S16. doi: 10.1093/gerona/glu055.
    1. Jenkinson C.E., Dickens A.P., Jones K., Thompson-Coon J., Taylor R.S., Rogers M., Bambra C.L., Lang I., Richards S.H. Is Volunteering a Public Health Intervention? A Systematic Review and Meta-Analysis of the Health and Survival of Volunteers. BMC Public Health. 2013;13:773. doi: 10.1186/1471-2458-13-773.
    1. Young R.D. Validated Living Worldwide Supercentenarians, Living and Recently Deceased: February 2018. Rejuvenation Res. 2018;21:67–69. doi: 10.1089/rej.2018.2057.
    1. Hernandez-Segura A., Nehme J., Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018;28:436–453. doi: 10.1016/j.tcb.2018.02.001.
    1. Lyublinskaya O., Kornienko J., Ivanova J., Pugovkina N., Alekseenko L., Lyublinskaya E., Tyuryaeva I., Smirnova I., Grinchuk T., Shorokhova M., et al. Induction of Premature Cell Senescence Stimulated by High Doses of Antioxidants Is Mediated by Endoplasmic Reticulum Stress. Int. J. Mol. Sci. 2021;22:11851. doi: 10.3390/ijms222111851.
    1. Kornienko J.S., Smirnova I.S., Pugovkina N.A., Ivanova J.S., Shilina M.A., Grinchuk T.M., Shatrova A.N., Aksenov N.D., Zenin V.V., Nikolsky N.N., et al. High Doses of Synthetic Antioxidants Induce Premature Senescence in Cultivated Mesenchymal Stem Cells. Sci. Rep. 2019;9:1296. doi: 10.1038/s41598-018-37972-y.
    1. Lee B.P., Harries L.W. Senotherapeutic Drugs: A New Avenue for Skincare? Plast. Reconstr. Surg. 2021;148:21S–26S. doi: 10.1097/PRS.0000000000008782.
    1. Wissler Gerdes E.O., Zhu Y., Tchkonia T., Kirkland J.L. Discovery, Development, and Future Application of Senolytics: Theories and Predictions. FEBS J. 2020;287:2418–2427. doi: 10.1111/febs.15264.
    1. Kirkland J.L., Tchkonia T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med. 2020;288:518–536. doi: 10.1111/joim.13141.

Source: PubMed

3
Tilaa