Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid

Phiwayinkosi V Dludla, Bongani B Nkambule, Babalwa Jack, Zibusiso Mkandla, Tinashe Mutize, Sonia Silvestri, Patrick Orlando, Luca Tiano, Johan Louw, Sithandiwe E Mazibuko-Mbeje, Phiwayinkosi V Dludla, Bongani B Nkambule, Babalwa Jack, Zibusiso Mkandla, Tinashe Mutize, Sonia Silvestri, Patrick Orlando, Luca Tiano, Johan Louw, Sithandiwe E Mazibuko-Mbeje

Abstract

Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.

Keywords: gallic acid; inflammation; insulin resistance; obesity; oxidative stress; therapeutic target.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Overnutrition, sedentary lifestyle and genetic susceptibility are the leading factors associated with the development of obesity. In addition to dysfunctional angiogenesis, an obese state is characterized by an abnormal inflammatory response, low antioxidant capacity and reduced insulin sensitivity that may eventually lead to the generation of inflammation, oxidative stress and insulin resistance. The figure was modified from the following website, https://mexicobariatriccenter.com/improve-adipose-tissue-function/.
Figure 2
Figure 2
An obese state is associated with dysfunctional lipid metabolism including excessive lipolysis, which in turn leads to increased production and secretion of free fatty acids (FFAs). Elevated FFA levels can cause an abnormal pro-inflammatory response, and subsequent development of insulin resistance. Whereas, depleted intracellular antioxidant systems in the adipose tissue, mainly due to increased production of reactive oxygen species (ROS) can generate oxidative stress, and this can further lead to the development of insulin resistance. NADPH, nicotinamide adenine dinucleotide phosphate.
Figure 3
Figure 3
Chemical structures of gallic acid and its derivative compounds, including epigallocatechin gallate, ethyl gallate, gallocatechin gallate, methyl gallate, propyl gallate, theaflavin-3-gallate that are increasingly studied for their anti-obesity properties.
Figure 4
Figure 4
In addition to tea, avocado, blackcurrant, grapes, guava, mango, mulberry and pomegranate are some plants rich in gallic acid or its derivative compounds that are increasingly investigated for their anti-obesity properties. The following websites were used for the extraction of images: Tea, https://www.coffeebean.com/cafe-menu/tea; Avocado, https://draxe.com/avocado-benefits/; Grapes, https://www.indiamart.com/proddetail/purple-grapes-16445565830.html; Guava, https://exoticflora.in/products/guava-red-flesh-fruit-plants-tree; Mango, http://www.adagio.com/flavors/mango.html; Blackcurrant, https://tmbnotes.co/BlackcurrantMentholConcentrate; Mulberry, https://www.amazon.com/Dwarf-Everbearing-Mulberry-Plant-Morus/dp/B008BB8VOW; Pomegranate, https://www.organicfacts.net/health-benefits/fruit/health-benefits-of-pomegranate.html.

References

    1. World Health Organization Obesity. [(accessed on 9 August 2018)]; Available online: .
    1. Williams C.B., Mackenzie K.C., Gahagan S. The effect of maternal obesity on the offspring. Clin. Obstet. Gynecol. 2014;57:508–515. doi: 10.1097/GRF.0000000000000043.
    1. Jung U.J., Choi M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014;15:6184–6223. doi: 10.3390/ijms15046184.
    1. Francisqueti F.V., Chiaverini L.C., Santos K.C., Minatel I.O., Ronchi C.B., Ferron A.J., Ferreira A.L., Corrêa C.R. The role of oxidative stress on the pathophysiology of metabolic syndrome. Rev. Assoc. Med. Bras. 2017;63:85–91. doi: 10.1590/1806-9282.63.01.85.
    1. Lumeng C.N., Saltiel A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Investig. 2011;121:2111–2117. doi: 10.1172/JCI57132.
    1. Jo J., Gavrilova O., Pack S., Jou W., Mullen S., Sumner A.E., Cushman S.W., Periwal V. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comput. Biol. 2009;5:e1000324. doi: 10.1371/journal.pcbi.1000324.
    1. Ussar S., Lee K.Y., Dankel S.N., Boucher J., Haering M.F., Kleinridders A., Thomou T., Xue R., Macotela Y., Cypess A.M., et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl. Med. 2014;6:247ra103. doi: 10.1126/scitranslmed.3008490.
    1. Fernandez-Sanchez A., Madrigal-Santillán E., Bautista M., Esquivel-Soto J., Morales-González A., Esquivel-Chirino C., Durante-Montiel I., Sánchez-Rivera G., Valadez-Vega C., Morales-González J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011;12:3117–3132. doi: 10.3390/ijms12053117.
    1. Petrovska B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012;6:1–5. doi: 10.4103/0973-7847.95849.
    1. Lin D., Xiao M., Zhao J., Li Z., Xing B., Li X., Kong M., Li L., Zhang Q., Liu Y., et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21:10. doi: 10.3390/molecules21101374.
    1. Esposito D., Damsud T., Wilson M., Grace M.H., Strauch R., Li X., Lila M.A., Komarnytsky S. Black currant anthocyanins attenuate weight gain and improve glucose metabolism in diet-induced obese mice with intact, but not disrupted, gut microbiome. J. Agric. Food Chem. 2015;63:6172–6180. doi: 10.1021/acs.jafc.5b00963.
    1. Saibabu V., Fatima Z., Khan L.A., Hameed S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci. 2015;2015:823539. doi: 10.1155/2015/823539.
    1. Wang S.S., Wang D.M., Pu W.J., Li D.W. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species. BMC Complement. Altern. Med. 2013;13:321. doi: 10.1186/1472-6882-13-321.
    1. Ediriweera M.K., Tennekoon K.H., Samarakoon S.R., Thabrew I., de Silva E.D. Protective effects of six selected dietary compounds against leptin-induced proliferation of oestrogen receptor positive (MCF-7) breast cancer cells. Medicines. 2017;4:56. doi: 10.3390/medicines4030056.
    1. Ikeda I., Hamamoto R., Uzu K., Imaizumi K., Nagao K., Yanagita T., Suzuki Y., Kobayashi M., Kakuda T. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. Biosci. Biotechnol. Biochem. 2005;69:1049–1053. doi: 10.1271/bbb.69.1049.
    1. Makihara H., Koike Y., Ohta M., Horiguchi-Babamoto E., Tsubata M., Kinoshita K., Akase T., Goshima Y., Aburada M., Shimada T. Gallic acid, the active ingredient of Terminalia bellirica, enhances adipocyte differentiation and adiponectin secretion. Biol. Pharm. Bull. 2016;39:1137–1143. doi: 10.1248/bpb.b16-00064.
    1. Pandey A., Bani S., Sangwan P.L. Anti-obesity potential of gallic acid from Labisia pumila, through augmentation of adipokines in high fat diet induced obesity in C57BL/6 mice. Adv. Res. 2014;2:556–570. doi: 10.9734/AIR/2014/10182.
    1. Chao J., Huo T.I., Cheng H.Y., Tsai J.C., Liao J.W., Lee M.S., Qin X.M., Hsieh M.T., Pao L.H., Peng W.H. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS ONE. 2014;9:e96969. doi: 10.1371/journal.pone.0096969.
    1. Donado-Pestana C.M., Dos Santos-Donado P.R., Daza L.D., Belchior T., Festuccia W.T., Genovese M.I. Cagaita fruit (Eugenia dysenterica DC.) and obesity: Role of polyphenols on already established obesity. Food Res. Int. 2018;103:40–47. doi: 10.1016/j.foodres.2017.10.011.
    1. Gandhi G.R., Jothi G., Antony P.J., Balakrishna K., Paulraj M.G., Ignacimuthu S., Stalin A., Al-Dhabi N.A. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARgamma in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur. J. Pharmacol. 2014;745:201–216. doi: 10.1016/j.ejphar.2014.10.044.
    1. Hsu C.L., Lo W.H., Yen G.C. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a fas- and mitochondrial-mediated pathway. J. Agric. Food Chem. 2007;55:7359–7365. doi: 10.1021/jf071223c.
    1. Totani N., Tateishi S., Takimoto T., Maeda Y., Sasaki H. Gallic acid glycerol ester promotes weight-loss in rats. J. Oleo. Sci. 2011;60:457–462. doi: 10.5650/jos.60.457.
    1. Locatelli C., Filippin-Monteiro F.B., Creczynski-Pasa T.B. Alkyl esters of gallic acid as anticancer agents: A review. Eur. J. Med. Chem. 2013;60:233–239. doi: 10.1016/j.ejmech.2012.10.056.
    1. Badhani B., Sharma N., Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540–27557. doi: 10.1039/C5RA01911G.
    1. Choubey S., Varughese L.R., Kumar V., Beniwal V. Medicinal importance of gallic acid and its ester derivatives: A patent review. Pharm. Pat. Anal. 2015;4:305–315. doi: 10.4155/ppa.15.14.
    1. Fernandes F.H., Salgado H.R. Gallic acid: Review of the methods of determination and quantification. Crit. Rev. Anal. Chem. 2016;46:257–265. doi: 10.1080/10408347.2015.1095064.
    1. Nayeem N., SMB A., Salem H., AHEl-Alfqy S. Gallic acid: A promising lead molecule for drug development. J. Appl. Pharm. 2016;8:213. doi: 10.4172/1920-4159.1000213.
    1. Kosuru R.Y., Roy A., Das S.K., Bera S. Gallic acid and gallates in human health and disease: Do mitochondria hold the key to success? Mol. Nutr. Food Res. 2018;62 doi: 10.1002/mnfr.201700699.
    1. Dludla P.V., Nkambule B.B., Dias S.C., Johnson R. Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: A protocol for a systematic review. Syst. Rev. 2017;6:96. doi: 10.1186/s13643-017-0493-8.
    1. Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003;112:1796–1808. doi: 10.1172/JCI200319246.
    1. Cao Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Investig. 2007;117:2362–2368. doi: 10.1172/JCI32239.
    1. Ye J. Adipose tissue vascularization: Its role in chronic inflammation. Curr. Diab. Rep. 2011;11:203–210. doi: 10.1007/s11892-011-0183-1.
    1. Hausman G.J., Richardson R.L. Adipose tissue angiogenesis. J. Anim. Sci. 2004;82:925–934. doi: 10.2527/2004.823925x.
    1. Cao Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell MeTable. 2013;18:478–489. doi: 10.1016/j.cmet.2013.08.008.
    1. Sears B., Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015;14:121. doi: 10.1186/s12944-015-0123-1.
    1. Stolarczyk E. Adipose tissue inflammation in obesity: A metabolic or immune response? Curr. Opin. Pharmacol. 2017;37:35–40. doi: 10.1016/j.coph.2017.08.006.
    1. Hao Z., Münzberg H., Rezai-Zadeh K., Keenan M., Coulon D., Lu H., Berthoud H.R., Ye J. Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery. Int. J. Obes. 2015;39:798–805. doi: 10.1038/ijo.2014.189.
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485.
    1. Katsuki A., Sumida Y., Murashima S., Murata K., Takarada Y., Ito K., Fujii M., Tsuchihashi K., Goto H., Nakatani K., et al. Serum levels of tumor necrosis factor-alpha are increased in obese patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. MeTable. 1998;83:859–862. doi: 10.1210/jcem.83.3.4618.
    1. Perego L., Pizzocri P., Corradi D., Maisano F., Paganelli M., Fiorina P., Barbieri M., Morabito A., Paolisso G., Folli F., et al. Circulating leptin correlates with left ventricular mass in morbid (grade III) obesity before and after weight loss induced by bariatric surgery: A potential role for leptin in mediating human left ventricular hypertrophy. J. Clin. Endocrinol. MeTable. 2005;90:4087–4093. doi: 10.1210/jc.2004-1963.
    1. Dludla P.V., Essop M.F., Gabuza K.B., Muller C.J.F., Louw J., Johnson R. Age-dependent development of left ventricular wall thickness in type 2 diabetic (db/db) mice is associated with elevated low-density lipoprotein and triglyceride serum levels. Heart Vessels. 2017;32:1025–1031. doi: 10.1007/s00380-017-0978-3.
    1. Mangge H., Summers K.L., Meinitzer A., Zelzer S., Almer G., Prassl R., Schnedl W.J., Reininghaus E., Paulmichl K., Weghuber D., et al. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: Role of age and parameters of the metabolic syndrome. Obesity. 2014;22:195–201. doi: 10.1002/oby.20491.
    1. Brandacher G., Hoeller E., Fuchs D., Weiss H.G. Chronic immune activation underlies morbid obesity: Is IDO a key player? Curr. Drug MeTable. 2007;8:289–295. doi: 10.2174/138920007780362590.
    1. Curat C.A., Wegner V., Sengenès C., Miranville A., Tonus C., Busse R., Bouloumié A. Macrophages in human visceral adipose tissue: Increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744–747. doi: 10.1007/s00125-006-0173-z.
    1. Nio Y., Yamauchi T., Iwabu M., Okada-Iwabu M., Funata M., Yamaguchi M., Ueki K., Kadowaki T. Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice. Diabetologia. 2012;55:3350–3358. doi: 10.1007/s00125-012-2710-2.
    1. Furukawa K., Hori M., Ouchi N., Kihara S., Funahashi T., Matsuzawa Y., Miyazaki A., Nakayama H., Horiuchi S. Adiponectin down-regulates acyl-coenzyme A: Cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages. Biochem. Biophys. Res. Commun. 2004;317:831–836. doi: 10.1016/j.bbrc.2004.03.123.
    1. Ehsan M., Singh K.K., Lovren F., Pan Y., Quan A., Mantella L.E., Sandhu P., Teoh H., Al-Omran M., Verma S. Adiponectin limits monocytic microparticle-induced endothelial activation by modulation of the AMPK, Akt and NFkappaB signaling pathways. Atherosclerosis. 2016;245:1–11. doi: 10.1016/j.atherosclerosis.2015.11.024.
    1. Saucillo D.C., Gerriets V.A., Sheng J., Rathmell J.C., Maciver N.J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 2014;192:136–144. doi: 10.4049/jimmunol.1301158.
    1. Ip B., Cilfone N.A., Belkina A.C., DeFuria J., Jagannathan-Bogdan M., Zhu M., Kuchibhatla R., McDonnell M.E., Xiao Q., Kepler T.B., et al. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFalpha production. Obesity. 2016;24:102–112. doi: 10.1002/oby.21243.
    1. Gonzalez Y., Herrera M.T., Soldevila G., Garcia-Garcia L., Fabián G., Pérez-Armendariz E.M., Bobadilla K., Guzmán-Beltrán S., Sada E., Torres M. High glucose concentrations induce TNF-alpha production through the down-regulation of CD33 in primary human monocytes. BMC Immunol. 2012;13:19. doi: 10.1186/1471-2172-13-19.
    1. Lajaunias F., Dayer J.M., Chizzolini C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur. J. Immunol. 2005;35:243–251. doi: 10.1002/eji.200425273.
    1. Jin W., Dong C. IL-17 cytokines in immunity and inflammation. Emerg. Microbes. Infect. 2013;2:e60. doi: 10.1038/emi.2013.58.
    1. Capurso C., Capurso A. From excess adiposity to insulin resistance: The role of free fatty acids. Vascul. Pharmacol. 2012;57:91–97. doi: 10.1016/j.vph.2012.05.003.
    1. Johnson R., Dludla P.V., Muller C.J., Huisamen B., Essop M.F., Louw J. The transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity in an in vitro H9c2 model. Molecules. 2017;22:22. doi: 10.3390/molecules22020219.
    1. Glass C.K., Olefsky J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell MeTable. 2012;15:635–645. doi: 10.1016/j.cmet.2012.04.001.
    1. Johnson A.M., Olefsky J.M. The origins and drivers of insulin resistance. Cell. 2013;152:673–684. doi: 10.1016/j.cell.2013.01.041.
    1. Soskic S.S., Dobutović B.D., Sudar E.M., Obradović M.M., Nikolić D.M., Djordjevic J.D., Radak D.J., Mikhailidis D.P., Isenović E.R. Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc. Med. J. 2011;5:153–163. doi: 10.2174/1874192401105010153.
    1. Yasukawa T., Tokunaga E., Ota H., Sugita H., Martyn J.A., Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J. Biol. Chem. 2005;280:7511–7518. doi: 10.1074/jbc.M411871200.
    1. Kaneto H., Xu G., Fujii N., Kim S., Bonner-Weir S., Weir G.C. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J. Biol. Chem. 2002;277:30010–30018. doi: 10.1074/jbc.M202066200.
    1. Manna P., Jain S.K. Obesity, oxidative Stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015;13:423–444. doi: 10.1089/met.2015.0095.
    1. Hajjar D.P., Gotto A.M., Jr. Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. Am. J. Pathol. 2013;182:1474–1481. doi: 10.1016/j.ajpath.2013.01.010.
    1. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
    1. Dludla P.V., Joubert E., Muller C.J.F., Louw J., Johnson R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-beta-D-glucoside. Nutr. MeTable. 2017;14:45. doi: 10.1186/s12986-017-0200-8.
    1. Han C.Y. Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab. J. 2016;40:272–279. doi: 10.4093/dmj.2016.40.4.272.
    1. Jankovic A., Korac A., Buzadzic B., Otasevic V., Stancic A., Daiber A., Korac B. Redox implications in adipose tissue (dys)function—A new look at old acquaintances. Redox Biol. 2015;6:19–32. doi: 10.1016/j.redox.2015.06.018.
    1. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004;114:1752–1761. doi: 10.1172/JCI21625.
    1. Den Hartigh L.J., Omer M., Goodspeed L., Wang S., Wietecha T., O’Brien K.D., Han C.Y. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler. Thromb. Vasc. Biol. 2017;37:466–475. doi: 10.1161/ATVBAHA.116.308749.
    1. Han C.Y., Umemoto T., Omer M., Den Hartigh L.J., Chiba T., LeBoeuf R., Buller C.L., Sweet I.R., Pennathur S., Abel E.D., et al. NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J. Biol. Chem. 2012;287:10379–10393. doi: 10.1074/jbc.M111.304998.
    1. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386.
    1. Dludla P.V., Nkambule N.B., Tiano L., Louw J., Jastroch M., Mazibuko-Mbeje S.E. Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol. Res. 2018;137:11–24. doi: 10.1016/j.phrs.2018.09.013.
    1. Hurrle S., Hsu W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017;40:257–262. doi: 10.1016/j.bj.2017.06.007.
    1. De Marchi E., Baldassari F., Bononi A., Wieckowski M.R., Pinton P. Oxidative stress in cardiovascular diseases and obesity: Role of p66Shc and protein kinase C. Oxid. Med. Cell. Longev. 2013;2013:564961. doi: 10.1155/2013/564961.
    1. Amiot M.J., Riva C., Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes. Rev. 2016;17:573–586. doi: 10.1111/obr.12409.
    1. Gregorio B.M., De Souza D.B., de Morais Nascimento F.A., Pereira L.M., Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr. Pharm. Des. 2016;22:859–869. doi: 10.2174/1381612822666151209152352.
    1. Jack B.U., Malherbe C.J., Willenburg E.L., de Beer D., Huisamen B., Joubert E., Muller C.J.F., Louw J., Pheiffer C. Polyphenol-enriched fractions of Cyclopia intermedia selectively affect lipogenesis and lipolysis in 3T3-L1 adipocytes. Planta Med. 2018;84:100–110. doi: 10.1055/s-0043-119463.
    1. Pollack R.M., Donath M.Y., LeRoith D., Leibowitz G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care. 2016;39:S244–S252. doi: 10.2337/dcS15-3015.
    1. National Center for Biotechnology Information: PubChem CID: 370. [(accessed on 9 August 2018)]; Available online: .
    1. Nabavi S.F., Habtemariam S., Di Lorenzo A., Sureda A., Khanjani S., Nabavi S.M., Daglia M. Post-stroke depression modulation and in vivo antioxidant activity of gallic acid and its synthetic derivatives in a murine model system. Nutrients. 2016;8:248. doi: 10.3390/nu8050248.
    1. National Center for Biotechnology Information: PubChem CID: 245086. [(accessed on 9 August 2018)]; Available online: .
    1. National Center for Biotechnology Information: PubChem CID: 13250. [(accessed on 9 August 2018)]; Available online: .
    1. National Center for Biotechnology Information: PubChem CID: 199472. [(accessed on 9 August 2018)]; Available online: .
    1. National Center for Biotechnology Information: PubChem CID: 7428. [(accessed on 9 August 2018)]; Available online: .
    1. National Center for Biotechnology Information: PubChem CID: 4947. [(accessed on 9 August 2018)]; Available online: .
    1. National Center for Biotechnology Information: PubChem CID: 169167. [(accessed on 9 August 2018)]; Available online: .
    1. Karakaya S. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr. 2004;44:453–464. doi: 10.1080/10408690490886683.
    1. Ma F.W., Deng Q.F., Zhou X., Gong X.J., Zhao Y., Chen H.G., Zhao C. The tissue distribution and urinary excretion study of gallic acid and protocatechuic acid after oral administration of Polygonum aapitatum extract in rats. Molecules. 2016;21:399. doi: 10.3390/molecules21040399.
    1. Athukuri B.L., Neerati P. Enhanced oral bioavailability of diltiazem by the influence of gallic acid and ellagic acid in male Wistar rats: Involvement of CYP3A and P-gp inhibition. Phytother. Res. 2017;31:1441–1448. doi: 10.1002/ptr.5873.
    1. Shahrzad S., Aoyagi K., Winter A., Koyama A., Bitsch I. Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutr. 2001;131:1207–1210. doi: 10.1093/jn/131.4.1207.
    1. Konishi Y., Hitomi Y., Yoshioka E. Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J. Agric. Food Chem. 2004;52:2527–2532. doi: 10.1021/jf035366k.
    1. Daglia M., Di Lorenzo A., Nabavi S.F., Talas Z.S., Nabavi S.M. Polyphenols: Well beyond the antioxidant capacity: Gallic acid and related compounds as neuroprotective agents: You are what you eat! Curr. Pharm. Biotechnol. 2014;15:362–372. doi: 10.2174/138920101504140825120737.
    1. Ferruzzi M.G., Lobo J.K., Janle E.M., Cooper B., Simon J.E., Wu Q.L., Welch C., Ho L., Weaver C., Pasinetti G.M. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: Implications for treatment in Alzheimer’s disease. J. Alzheimers Dis. 2009;18:113–124. doi: 10.3233/JAD-2009-1135.
    1. Bhattacharyya S., Ahammed S.M., Saha B.P., Mukherjee P.K. The gallic acid-phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability. AAPS Pharm. Sci. Tech. 2013;14:1025–1033. doi: 10.1208/s12249-013-9991-8.
    1. Yu Z., Song F., Jin Y.C., Zhang W.M., Zhang Y., Liu E.J., Zhou D., Bi L.L., Yang Q., Li H., et al. Comparative pharmacokinetics of gallic acid after oral administration of gallic acid monohydrate in normal and isoproterenol-induced myocardial infarcted rats. Front. Pharmacol. 2018;9:328. doi: 10.3389/fphar.2018.00328.
    1. Lutz T.A., Woods S.C. Overview of animal models of obesity. Curr. Protoc. Pharmacol. 2012 doi: 10.1002/0471141755.ph0561s58.
    1. Oi Y., Hou I.C., Fujita H., Yazawa K. Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid. Phytother. Res. 2012;26:475–481. doi: 10.1002/ptr.3602.
    1. Hsu C.L., Yen G.C. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 2007;55:8404–8410. doi: 10.1021/jf071695r.
    1. Hsieh C.F., Tsuei Y.W., Liu C.W., Kao C.C., Shih L.J., Ho L.T., Wu L.Y., Wu C.P., Tsai P.H., Chang H.H. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med. 2010;76:1694–1698. doi: 10.1055/s-0030-1249877.
    1. Makihara H., Shimada T., Machida E., Oota M., Nagamine R., Tsubata M., Kinoshita K., Takahashi K., Aburada M. Preventive effect of Terminalia bellirica on obesity and metabolic disorders in spontaneously obese type 2 diabetic model mice. J. Nat. Med. 2012;66:459–467. doi: 10.1007/s11418-011-0606-y.
    1. Yuda N., Tanaka M., Suzuki M., Asano Y., Ochi H., Iwatsuki K. Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro. J. Food Sci. 2012;77:H254–H261. doi: 10.1111/j.1750-3841.2012.02967.x.
    1. De la Garza A.L., Milagro F.I., Boque N., Campión J., Martínez J.A. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med. 2011;77:773–785. doi: 10.1055/s-0030-1270924.
    1. Zengin G., Uysal A., Aktumsek A., Mocan A., Mollica A., Locatelli M., Custodio L., Neng N.R., Nogueira J.M.F., Aumeeruddy-Elalfi Z., et al. Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomed. Pharmacother. 2017;87:27–36. doi: 10.1016/j.biopha.2016.12.063.
    1. Chang P.C., Wang J.D., Lee M.M., Chang S.S., Tsai T.Y., Chang K.W., Tsai F.J., Chen C.Y. Lose weight with traditional chinese medicine? Potential suppression of fat mass and obesity-associated protein. J. Biomol. Struct. Dyn. 2011;29:471–483. doi: 10.1080/07391102.2011.10507399.
    1. Strobel P., Allard C., Perez-Acle T., Calderon R., Aldunate R., Leighton F. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem. J. 2005;386:471–478. doi: 10.1042/BJ20040703.
    1. Hsu C.L., Huang S.L., Yen G.C. Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity. J. Agric. Food Chem. 2006;54:4191–4197. doi: 10.1021/jf0609882.
    1. Hsu C.L., Yen G.C. Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br. J. Nutr. 2007;98:727–735. doi: 10.1017/S000711450774686X.
    1. Jang A., Srinivasan P., Lee N.Y., Song H.P., Lee J.W., Lee M., Jo C. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chem. Biol. Interact. 2008;174:109–117. doi: 10.1016/j.cbi.2008.05.018.
    1. Booth A., Amen R.J., Scott M., Greenway F.L. Oral dose-ranging developmental toxicity study of an herbal supplement (NT) and gallic acid in rats. Adv. Ther. 2010;27:250–255. doi: 10.1007/s12325-010-0021-x.
    1. Punithavathi V.R., Stanely Mainzen Prince P., Kumar M.R., Selvakumari C.J. Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic Wistar rats. J. Biochem. Mol. Toxicol. 2011;25:68–76. doi: 10.1002/jbt.20360.
    1. Bak E.J., Kim J., Jang S., Woo G.H., Yoon H.G., Yoo Y.J., Cha J.H. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand. J. Clin. Lab. Investig. 2013;73:607–614. doi: 10.3109/00365513.2013.831470.
    1. Ou T.T., Lin M.C., Wu C.H., Lin W.L., Wang C.J. Gallic acid attenuates oleic acid-induced proliferation of vascular smooth muscle cell through regulation of AMPK-eNOS-FAS signaling. Curr. Med. Chem. 2013;20:3944–3953. doi: 10.2174/09298673113209990175.
    1. Doan K.V., Ko C.M., Kinyua A.W., Yang D.J., Choi Y.H., Oh I.Y., Nguyen N.M., Ko A., Choi J.W., Jeong Y. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology. 2015;156:157–168. doi: 10.1210/en.2014-1354.
    1. Huang D.W., Chang W.C., Yang H.J., Wu J.S., Shen S.C. Gallic acid alleviates hypertriglyceridemia and fat accumulation via modulating glycolysis and lipolysis pathways in perirenal adipose tissues of rats fed a high-fructose diet. Int. J. Mol. Sci. 2018;19:254. doi: 10.3390/ijms19010254.
    1. Ong K.C., Khoo H.E., Das N.P. Tannic acid inhibits insulin-stimulated lipogenesis in rat adipose tissue and insulin receptor function in vitro. Experientia. 1995;51:577–584. doi: 10.1007/BF02128747.
    1. Ren Y., Himmeldirk K., Chen X. Synthesis and structure-activity relationship study of antidiabetic penta-O-galloyl-D-glucopyranose and its analogues. J. Med. Chem. 2006;49:2829–2837. doi: 10.1021/jm060087k.
    1. Sergent T.V.J., Winand J., Beguin P., Schneider Y.J. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem. 2012;135:68–73. doi: 10.1016/j.foodchem.2012.04.074.
    1. Park Y.K., Lee J., Hong V.S., Choi J.S., Lee T.Y., Jang B.C. Identification of KMU-3, a novel derivative of gallic acid, as an inhibitor of adipogenesis. PLoS ONE. 2014;9:e109344. doi: 10.1371/journal.pone.0109344.
    1. Yang Y., Qiao L., Zhang X., Wu Z., Weng P. Effect of methylated tea catechins from Chinese oolong tea on the proliferation and differentiation of 3T3-L1 preadipocyte. Fitoterapia. 2015;104:45–49. doi: 10.1016/j.fitote.2015.05.007.
    1. Jeon M., Rahman N., Kim Y.S. Wnt/beta-catenin signaling plays a distinct role in methyl gallate-mediated inhibition of adipogenesis. Biochem. Biophys. Res. Commun. 2016;479:22–27. doi: 10.1016/j.bbrc.2016.08.178.
    1. Amin K.A., Nagy M.A. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabetol. Metab. Syndr. 2009;1:17. doi: 10.1186/1758-5996-1-17.
    1. Hogan S., Canning C., Sun S., Sun X., Zhou K. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice. J. Agric. Food Chem. 2010;58:11250–11256. doi: 10.1021/jf102759e.
    1. Cao Z.H., Gu D.H., Lin Q.Y., Xu Z.Q., Huang Q.C., Rao H., Liu E.W., Jia J.J., Ge C.R. Effect of pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity. Phytother. Res. 2011;25:234–238. doi: 10.1002/ptr.3247.
    1. Koh G.Y., McCutcheon K., Zhang F., Liu D., Cartwright C.A., Martin R., Yang P., Liu Z. Improvement of obesity phenotype by Chinese sweet leaf tea (Rubus suavissimus) components in high-fat diet-induced obese rats. J. Agric. Food Chem. 2011;59:98–104. doi: 10.1021/jf103497p.
    1. Peng C.H., Liu L.K., Chuang C.M., Chyau C.C., Huang C.N., Wang C.J. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J. Agric. Food Chem. 2011;59:2663–2671. doi: 10.1021/jf1043508.
    1. Monika P., Geetha A. The modulating effect of Persea americana fruit extract on the level of expression of fatty acid synthase complex, lipoprotein lipase, fibroblast growth factor-21 and leptin--A biochemical study in rats subjected to experimental hyperlipidemia and obesity. Phytomedicine. 2015;22:939–945. doi: 10.1016/j.phymed.2015.07.001.
    1. Colantuono A., Ferracane R., Vitaglione P. In vitro bioaccessibility and functional properties of polyphenols from pomegranate peels and pomegranate peels-enriched cookies. Food Funct. 2016;7:4247–4258. doi: 10.1039/C6FO00942E.
    1. de Camargo A.C., Regitano-d’Arce M.A., Biasoto A.C., Shahidi F. Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chem. 2016;212:395–402. doi: 10.1016/j.foodchem.2016.05.047.
    1. Park B., Lee S., Lee B., Kim I., Baek N., Lee T.H., Lee S.Y., Son M., Park H. New ethanol extraction improves the anti-obesity effects of black tea. Arch. Pharm. Res. 2016;39:310–320. doi: 10.1007/s12272-015-0674-8.
    1. Septembre-Malaterre A., Stanislas G., Douraguia E., Gonthier M.P. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Reunion French Island. Food Chem. 2016;212:225–233. doi: 10.1016/j.foodchem.2016.05.147.
    1. Torabi S., DiMarco N.M. Polyphenols extracted from grape powder induce lipogenesis and glucose uptake during differentiation of murine preadipocytes. Exp. Biol. Med. 2016;241:1776–1785. doi: 10.1177/1535370216645213.
    1. Pascual-Serrano A., Arola-Arnal A., Suárez-García S., Bravo F.I., Suárez M., Arola L., Bladé C. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. Int. J. Obes. 2017;41:1246–1255. doi: 10.1038/ijo.2017.90.
    1. Simao A.A., Marques T.R., Marcussi S., Corrêa A.D. Aqueous extract of Psidium guajava leaves: Phenolic compounds and inhibitory potential on digestive enzymes. An. Acad. Bras. Cienc. 2017;89:2155–2165. doi: 10.1590/0001-3765201720160067.
    1. Ge Q., Chen L., Tang M., Zhang S., Liu L., Gao L. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur. J. Pharmacol. 2018;833:50–62. doi: 10.1016/j.ejphar.2018.05.021.
    1. Sandoval-Gallegos E.M., Ramírez-Moreno E., Lucio J.G., Arias-Rico J., Cruz-Cansino N., Ortiz M.I., Cariño-Cortés R. In vitro bioaccessibility and effect of Mangifera indica (Ataulfo) leaf extract on induced dyslipidemia. J. Med. Food. 2018;21:47–56. doi: 10.1089/jmf.2017.0042.
    1. Wu S., Tian L. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum) Nat. Prod. Res. 2018:1–6. doi: 10.1080/14786419.2018.1446009.
    1. Wu C.H., Yang M.Y., Chan K.C., Chung P.J., Ou T.T., Wang C.J. Improvement in high-fat diet-induced obesity and body fat accumulation by a Nelumbo nucifera leaf flavonoid-rich extract in mice. J. Agric. Food Chem. 2010;58:7075–7081. doi: 10.1021/jf101415v.
    1. Batista A.G., Lenquiste S.A., Cazarin C.B.B., da Silva J.K., Luiz-Ferreira A., Bogusz S., Jr., Hantao L.W., de Souza R.N., Augusto F., Prado M.A., et al. Intake of jaboticaba peel attenuates oxidative stress in tissues and reduces circulating saturated lipids of rats with high-fat diet-induced obesity. J. Funct. Foods. 2014;6:450–461. doi: 10.1016/j.jff.2013.11.011.
    1. Foddai M., Kasabri V., Petretto G.L., Azara E., Sias A., Afifi F.U. In vitro inhibitory effects of Limonium contortirameum and L. virgatum extracts from sardinia on alpha-amylase, alpha-glucosidase and pancreatic lipase. Nat. Prod. Commun. 2014;9:181–184.
    1. Irondi E.A., Agboola S.O., Oboh G., Boligon A.A. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro. J. Intercult. Ethnopharmacol. 2016;5:396–402. doi: 10.5455/jice.20160814112756.
    1. Abeysekera W., Arachchige S.P.G. Bark extracts of Ceylon cinnamon possess antilipidemic activities and bind bile acids in vitro. Evid. Based Complement. Alternat. 2017;2017:7347219. doi: 10.1155/2017/7347219.
    1. Bayes W. Gallic acid in haemoptysis. Prov. Med. Surg. J. 1852;16:498–499. doi: 10.1136/bmj.s1-16.20.498.
    1. Roberts A.T. Master’s Thesis. Louisiana State University and Agricultural and Mechanical College; Barton Rouge, LA, USA: 2006. [(accessed on 12 August 2018)]. Gallic Acid: Inhibiting Angiogenesis in Adipose Tissue. Available online:
    1. Greenway F.L., Liu Z., Martin C.K., Kai-yuan W., Nofziger J., Rood J.C. Safety and efficacy of NT, an herbal supplement, in treating human obesity. Int. J. Obes. 2006;30:1737–1741. doi: 10.1038/sj.ijo.0803343.
    1. Heber D., Seeram N.P., Wyatt H., Henning S.M., Zhang Y., Ogden L.G., Dreher M., Hill J.O. Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size. J. Agric. Food Chem. 2007;55:10050–10054. doi: 10.1021/jf071689v.
    1. Skrzypczak-Jankun E., Jankun J. Theaflavin digallate inactivates plasminogen activator inhibitor: Could tea help in Alzheimer’s disease and obesity? Int. J. Mol. Med. 2010;26:45–50.
    1. Kubota K., Sumi S., Tojo H., Sumi-Inoue Y., I-Chin H., Oi Y., Fujita H., Urata H. Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract. Nutr. Res. 2011;31:421–428. doi: 10.1016/j.nutres.2011.05.004.
    1. Hernandez J.R., Rizzo J.F., Díaz Y.C., Bubi E.D., Cabrillana J.M., López-Tomassetti Fernández E.M. Effect of bismuth subgallate on the quality of life in patients undergoing Scopinaro’s biliopancreatic diversion. Surg. Obes. Relat. Dis. 2015;11:436–441. doi: 10.1016/j.soard.2014.10.024.
    1. Wang C., Shi C., Yang X., Yang M., Sun H., Wang C. Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur. J. Pharmacol. 2014;744:52–58. doi: 10.1016/j.ejphar.2014.09.043.
    1. Wang S., Liang X., Yang Q., Fu X., Rogers C.J., Zhu M. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) alpha1. Int. J. Obes. 2015;39:967–976. doi: 10.1038/ijo.2015.23.
    1. Yang C.S., Zhang J., Zhang L., Huang J., Wang Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2016;60:160–174. doi: 10.1002/mnfr.201500428.
    1. Graham H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992;21:334–350. doi: 10.1016/0091-7435(92)90041-F.
    1. Lin J.K., Lin L.C., Liang Y.C., Lin-Shiau S.Y., Juan I.M. Survey of catechins, gallic acid, and methylxanthines in green, oolong, Pu-erh, and black teas. J. Agric. Food Chem. 1998;46:3635–3642. doi: 10.1021/jf980223x.
    1. Wolfram S., Wang Y., Thielecke F. Anti-obesity effects of green tea: From bedside to bench. Mol. Nutr. Food Res. 2006;50:176–187. doi: 10.1002/mnfr.200500102.
    1. Butler M.S., Robertson A.A., Cooper M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014;31:1612–1661. doi: 10.1039/C4NP00064A.
    1. Paller C.J., Denmeade S.R., Carducci M.A. Challenges of conducting clinical trials of natural products to combat cancer. Clin. Adv. Hematol. Oncol. 2016;14:447–455.
    1. Patel O., Muller C., Joubert E., Louw J., Rosenkranz B., Awortwe C. Inhibitory interactions of Aspalathus linearis (rooibos) extracts and compounds, aspalathin and Z-2-(beta-d-glucopyranosyloxy)-3-phenylpropenoic acid, on cytochromes metabolizing hypoglycemic and hypolipidemic drugs. Molecules. 2016;21:1515. doi: 10.3390/molecules21111515.
    1. Liu Y., Sun M., Yao H., Liu Y., Gao R. Herbal medicine for the treatment of obesity: An overview of scientific evidence from 2007 to 2017. Evid. Based Complement. Alternat. Med. 2017;2017:8943059. doi: 10.1155/2017/8943059.
    1. Awortwe C., Makiwane M., Reuter H., Muller C., Louw J., Rosenkranz B. Critical evaluation of causality assessment of herb-drug interactions in patients. Br. J. Clin. Pharmacol. 2018;84:679–693. doi: 10.1111/bcp.13490.
    1. Wang S., Zhu M.J., Du M. Prevention of obesity by dietary resveratrol: How strong is the evidence? Expert. Rev. Endocrinol. MeTable. 2015;10:561–564. doi: 10.1586/17446651.2015.1096771.
    1. Christenson J., Whitby S.J., Mellor D., Thomas J., McKune A., Roach P.D. The effects of resveratrol supplementation in overweight and obese humans: A Systematic review of randomized trials. Metab. Syndr. Relat. Disord. 2016;14:323–333. doi: 10.1089/met.2016.0035.
    1. Fu C., Jiang Y., Guo J., Su Z. Natural products with anti-obesity effects and different mechanisms of action. J. Agric. Food Chem. 2016:9571–9585. doi: 10.1021/acs.jafc.6b04468.
    1. Deng H., Fang Y. Anti-inflammatory gallic acid and wedelolactone are G protein-coupled receptor-35 agonists. Pharmacology. 2012;89:211–219. doi: 10.1159/000337184.

Source: PubMed

3
Tilaa