Effects of spirulina on weight loss and blood lipids: a review

James J DiNicolantonio, Anusha G Bhat, James OKeefe, James J DiNicolantonio, Anusha G Bhat, James OKeefe

Abstract

Spirulina, a cyanobacteria commonly referred to as a blue-green algae, is one of the oldest lifeforms on Earth. Spirulina grows in both fresh and saltwater sources and is known for its high protein and micronutrient content. This review paper will cover the effects of spirulina on weight loss and blood lipids. The currently literature supports the benefits of spirulina for reducing body fat, waist circumference, body mass index and appetite and shows that spirulina has significant benefits for improving blood lipids.

Keywords: lipids; spirulina; weight loss.

Conflict of interest statement

Competing interests: JJD is the author of The Salt Fix and Superfuel. JO is owner of a nutraceutical company but the company does not sell spirulina.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

References

    1. Venkataraman LV. Spirulina platensis (Arthrospira): physiology, cell biology and Biotechnologym edited by Avigad Vonshak 1997.
    1. Habib MAB. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish / M. Ahsan B. Habib, Tim C. Huntington, Mohammad R. Hasan. Rome, Italy: Food and Agriculture Organization of the United Nations, 2008.
    1. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018;20:1210.1007/s11906-018-0812-z
    1. Serban M-C, Sahebkar A, Dragan S, et al. . A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clin Nutr 2016;35:842–51.10.1016/j.clnu.2015.09.007
    1. Stepien M, Kujawska-Luczak M, Szulinska M, et al. . Beneficial dose-independent influence of Camellia sinensis supplementation on lipid profile, glycemia, and insulin resistance in an NaCl-induced hypertensive rat model. J Physiol Pharmacol 2018;69.
    1. Ng M, Fleming T, Robinson M, et al. . Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 2014;384:766–81.10.1016/S0140-6736(14)60460-8
    1. World Health Organization Global status report on noncommunicable diseases 2014, 2014. Available:
    1. World Health Organization Obesity and overweight, 2018. Available: [Accessed 16 Feb 2018].
    1. Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract 2005;69:29–35.10.1016/j.diabres.2004.11.007
    1. Shah A, Mehta N, Reilly MP. Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J Parenter Enteral Nutr 2008;32:638–44.10.1177/0148607108325251
    1. Skrypnik K, Suliburska J, Skrypnik D, et al. . The genetic basis of obesity complications. Acta Sci Pol Technol Aliment 2017;16:83–91.10.17306/J.AFS.2017.0442
    1. Terry MJ, Maines MD, Lagarias JC. Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 1993;268:26099–106.
    1. Zheng J, Inoguchi T, Sasaki S, et al. . Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol 2013;304:R110–20.10.1152/ajpregu.00648.2011
    1. Strasky Z, Zemankova L, Nemeckova I, et al. . Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis. Food Funct 2013;4:1586–94.10.1039/c3fo60230c
    1. Talior I, Tennenbaum T, Kuroki T, et al. . PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am J Physiol Endocrinol Metab 2005;288:E405–11.10.1152/ajpendo.00378.2004
    1. Furukawa S, Fujita T, Shimabukuro M, et al. . Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752–61.10.1172/JCI21625
    1. Han CY, Umemoto T, Omer M, et al. . NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem 2012;287:10379–93.10.1074/jbc.M111.304998
    1. Lin L, Pang W, Chen K, et al. . Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am J Physiol Endocrinol Metab 2012;302:E1550–9.10.1152/ajpendo.00462.2011
    1. Jankovic A, Korac A, Buzadzic B, et al. . Redox implications in adipose tissue (dys)function-A new look at old acquaintances. Redox Biol 2015;6:19–32.10.1016/j.redox.2015.06.018
    1. Prokudina ES, Maslov LN, Ivanov VV, et al. . [The Role of Reactive Oxygen Species in the Pathogenesis of Adipocyte Dysfunction in Metabolic Syndrome. Prospects of Pharmacological Correction]. Vestn Ross Akad Med Nauk 2017;72:11–16.10.15690/vramn798
    1. Yousefi R, Mottaghi A, Saidpour A. Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: a randomized controlled trial. Complement Ther Med 2018;40:106–12.10.1016/j.ctim.2018.08.003
    1. Zeinalian R, Farhangi MA, Shariat A, et al. . The effects of Spirulina platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complement Altern Med 2017;17:22510.1186/s12906-017-1670-y
    1. Szulinska M, Gibas-Dorna M, Miller-Kasprzak E, et al. . Spirulina maxima improves insulin sensitivity, lipid profile, and total antioxidant status in obese patients with well-treated hypertension: a randomized double-blind placebo-controlled study. Eur Rev Med Pharmacol Sci 2017;21:2473–81.
    1. Miczke A, Szulińska M, Hansdorfer-Korzon R, et al. . Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial. Eur Rev Med Pharmacol Sci 2016;20:150–6.
    1. Chen LC, Chen JS, Tung TC. [Effects of spirulina on serum lipoproteins and its hypocholesterolemic activities]. Taiwan Yi Xue Hui Za Zhi 1981;80:934–42.
    1. Kato T, Takemoto K, Katayama H, et al. . Effects of Spirulina (Spirulin a platensis) on dietary hypercholesterolemia in rats. Nippon Eiyo Shokuryo Gakkaishi 1984;37:323–32.10.4327/jsnfs.37.323
    1. Iwata K, Inayama T, Kato T. Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J Nutr Sci Vitaminol 1990;36:165–71.10.3177/jnsv.36.165
    1. Rodríguez-Hernández A, Blé-Castillo JL, Juárez-Oropeza MA, et al. . Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes. Life Sci 2001;69:1029–37.10.1016/S0024-3205(01)01185-7
    1. Li T-T, Liu Y-Y, Wan X-Z, et al. . Regulatory Efficacy of the Polyunsaturated Fatty Acids from Microalgae Spirulina platensis on Lipid Metabolism and Gut Microbiota in High-Fat Diet Rats. Int J Mol Sci 2018;19. doi:10.3390/ijms19103075. [Epub ahead of print: 09 Oct 2018].
    1. Nakaya N, Homma Y, Goto Y. Cholesterol lowering effect of spirulina. Nutrition reports international 1988;37:1329–37.
    1. Ramamoorthy A, Premakumari S. Effect of supplementation of Spirulina on hypercholesterolemic patients 1996.
    1. Mazokopakis EE, Starakis IK, Papadomanolaki MG, et al. . The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective study. J Sci Food Agric 2014;94:432–7.10.1002/jsfa.6261
    1. Panagiotakos DB, Fitzgerald AP, Pitsavos C, et al. . Statistical modelling of 10-year fatal cardiovascular disease risk in Greece: the HellenicSCORE (a calibration of the ESC score project). Hellenic J Cardiol 2007;48:55–63.
    1. Mani UV, Desai S, Iyer U. Studies on the long-term effect of Spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Diet Suppl 2000;2:25–32.10.1300/J133v02n03_03
    1. Parikh P, Mani U, Iyer U. Role of Spirulina in the control of glycemia and Lipidemia in type 2 diabetes mellitus. J Med Food 2001;4:193–9.10.1089/10966200152744463
    1. Lee EH, Park J-E, Choi Y-J, et al. . A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutr Res Pract 2008;2:295–300.10.4162/nrp.2008.2.4.295
    1. Samuels R, Mani UV, Iyer UM, et al. . Hypocholesterolemic effect of spirulina in patients with hyperlipidemic nephrotic syndrome. J Med Food 2002;5:91–6.10.1089/109662002760178177
    1. Castelli WP, Wilson PW, Levy D, et al. . Cardiovascular risk factors in the elderly. Am J Cardiol 1989;63:12–19.10.1016/0002-9149(89)90110-0
    1. Kim WY, Park JY. The effects of Spirulina on lipid metabolism, antioxidant capacity and immune function in Korean Elderlies. Korean J Nutr 2003;36:287–97.
    1. Kim WY, Kim MH. The change of lipid metabolism and immune function caused by antioxidant material in the hypercholesterolemic elderly women in Korea. Korean J Nutr 2005;38:67–75.
    1. Huang H, Liao D, Pu R, et al. . Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure. Diabetes Metab Syndr Obes 2018;11:729–42.10.2147/DMSO.S185672
    1. Park HJ, Lee YJ, Ryu HK, et al. . A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann Nutr Metab 2008;52:322–8.10.1159/000151486
    1. Hernández Lepe MA, Wall-Medrano A, Juárez-Oropeza MA, et al. . Spirulina and its hypolipidemic and antioxidant effects in humans: a systematic review]. Nutr Hosp 2015;32:494–500.10.3305/nh.2015.32.2.9100
    1. Nagaoka S, Shimizu K, Kaneko H, et al. . A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr 2005;135:2425–30.10.1093/jn/135.10.2425
    1. Piñero Estrada JE, Bermejo Bescós P, Villar del Fresno AM. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco 2001;56:497–500.10.1016/S0014-827X(01)01084-9
    1. Han L-K, Li D-X, Xiang L, et al. . [Isolation of pancreatic lipase activity-inhibitory component of spirulina platensis and it reduce postprandial triacylglycerolemia]. Yakugaku Zasshi 2006;126:43–9.10.1248/yakushi.126.43
    1. Hornych A, Oravec S, Girault F, et al. . The effect of gamma-linolenic acid on plasma and membrane lipids and renal prostaglandin synthesis in older subjects. Bratisl Lek Listy 2002;103:101–7.
    1. Horrobin DF. Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 1992;31:163–94.10.1016/0163-7827(92)90008-7
    1. Zeb Shah T, Ali AB, Ahmad Jafri S, et al. . Effect of Nicotinic Acid (Vitamin B3 or Niacin) on the lipid profile of diabetic and non - diabetic rats. Pak J Med Sci 2013;29:1259–64.10.12669/pjms.295.4193

Source: PubMed

3
Tilaa