PB101, a VEGF- and PlGF-targeting decoy protein, enhances antitumor immunity and suppresses tumor progression and metastasis

Eun-Jin Go, Hannah Yang, Seung Joon Lee, Hyun Gul Yang, Jin A Shin, Won Suk Lee, Hye Seong Lim, Hong Jae Chon, Chan Kim, Eun-Jin Go, Hannah Yang, Seung Joon Lee, Hyun Gul Yang, Jin A Shin, Won Suk Lee, Hye Seong Lim, Hong Jae Chon, Chan Kim

Abstract

Antiangiogenic therapy is a recognized method for countering the immunosuppressive tumor microenvironment (TME) and improving anti-tumor immunity. PB101 is a glycosylated decoy receptor that binds to VEGF-A and PlGF with high affinity, based on the VEGFR1 backbone. Here, we elucidated PB101-induced remodeling of tumor angiogenesis and immunity, which enhances anti-PD-L1 immune checkpoint blockade. PB101 inhibited tumor growth by suppressing angiogenesis and enhancing CD8+ T cell infiltration into the tumors. PB101 induced robust reprogramming of antitumor immunity and activates intratumoral CD8+ T cells. Anti-tumor efficacy of PB101 is mostly dependent on CD8+ T cells and IFN-γ. PB101 reprograms tumor immunity in a manner distinct from that of the conventional VEGF decoy receptor, VEGF-trap. With its potent immune-modulating capability, PB101 synergizes with an anti-PD-L1, triggering strengthened antitumor immunity. Combining PB101 and anti-PD-L1 could establish durable protective immunity against tumor recurrence and metastasis. The findings of this study offer scientific rationales for further clinical development of PB101, particularly when used in combination with immune checkpoint inhibitors, as a potential treatment for advanced cancers.

Keywords: Angiogenesis; PB101; PlGF; VEGF-A; combination immunotherapy; immune checkpoint inhibitor; tumor immunity.

Conflict of interest statement

CK and HJC has received research grants from Panolos Bioscience. HGY, JAS, and HSL are full-time employees of Panolos Bioscience. The other authors have no potential conflicts of interest to disclose.

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

Figures

Figure 1.
Figure 1.
PB101 suppresses tumor angiogenesis and enhances intratumoral CD8+ T cell infiltration. a. Diagram depicting treatment schedule in MC38 colon cancer. Red and black arrows indicate treatment and sacrifice, respectively. b. Comparison of tumor growth in mice treated with phosphate-buffered saline (PBS) or PB101. Pooled data from three independent experiments with N = 10 per group. c. Representative images and quantifications of CD31+ blood vessels and CD8+ T cells within tumors. d. Representative images and quantifications of caspase 3+ apoptosis cells within tumors. N = 6 per group. Scale bars, 100 µm. Values are shown as the mean ± SD. *P < .05 vs control.
Figure 2.
Figure 2.
PB101 reprograms antitumor immunity. a – c. Representative flow cytometric plot and comparisons of CD11c+ dendritic cells (a), CD11b+F4/80+ tumor-associated macrophages (TAMs), and of NOS2+ M1-like and Arginase 1+ M2-like TAMs (c) within tumors. d. Representative images and quantification of NOS2+ M1-like macrophages and CD206+ M2-like macrophages within the tumors. Scale bars, 20 µm. E and F. Representative flow cytometric plot and comparison of tumor-infiltrating CD3+ T cells (e) and CD8+ T cells (f). G. Representative images and quantification of granzyme B (GzB)-expressing CD8+ T cells. Scale bars, 100 µm. N = 6–7 per group. Values are shown as the mean ± SD. *P < .05 vs control.
Figure 3.
Figure 3.
PB101 depends on CD8+ T cells and interferon (IFN)-γ to suppress tumor growth. a. Heatmap of NanoString immune-related gene expression in PB101-treated or PBS-treated control tumors. N = 4 per group. b. Volcano plot showing the changes of gene expression in PB101-treated tumors compared to control tumors. c. Dot plot showing enrichment of gene ontology (GO) biological processes for immune-related genes in tumors treated with PB101. The size of each dot represents the number of genes significantly associated with a GO term, and the color of the dots represent the P-adjusted value. d. Comparisons of gene expression related to the tumor microenvironment (TME), lymphocyte (LC)-endothelial cell (EC) interaction, dendritic cell, macrophage, IFN, Th1/Th2 responses, and T cell activation. *P < .05 vs. control. e. Diagram depicting the treatment schedule of the PB101, anti-CD4, anti-CD8 and anti-IFN-γ. f. Comparison of individual tumor growth over time. N = 7 per group. *P < .05 vs PB101.
Figure 4.
Figure 4.
PB101 shows distinct immunologic mechanisms of action compared to VEGF-trap. a. Diagram depicting treatment schedule. b. Comparison of MC38 tumor growth. C – G. Comparisons of dendritic cell (c), TAMs, M1/M2-like macrophages, M1/M2 ratio (d), activated CD8+ T cell (e), CD4+ T cell, regulatory T cell (Treg) (f), and CD8+ T cell (CD8+) and Treg ratio within the tumor (g). H – K. Comparisons of gene expressions related to innate immunity (mavs, Tmem173, and Myd88) (h), cytotoxic lymphocytes (Gzma, Gzmb, Prf1) (i), angiogenesis (Vegfa, Plgf) (j), and transcription factors (Hif1α and Creb1) (k). Values are shown as the mean ± SD. *P < .05.
Figure 5.
Figure 5.
Combination immunotherapy of PB101 and anti-PD-L1 further suppressed tumor progression and prolonged overall survival. a. Diagram depicting treatment schedule in MC38 colon cancer. b. Comparison of MC38 colon cancer growth. Mean and individual tumor growth curves over time. N = 7 per group. c. Diagram depicting treatment schedule in Hepa-V liver cancer. d. Comparison of liver cancer growth. Mean and individual tumor growth curves over time e. Kaplan-Meier survival curves showing overall survival of liver cancer-bearing mice. Table shows P-values determined by log-rank test. Values are shown as the mean ± SD. *P < .05 vs. control, *P < .05 vs. PB101. N = 8–11 per group.
Figure 6.
Figure 6.
Combination immunotherapy of PB101 and anti-PD-L1 provide long-term immune protection against recurrence and metastasis. a. Diagram depicting re-challenge schedule in Hepa-V liver cancer. Red and blue arrows indicate treatments and black arrow indicates subcutaneous and intravenous re-challenge of Hepa-V liver cancer cells. b. Comparison of Hepa-V tumor growth. Mean and individual tumor growth curves over time. N = 4–10 per group. c. Representative gross images and hematoxylin and eosin (H&E) staining images of lung. Arrow heads indicate pulmonary metastatic lesions. d. Comparison of the number of metastatic colonies per lung section. Values are shown as mean ± SD. *P < .05 vs naïve. N = 4–6 per group.

References

    1. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–11. doi:10.1056/NEJMra0706596.
    1. Augustin HG, Koh GY. Antiangiogenesis: vessel regression, vessel normalization, or both? Cancer Res. 2022;82(1):15–17. doi:10.1158/0008-5472.CAN-21-3515.
    1. Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020;52(9):1475–1485. doi:10.1038/s12276-020-00500-y.
    1. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–340. doi:10.1038/nrclinonc.2018.29.
    1. Kim C, Yang H, Fukushima Y, Saw P, Lee J, Park J-S, Park I, Jung J, Kataoka H, Lee D, et al. Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell. 2014;25(1):102–117. doi:10.1016/j.ccr.2013.12.010.
    1. Park J-S, Kim I-K, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo D-C, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell. 2016;30(6):953–967. doi:10.1016/j.ccell.2016.10.018.
    1. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15(3):232–239. doi:10.1016/j.ccr.2009.01.021.
    1. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–231. doi:10.1016/j.ccr.2009.01.027.
    1. Kim CW, Chon HJ, Kim C. Combination immunotherapies to overcome intrinsic resistance to checkpoint blockade in microsatellite stable colorectal cancer. Cancers. 2021;13(19):4906. doi:10.3390/cancers13194906.
    1. Aguiar R, Moraes J. Exploring the immunological mechanisms underlying the anti-vascular endothelial growth factor activity in tumors. Front Immunol. 2019;10:1023. doi:10.3389/fimmu.2019.01023.
    1. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15(5):310–324. doi:10.1038/nrclinonc.2018.9.
    1. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, Kudo M, Breder V, Merle P, Kaseb AO, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–1905. doi:10.1056/NEJMoa1915745.
    1. Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, Grünwald V, Hutson TE, Kopyltsov E, Méndez-Vidal MJ, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–1300. doi:10.1056/NEJMoa2035716.
    1. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, Alekseev B, Soulières D, Melichar B, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–1127. doi:10.1056/NEJMoa1816714.
    1. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–2301. doi:10.1056/NEJMoa1716948.
    1. Makker V, Colombo N, Casado Herráez A, Santin AD, Colomba E, Miller DS, Fujiwara K, Pignata S, Baron-Hay S, Ray-Coquard I, et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med. 2022;386(5):437–448. doi:10.1056/NEJMoa2108330.
    1. Ribatti D. The discovery of the placental growth factor and its role in angiogenesis: a historical review. Angiogenesis. 2008;11(3):215–221. doi:10.1007/s10456-008-9114-4.
    1. Albonici L, Giganti MG, Modesti A, Manzari V, Bei R. Multifaceted role of the placental growth factor (PlGF) in the antitumor immune response and cancer progression. Int J Mol Sci. 2019;20(12):2970. doi:10.3390/ijms20122970.
    1. Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood. 2003;102(4):1515–1524. doi:10.1182/blood-2002-11-3423.
    1. Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2009;2(59):re1–re1. doi:10.1126/scisignal.259re1.
    1. Zhou Y, Tu C, Zhao Y, Liu H, Zhang S. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: potential implications of inflammation bowel disease. Biochem Bioph Res Co. 2016;470(4):967–974. doi:10.1016/j.bbrc.2016.01.073.
    1. Snuderl M, Batista A, Kirkpatrick ND, Ruiz de Almodovar C, Riedemann L, Walsh E, Anolik R, Huang Y, Martin J, Kamoun W, et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell. 2013;152(5):1065–1076. doi:10.1016/j.cell.2013.01.036.
    1. He C, Zhu K, Bai X, Li Y, Sun D, Lang Y, Ning J, Sun F, Qu C, Xu S, et al. Placental growth factor mediates crosstalk between lung cancer cells and tumor-associated macrophages in controlling cancer vascularization and growth. Cell Physiol Biochem. 2018;47(6):2534–2543. doi:10.1159/000491650.
    1. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A-L, Latreche S, Bergaya S, Benhamouda N, Tanchot C, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212(2):139–148. doi:10.1084/jem.20140559.
    1. Kim CG, Jang M, Kim Y, Leem G, Kim KH, Lee H, Kim T-S, Choi SJ, Kim H-D, Han JW, et al. VEGF-A drives TOX-dependent T cell exhaustion in anti–PD-1–resistant microsatellite stable colorectal cancers. Sci Immunol. 2019;4(41):eaay0555. doi:10.1126/sciimmunol.aay0555.
    1. Shin J-Y, Yoon I-H, Kim J-S, Kim B, Park C-G. Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell Immunol. 2009;256(1–2):72–78. doi:10.1016/j.cellimm.2009.01.006.
    1. Lee J-E, Kim C, Yang H, Park I, Oh N, Hua S, Jeong H, An HJ, Kim SC, Lee GM, et al. Novel glycosylated VEGF decoy receptor fusion protein, VEGF-Grab, efficiently suppresses tumor angiogenesis and ProgressionStructure-based design of novel antiangiogenic biologics. Mol Cancer Ther. 2015;14(2):470–479. doi:10.1158/1535-7163.MCT-14-0968-T.
    1. Hong HK, Park YJ, Kim DK, Ryoo N-K, Ko Y-J, Park KH, Kim HM, Woo SJ. Preclinical efficacy and safety of VEGF-grab, a novel anti-VEGF drug, and its comparison to aflibercept. Invest Ophthalmol Visual Sci. 2020;61(13):22–22. doi:10.1167/iovs.61.13.22.
    1. Park I, Yang H, Park J-S, Koh GY, Choi EK. VEGF-Grab enhances the efficacy of radiation therapy by blocking VEGF-A and treatment-induced PlGF. Int J Radiat Oncol. 2018;102(3):609–618. doi:10.1016/j.ijrobp.2018.06.401.
    1. Yang H, Lee WS, Kong SJ, Kim CG, Kim JH, Chang SK, Kim S, Kim G, Chon HJ, Kim C, et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Invest. 2019;129(10):4350–4364. doi:10.1172/JCI125413.
    1. Lee SJ, Yang H, Kim WR, Lee YS, Lee WS, Kong SJ, Lee HJ, Kim JH, Cheon J, Kang B, et al. STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer. J Immunother Cancer. 2021;9(6):e002195. doi:10.1136/jitc-2020-002195.
    1. Park HS, Kim YM, Kim S, Lee WS, Kong SJ, Yang H, Kang B, Cheon J, Shin S-J, Kim C, et al. High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer. J Immunother Cancer. 2021;9(10):e003353. doi:10.1136/jitc-2021-003353.
    1. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99(17):11393–11398. doi:10.1073/pnas.172398299.
    1. Ciombor KK, Berlin J. Aflibercept—a decoy VEGF receptor. Curr Oncol Rep. 2014;16(2):1–7. doi:10.1007/s11912-013-0368-7.
    1. Heier JS, Brown DM, Chong V, Korobelnik J-F, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537–2548. doi:10.1016/j.ophtha.2012.09.006.
    1. Kim Y, Nam HJ, Lee J, Park DY, Kim C, Yu YS, Kim D, Park SW, Bhin J, Hwang D, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7(1):10347. doi:10.1038/ncomms10347.
    1. Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–275. doi:10.1038/20459.
    1. Depoix C, Tee MK, Taylor RN. Molecular regulation of human placental growth factor (PlGF) gene expression in placental villi and trophoblast cells is mediated via the protein kinase a pathway. Reprod Sci. 2011;18(3):219–228. doi:10.1177/1933719110389337.
    1. Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B, Oyervides Juárez VM, Hsieh JJ, Basso U, Shah AY, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384(9):829–841. doi:10.1056/NEJMoa2026982.
    1. Amin A, Plimack ER, Ernstoff MS, Lewis LD, Bauer TM, McDermott DF, Carducci M, Kollmannsberger C, Rini BI, Heng DYC, et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunotherapy Cancer. 2018;6(1):1–12. doi:10.1186/s40425-018-0420-0.
    1. Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP, et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. science translational medicine. Sci Transl Med. 2017;9(385):eaak9679. doi:10.1126/scitranslmed.aak9679.
    1. Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller H-J, Ooi C-H, Laoui D, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. 2017;9(385):eaak9670. doi:10.1126/scitranslmed.aak9670.
    1. Lai X, Friedman A. How to schedule VEGF and PD-1 inhibitors in combination cancer therapy? BMC Syst Biol. 2019;13(1):1–18. doi:10.1186/s12918-019-0706-y.
    1. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. BMB Rep. 2006;39(5):469–478. doi:10.5483/BMBRep.2006.39.5.469.
    1. Kim M, Park HJ, Seol JW, Jang JY, Cho Y-S, Kim KR, Choi Y, Lydon JP, DeMayo FJ, Shibuya M, et al. VEGF - A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol Med. 2013;5(9):1415–1430. doi:10.1002/emmm.201302618.
    1. Donnini S, Machein MR, Plate KH, Weich HA. Expression and localization of placenta growth factor and PlGF receptors in human meningiomas. J Pathol. 1999;189(1):66–71. doi:10.1002/(SICI)1096-9896(199909)189:1<66:AID-PATH390>;2-X.

Source: PubMed

3
Tilaa