Population Pharmacokinetics of Intravenous Acyclovir in Oncologic Pediatric Patients

Natalia Maximova, Daniela Nisticò, Giacomo Luci, Roberto Simeone, Elisa Piscianz, Ludovica Segat, Egidio Barbi, Antonello Di Paolo, Natalia Maximova, Daniela Nisticò, Giacomo Luci, Roberto Simeone, Elisa Piscianz, Ludovica Segat, Egidio Barbi, Antonello Di Paolo

Abstract

Background: Acyclovir represents the first-line prophylaxis and therapy for herpes virus infections. However, its pharmacokinetics in children exposes them to the risk of ineffective or toxic concentrations. The study was aimed at investigating the population pharmacokinetics (POP/PK) of intravenous (IV) acyclovir in oncologic children. Methods: Patients (age, 8.6 ± 5.0 years, 73 males and 47 females) received IV acyclovir for prophylaxis (n = 94) and therapy (n = 26) under a therapeutic drug monitoring (i.e., minimum and maximal plasma concentrations, >0.5 and <25 mg/L, respectively). Plasma concentrations were fitted by nonlinear mixed effect modeling and a simulation of dosing regimens was performed. Findings were stratified according to an estimated glomerular filtration rate (eGFR) threshold of 250 ml/min/1.73 m2. Results: The final 1-compartment POP/PK model showed that eGFR had a significant effect on drug clearance, while allometric body weight influenced both clearance and volume of distribution. The population clearance (14.0 ± 5.5 L/h) was consistent across occasions. Simulation of standard 1-h IV infusion showed that a 10-mg/kg dose every 6 h achieved target concentrations in children with normal eGFR (i.e., ≤250 ml/min/1.73 m2). Increased eGFR values required higher doses that led to an augmented risk of toxic peak concentrations. On the contrary, simulated prolonged (i.e., 2 and 3-h) or continuous IV infusions at lower doses increased the probability of target attainment while reducing the risk of toxicities. Conclusion: Due to the variable pharmacokinetics of acyclovir, standard dosing regimens may not be effective in some patients. Prospective trials should confirm the therapeutic advantage of prolonged and continuous IV infusions.

Keywords: acyclovir; children; hematopoietic stem cell transplantation; non-linear mixed effect modeling; pediatric patients; pharmacokinetics; prolonged infusion; prolonged infusion acyclovir.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Maximova, Nisticò, Luci, Simeone, Piscianz, Segat, Barbi and Di Paolo.

Figures

FIGURE 1
FIGURE 1
Characteristics of the 120 enrolled patients: initial diagnosis (A), first-line therapy (B), and reasons for acyclovir administration (C). Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloblastic leukemia; MDS, myelodysplastic syndrome; HSCT, hematopoietic stem cell transplantation.
FIGURE 2
FIGURE 2
Box-and-whiskers plot of single measured plasma concentrations of acyclovir 30 min after the end of the infusion (1.5 h) and 10 min before the next dose in 6-h (5.83 h) and 8-h (7.83 h) regimens.
FIGURE 3
FIGURE 3
Goodness-of-fit plots. Population (A) and individual (B) prediction values vs. observations. (C), absolute values of individual weighted residuals (iWRES) error vs. individual predictions and (D) conditional weighted residuals vs. time. Symbols, individual plasma concentrations of acyclovir. Red lines, regression, and Loess lines. Black line, line of identity.
FIGURE 4
FIGURE 4
The prediction-corrected visual predictive check based on the present data. Open circles, individual plasma concentrations of acyclovir together with their median and 5th-95th percentiles (solid and dashed red lines, respectively). The 95% confidence intervals of the simulated median (pale pink) and 5th-95th percentiles (pale blue) are showed.
FIGURE 5
FIGURE 5
Simulated regimens consisting in ACV 20 or 25 mg/kg administered as 1-h, 2-h and 3-h infusion every 6 h [graphs (A,C)] and 8 h [graphs (B,D)]. Plots show the probability of target attainment (on the left) according to Cmin values < 0.56 (grey), ≥0.56-<1.125 (pale blue) and >1.125 mg/L (blue). Moreover, graphs show the probability of achieving Cmax values < 25 (pale blue) and >25 mg/L (red).

References

    1. Abdalla S., Briand C., Oualha M., Bendavid M., Béranger A., Benaboud S., et al. (2020). Population Pharmacokinetics of Intravenous and Oral Acyclovir and Oral Valacyclovir in Pediatric Population to Optimize Dosing Regimens. Antimicrob. Agents Chemother. 64, e01426. 10.1128/AAC.01426-20
    1. Bergstrand M., Hooker A. C., Wallin J. E., Karlsson M. O. (2011). Prediction-corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models. AAPS J. 13, 143–151. 10.1208/s12248-011-9255-z
    1. Beyar-Katz O., Bitterman R., Zuckerman T., Ofran Y., Yahav D., Paul M. (2020). Anti-herpesvirus Prophylaxis, Pre-emptive Treatment or No Treatment in Adults Undergoing Allogeneic Transplant for Haematological Disease: Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 26, 189–198. 10.1016/j.cmi.2019.09.003
    1. Blum M. R., Liao S. H., de Miranda P. (1982). Overview of Acyclovir Pharmacokinetic Disposition in Adults and Children. Am. J. Med. 73 (1A), 186–192. 10.1016/0002-9343(82)90088-2
    1. Buus-Gehrig C., Bochennek K., Hennies M. T., Klingebiel T., Groll A. H., Lehrnbecher T. (2020). Systemic Viral Infection in Children Receiving Chemotherapy for Acute Leukemia. Pediatr. Blood Cancer 67, e28673. 10.1002/pbc.28673
    1. Carcao M. D., Lau R. C., Gupta A., Huerter H., Koren G., King S. M. (1998). Sequential Use of Intravenous and Oral Acyclovir in the Therapy of Varicella in Immunocompromised Children. Pediatr. Infect. Dis. J. 17, 626–631. 10.1097/00006454-199807000-00010
    1. Carreras E., Dufour C., Mohty M., Kröger N. (2018). The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies. Cham: Springer Open.
    1. Chayavichitsilp P., Buckwalter J. V., Krakowski A. C., Friedlander S. F. (2009). Herpes Simplex. Pediatr. Rev. 30, 119–130. 10.1542/pir.30-4-119
    1. Cies J. J., Moore W. S., Miller K., Small C., Carella D., Conley S., et al. (2015). Therapeutic Drug Monitoring of Continuous-Infusion Acylovir for Disseminated Herpes Simplex Virus Infection in a Neonate Receiving Concurrent Extracorporeal Life Support and Continuous Renal Replacement Therapy. Pharmacotherapy 35, 229–233. 10.1002/phar.1526
    1. Czyzewski K., Dziedzic M., Salamonowicz M., Fraczkiewicz J., Zajac-Spychala O., Zaucha-Prazmo A., et al. (2019). Epidemiology, Outcome and Risk Factors Analysis of Viral Infections in Children and Adolescents Undergoing Hematopoietic Cell Transplantation: Antiviral Drugs Do Not Prevent Epstein-Barr Virus Reactivation. Infect. Drug Resist. 12, 3893–3902. 10.2147/IDR.S224291
    1. Dadwal S. S. (2019). Herpes Virus Infections Other Than Cytomegalovirus in the Recipients of Hematopoietic Stem Cell Transplantation. Infect. Dis. Clin. North. Am. 33, 467–484. 10.1016/j.idc.2019.02.012
    1. De Miranda P., Blum M. R. (1983). Pharmacokinetics of Acyclovir after Intravenous and Oral Administration. J. Antimicrob. Chemother. 12, 29–37. 10.1093/jac/12.suppl_b.29
    1. Di Paolo A., Tascini C., Polillo M., Gemignani G., Nielsen E. I., Bocci G., et al. (2013). Population Pharmacokinetics of Daptomycin in Patients Affected by Severe Gram-Positive Infections. Int. J. Antimicrob. Agents 42, 250–255. 10.1016/j.ijantimicag.2013.06.006
    1. Eksborg S., Pal N., Kalin M., Palm C., Söderhäll S. (2002). Pharmacokinetics of Acyclovir in Immunocompromized Children with Leukopenia and Mucositis after Chemotherapy: Can Intravenous Acyclovir Be Substituted by Oral Valacyclovir? Med. Pediatr. Oncol. 38, 240–246. 10.1002/mpo.1317
    1. Engel J. P., Englund J. A., Fletcher C. V., Hill E. L. (1990). Treatment of Resistant Herpes Simplex Virus with Continuous-Infusion Acyclovir. Jama 263, 1662–1664. Available at: . 10.1001/jama.1990.03440120084042
    1. Feldman S., Lott L. (1987). Varicella in Children with Cancer: Impact of Antiviral Therapy and Prophylaxis. Pediatrics 80, 465–472. Available at: . 10.1542/peds.80.4.465
    1. Fisher B., Alexander S., Dvorak C., Zaoutis T., Zerr M., Sung L. (2008). The British Childhood Cancer Survivor Study: Objectives, Methods, Population Structure, Response Rates and Initial Descriptive Information. Pediatr. Blood Cancer 50, 1018–1025. 10.1002/pbc
    1. Fletcher C. V., Englund J. A., Bean B., Chinnock B., Brundage D. M., Balfour H. H., Jr. (1989). Continuous Infusion of High-Dose Acyclovir for Serious Herpesvirus Infections. Antimicrob. Agents Chemother. 33, 1375–1378. 10.1128/AAC.33.8.1375
    1. Flowers C. R., Seidenfeld J., Bow E. J., Karten C., Gleason C., Hawley D. K., et al. (2013). Antimicrobial Prophylaxis and Outpatient Management of Fever and Neutropenia in Adults Treated for Malignancy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 31, 794–810. 10.1200/JCO.2012.45.8661
    1. Hooker A. C., Staatz C. E., Karlsson M. O. (2007). Conditional Weighted Residuals (CWRES): A Model Diagnostic for the FOCE Method. Pharm. Res. 24, 2187–2197. 10.1007/s11095-007-9361-x
    1. Jaing T. H., Chang T. Y., Chen S. H., Wen Y. C., Yu T. J., Lee C. F., et al. (2019). Factors Associated with Cytomegalovirus Infection in Children Undergoing Allogeneic Hematopoietic Stem-Cell Transplantation. Medicine (Baltimore) 98, e14172. 10.1097/MD.0000000000014172
    1. Jonsson E. N., Karlsson M. O. (1999). Xpose--an S-PLUS Based Population Pharmacokinetic/pharmacodynamic Model Building Aid for NONMEM. Comput. Methods Programs Biomed. 58, 51–64. 10.1016/s0169-2607(98)00067-4
    1. Kakisaka Y., Ishitobi M., Wakusawa K., Haginoya K., Togashi N., Kitamura T., et al. (2009). Efficacy of Continuous Acyclovir Infusion in Neonatal Herpes Virus Encephalitis. Neuropediatrics 40, 199–200. 10.1055/s-0029-1241187
    1. Kanneti R., Rajesh R., Aravinda Raj J. R., Bhatt P. A. (2009). An LC-MS-MS Method for the Simultaneous Quantitation of Acyclovir and Valacyclovir in Human Plasma. Chroma 70, 407–414. 10.1365/s10337-009-1171-3
    1. Karlsson M. O., Sheiner L. B. (1993). The Importance of Modeling Interoccasion Variability in Population Pharmacokinetic Analyses. J. Pharmacokinet. Biopharm. 21, 735–750. 10.1007/BF01113502
    1. Kim J. H., Schaenman J. M., Ho D. Y., Brown J. M. (2011). Treatment of Acyclovir-Resistant Herpes Simplex Virus with Continuous Infusion of High-Dose Acyclovir in Hematopoietic Cell Transplant Patients. Biol. Blood Marrow Transpl. 17, 259–264. 10.1016/j.bbmt.2010.06.020
    1. Lindbom L., Ribbing J., Jonsson E. N. (2004). Perl-speaks-NONMEM (PsN)-Aa Perl Module for NONMEM Related Programming. Comput. Methods Programs Biomed. 75, 85–94. 10.1016/j.cmpb.2003.11.003
    1. Ly C. Y., Yu C., McDonald P. R., Roy A., Johnson D. K., Davido D. J. (2021). Simple and Rapid High-Throughput Assay to Identify HSV-1 ICP0 Transactivation Inhibitors. Antivir. Res 194, 105160. 10.1016/j.antiviral.2021.105160
    1. Nadal D., Leverger G., Sokal E. M., Floret D., Perel Y., Leibundgut K., et al. (2002). An Investigation of the Steady-State Pharmacokinetics of Oral Valacyclovir in Immunocompromised Children. J. Infect. Dis. 186, S123–S130. 10.1086/342968
    1. Nishii R., Mizuno T., Rehling D., Smith C., Clark B. L., Zhao X., et al. (2021). NUDT15 Polymorphism Influences the Metabolism and Therapeutic Effects of Acyclovir and Ganciclovir. Nat. Commun. 12, 4181. 10.1038/s41467-021-24509-7
    1. O'Brien J. J., Campoli-Richards D. M. (1989). Acyclovir. An Updated Review of its Antiviral Activity, Pharmacokinetic Properties and Therapeutic Efficacy. Drugs 37, 233–309. 10.2165/00003495-198937030-00002
    1. O'Leary C. K., Jones C., Bryant P. A., Abo Y. N., Osowicki J., Gwee A. (2020). Feasibility of Continuous Infusions of Acyclovir. Pediatr. Infect. Dis. J. 39, 830–832. 10.1097/INF.0000000000002692
    1. Richelsen R. K. B., Jensen S. B., Nielsen H. (2018). Incidence and Predictors of Intravenous Acyclovir-Induced Nephrotoxicity. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1965–1971. 10.1007/s10096-018-3332-5
    1. Saiag P., Praindhui D., Chastang C. (1999). A Double-Blind, Randomized Study Assessing the Equivalence of Valacyclovir 1000 Mg once Daily versus 500 Mg Twice Daily in the Episodic Treatment of Recurrent Genital Herpes. Genival Study Group. J. Antimicrob. Chemother. 44, 525–531. 10.1093/jac/44.4.525
    1. Saral R., Burns W. H., Prentice H. G. (1984). Herpes Virus Infections: Clinical Manifestations and Therapeutic Strategies in Immunocompromised Patients. Clin. Haematol. 13, 645–660. 10.1016/s0308-2261(21)00449-5
    1. Schreiber R., Wolpin J., Koren G. (2008). Determinants of Aciclovir-Induced Nephrotoxicity in Children. Paediatr. Drugs 10, 135–139. 10.2165/00148581-200810020-00008
    1. Schwartz G. J., Haycock G. B., Edelmann C. M., Spitzer A. (1976). A Simple Estimate of Glomerular Filtration Rate in Children Derived from Body Length and Plasma Creatinine. Pediatrics 58, 259–263. Available at: . 10.1542/peds.58.2.259
    1. Spector S. A., Hintz M., Wyborny C., Connor J. D., Keeney R. E., Liao S. (1982). Treatment of Herpes Virus Infections in Immunocompromised Patients with Acyclovir by Continuous Intravenous Infusion. Am. J. Med. 73, 275–280. 10.1016/0002-9343(82)90105-x
    1. Styczynski J., Reusser P., Einsele H., de la Camara R., Cordonnier C., Ward K. N., et al. (2009). Management of HSV, VZV and EBV Infections in Patients with Hematological Malignancies and after SCT: Guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transpl. 43, 757–770. 10.1038/bmt.2008.386
    1. Tomblyn M., Chiller T., Einsele H., Gress R., Sepkowitz K., Storek J., et al. (2009). Guidelines for Preventing Infectious Complications Among Hematopoietic Cell Transplantation Recipients: A Global Perspective. Biol. Blood Marrow Transpl. 15, 1143–1238. 10.1016/j.bbmt.2009.06.019
    1. Wade K. C., Monk H. M. (2015). New Antifungal and Antiviral Dosing. Clin. Perinatol 42, 177. 10.1016/j.clp.2014.10.010
    1. Yalçınkaya R., Öz F. N., Kaman A., Aydın Teke T., Yaşar Durmuş S., Çelikkaya E., et al. (2021). Factors Associated with Acyclovir Nephrotoxicity in Children: Data from 472 Pediatric Patients from the Last 10 Years. Eur. J. Pediatr. 180, 2521–2527. 10.1007/s00431-021-04093-0
    1. Zeng L., Nath C. E., Blair E. Y., Shaw P. J., Stephen K., Earl J. W., et al. (2009). Population Pharmacokinetics of Acyclovir in Children and Young People with Malignancy after Administration of Intravenous Acyclovir or Oral Valacyclovir. Antimicrob. Agents Chemother. 53, 2918–2927. 10.1128/AAC.01138-08

Source: PubMed

3
Tilaa