The Mutations and Clinical Variability in Maternally Inherited Diabetes and Deafness: An Analysis of 161 Patients

Mengge Yang, Lusi Xu, Chunmei Xu, Yuying Cui, Shan Jiang, Jianjun Dong, Lin Liao, Mengge Yang, Lusi Xu, Chunmei Xu, Yuying Cui, Shan Jiang, Jianjun Dong, Lin Liao

Abstract

Aims: To investigate the clinical features and mitochondrial mutations for maternally inherited diabetes and deafness.

Methods: PubMed, Embase, Medline, Web of Science, the China National Knowledge Infrastructure, and Wanfang were searched with the following search terms: "Maternally inherited diabetes and deafness" OR "MIDD" OR "Mitochondrial diabetes". The mutations and clinical features were analyzed. Correlation between the heteroplasmy levels of the m.3243A>G mutation in the peripheral blood and age at the onset of diabetes was conducted by Spearman test. The significance level was set as p < 0.05. Statistical analysis was performed using the Statistical Package for the Social Sciences version 26 for Windows.

Results: Totally 161 patients with 21 different mitochondrial mutations were enrolled. The most common mutation was the m.3243A>G mutation in 136 cases. Of 142 patients, 120 (84.51%) had family histories of diabetes or hearing loss. Hearing loss presented in 85.71% of the patients with mitochondrial mutations. Central nervous system diseases were found in 29.19%, myopathy in 22.98%, oculopathy in 23.60%, cardiac disease in 23.60%, and nephropathy in 13.66% of the patients. Forty-two of 101 (41.58%) patients were underweight. A significant negative correlation was found between the heteroplasmy levels of the m.3243A>G mutation in the peripheral blood and age at the onset of diabetes.

Conclusions: The young onset of diabetes with low or normal BMI, maternal inheritance, and presence of impairments of multiple systems should prompt a genetic testing in order to differentiate MIDD from other types of diabetes earlier.

Keywords: diagnosis; heteroplasmy; maternally inherited diabetes and deafness; mitochondrial gene mutations; treatment.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Yang, Xu, Xu, Cui, Jiang, Dong and Liao.

Figures

Figure 1
Figure 1
(A) Geographical country distribution ratio among the patients (%), (B) the percentage of different mutation sites (%).
Figure 2
Figure 2
Clinical characteristics of patients with mitochondrial mutations. (A–D) The proportion of several clinical characteristics in enrolled patients: (A) gender (N: 161), (B) family histories (N: 142), (C) treatment (N: 102), and (D) BMI (N: 101).
Figure 3
Figure 3
Whisker plot for continuous clinical data of patients with mitochondrial mutations. (A–D) Continuous data for the variables of (A) Age at onset, (B) BMI, (C) Fasting C peptide, and (D) Period until insulin dependency.
Figure 4
Figure 4
Correlation between blood heteroplasmy levels and age at the onset of diabetes.

References

    1. Henzen C. Monogenic Diabetes Mellitus Due to Defects in Insulin Secretion. Swiss Med Wkly (2012) 142:w13690. doi: 10.4414/smw.2012.13690
    1. van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, et al. . Mutation in Mitochondrial Trna(Leu)(UUR) Gene in a Large Pedigree With Maternally Transmitted Type II Diabetes Mellitus and Deafness. Nat Genet (1992) 1(5):368–71. doi: 10.1038/ng0892-368
    1. Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical Features, Diagnosis and Management of Maternally Inherited Diabetes and Deafness (MIDD) Associated With the 3243A>G Mitochondrial Point Mutation. Diabetes Med (2008) 25(4):383–99. doi: 10.1111/j.1464-5491.2008.02359.x
    1. Yu P, Yu D. Study on a New Point Mutation of Nt3426 a→G of Mitochondrial DNA in a Diabetes Mellitus Family. Chin J Med Genet (2003) 03):63–5. Chinese.
    1. Poulton J, Brown MS, Cooper A, Marchington DR, Phillips DI. A Common Mitochondrial DNA Variant Is Associated With Insulin Resistance in Adult Life. Diabetologia (1998) 41(1):54–8. doi: 10.1007/s001250050866
    1. Shin CS, Kim SK, Park KS, Kim WB, Kim SY, Cho BY, et al. . A New Point Mutation (3426, a to G) in Mitochondrial NADH Dehydrogenase Gene in Korean Diabetic Patients Which Mimics 3243 Mutation by Restriction Fragment Length Polymorphism Pattern. Endocr J (1998) 45(1):105–10. doi: 10.1507/endocrj.45.105
    1. Gebhart SS, Shoffner JM, Koontz D, Kaufman A, Wallace D. Insulin Resistance Associated With Maternally Inherited Diabetes and Deafness. Metabolism (1996) 45(4):526–31. doi: 10.1016/s0026-0495(96)90231-0
    1. Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF. Corrigendum: Assisted Reproductive Technologies to Prevent Human Mitochondrial Disease Transmission. Nat Biotechnol (2018) 36(2):196. doi: 10.1038/nbt0218-196b
    1. van den Ameele J, Li AYZ, Ma H, Chinnery PF. Mitochondrial Heteroplasmy Beyond the Oocyte Bottleneck. Semin Cell Dev Biol (2020) 97:156–66. doi: 10.1016/j.semcdb.2019.10.001
    1. Dimauro S, Davidzon G. Mitochondrial DNA and Disease. Ann Med (2005) 37(3):222–32. doi: 10.1080/07853890510007368
    1. Laloi-Michelin M, Meas T, Ambonville C, Bellanné-Chantelot C, Beaufils S, Massin P, et al. . The Clinical Variability of Maternally Inherited Diabetes and Deafness Is Associated With the Degree of Heteroplasmy in Blood Leukocytes. J Clin Endocrinol Metab (2009) 94(8):3025–30. doi: 10.1210/jc.2008-2680
    1. Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, et al. . Mitotalen Reduces Mutant MtDNA Load and Restores tRNA(Ala) Levels in a Mouse Model of Heteroplasmic Mtdna Mutation. Nat Med (2018) 24(11):1696–700. doi: 10.1038/s41591-018-0166-8
    1. Maassen JA, Biberoglu S, t Hart LM, Bakker E, de Knijff P. A Case of a De Novo A3243G Mutation in Mitochondrial DNA in a Patient With Diabetes and Deafness. Arch Physiol Biochem (2002) 110(3):186–8. doi: 10.1076/apab.110.3.186.8294
    1. Li HZ, Li RY, Li M. A Review of Maternally Inherited Diabetes and Deafness. Front Biosci (Landmark Ed) (2014) 19:777–82. doi: 10.2741/4244
    1. Robinson KN, Terrazas S, Giordano-Mooga S, Xavier NA. The Role of Heteroplasmy in the Diagnosis and Management of Maternally Inherited Diabetes and Deafness. Endocr Pract (2020) 26(2):241–6. doi: 10.4158/ep-2019-0270
    1. Massin P, Virally-Monod M, Vialettes B, Paques M, Gin H, Porokhov B, et al. . Prevalence of Macular Pattern Dystrophy in Maternally Inherited Diabetes and Deafness. GEDIAM Group. Ophthalmology (1999) 106(9):1821–7. doi: 10.1016/s0161-6420(99)90356-1
    1. Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H, et al. . Maternally Inherited Diabetes and Deafness: A Multicenter Study. Ann Intern Med (2001) 134(9 Pt 1):721–8. doi: 10.7326/0003-4819-134-9_part_1-200105010-00008
    1. Tanaka K, Takada Y, Matsunaka T, Yuyama S, Fujino S, Maguchi M, et al. . Diabetes Mellitus, Deafness, Muscle Weakness and Hypocalcemia in a Patient With an A3243G Mutation of the Mitochondrial DNA. Intern Med (2000) 39(3):249–52. doi: 10.2169/internalmedicine.39.249
    1. Lien LM, Lee HC, Wang KL, Chiu JC, Chiu HC, Wei YH. Involvement of Nervous System in Maternally Inherited Diabetes and Deafness (MIDD) With the A3243G Mutation of Mitochondrial DNA. Acta Neurol Scand (2001) 103(3):159–65. doi: 10.1034/j.1600-0404.2001.103003159.x
    1. Fukao T, Kondo M, Yamamoto T, Orii KE, Kondo N. Comparison of Mitochondrial A3243G Mutation Loads in Easily Accessible Samples From a Family With Maternally Inherited Diabetes and Deafness. Mol Med Rep (2009) 2(1):69–72. doi: 10.3892/mmr_00000063
    1. Nesbitt V, Pitceathly RD, Turnbull DM, Taylor RW, Sweeney MG, Mudanohwo EE, et al. . The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical Phenotypes Associated With the M.3243A>G Mutation–Implications for Diagnosis and Management. J Neurol Neurosurg Psychiatry (2013) 84(8):936–8. doi: 10.1136/jnnp-2012-303528
    1. Hoptasz M, Szczuciński A, Losy J. Heterogeneous Phenotypic Manifestations of Maternally Inherited Deafness Associated With the Mitochondrial A3243G Mutation. Case Report. Neurol Neurochir Pol (2014) 48(2):150–3. doi: 10.1016/j.pjnns.2013.12.007
    1. Cao XY, Wei RB, Wang YD, Zhang XG, Tang L, Chen XM. Focal Segmental Glomerulosclerosis Associated With Maternally Inherited Diabetes and Deafness: Clinical Pathological Analysis. Indian J Pathol Microbiol (2013) 56(3):272–5. doi: 10.4103/0377-4929.120392
    1. Narbonne H, Paquis-Fluckinger V, Valero R, Heyries L, Pellissier JF, Vialettes B. Gastrointestinal Tract Symptoms in Maternally Inherited Diabetes and Deafness (MIDD). Diabetes Metab (2004) 30(1):61–6. doi: 10.1016/s1262-3636(07)70090-3
    1. Schleiffer T, t Hart LM, Schürfeld C, Kraatz K, Riemann JF. Maternally Inherited Diabetes and Deafness (MIDD): Unusual Occult Exocrine Pancreatic Manifestation in an Affected German Family. Exp Clin Endocrinol Diabetes (2000) 108(2):81–5. doi: 10.1055/s-2000-5800
    1. Verny C, Amati-Bonneau P, Letournel F, Person B, Dib N, Malinge MC, et al. . Mitochondrial DNA A3243G Mutation Involved in Familial Diabetes, Chronic Intestinal Pseudo-Obstruction and Recurrent Pancreatitis. Diabetes Metab (2008) 34(6 Pt 1):620–6. doi: 10.1016/j.diabet.2008.06.001
    1. Finsterer J, Frank M. The Tip of the Iceberg in Maternally Inherited Diabetes and Deafness. Oman Med J (2018) 33(5):437–40. doi: 10.5001/omj.2018.80
    1. Kytövuori L, Lipponen J, Rusanen H, Komulainen T, Martikainen MH, Majamaa K. A Novel Mutation M.8561C>G in MT-ATP6/8 Causing a Mitochondrial Syndrome With Ataxia, Peripheral Neuropathy, Diabetes Mellitus, and Hypergonadotropic Hypogonadism. J Neurol (2016) 263(11):2188–95. doi: 10.1007/s00415-016-8249-2
    1. Moraes CT, Ciacci F, Bonilla E, Jansen C, Hirano M, Rao N, et al. . Two Novel Pathogenic Mitochondrial DNA Mutations Affecting Organelle Number and Protein Synthesis. Is the Trna(Leu(UUR)) Gene an Etiologic Hot Spot? J Clin Invest (1993) 92(6):2906–15. doi: 10.1172/jci116913
    1. Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, et al. . The Mitochondrial Bottleneck Occurs Without Reduction of Mtdna Content in Female Mouse Germ Cells. Nat Genet (2007) 39(3):386–90. doi: 10.1038/ng1970
    1. Chinnery PF, Howell N, Lightowlers RN, Turnbull DM. MELAS and MERRF. The Relationship Between Maternal Mutation Load and the Frequency of Clinically Affected Offspring. Brain (1998) 121(Pt 10):1889–94. doi: 10.1093/brain/121.10.1889
    1. Rong Y. Mitochondrial Diabetes Mellitus With 3 Cases. Hebei Medical University; (2011). MA thesis. Hebei, Chinese.
    1. Xiu L. Clinical Characterizations of Familial Diabete Mellitus Associated With Mitochondrial Gene Mutation. Natl Med J China (1997) 06:111–3. doi:CNKI : SUN:ZHYX.0.1997-06-007. Chinese. doi: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2002.0036
    1. Oexle K, Oberle J, Finckh B, Kohlschütter A, Nagy M, Seibel P, et al. . Islet Cell Antibodies in Diabetes Mellitus Associated With a Mitochondrial Trna(Leu(UUR)) Gene Mutation. Exp Clin Endocrinol Diabetes (1996) 104(3):212–7. doi: 10.1055/s-0029-1211445
    1. Yu Z, Li J. Islet Cell Antibodies in Diabetes Mellitus Associated With a Mitochondrial Trnal(U) Gene Mutation. Int J Endocrinol Metab (2020) 40(04):279–83. Chinese.
    1. Hu L. The Clinical Significance of Serum Autoantibodies to Pancreatic Islet in One Thousand and Four Hundreds Patients With Diabetes. J Modern Lab Med (2006) 02):15–7. doi:CNKI : SUN:SXYN.0.2006-02-007Chinese. doi: 10.3969/j.issn.1671-7414.2006.02.005
    1. Di Mario U, Perfetti R, Anastasi E, Contreas G, Crisà L, Tiberti C, et al. . Autoantibodies to Insulin do Appear in Non-Diabetic Patients With Autoimmune Disorders: Comparison With Anti-Immunoglobulin Antibodies and Other Autoimmune Phenomena. Acta Endocrinol (Copenh) (1990) 122(3):303–8. doi: 10.1530/acta.0.1220303
    1. Suzuki S, Oka Y, Kadowaki T, Kanatsuka A, Kuzuya T, Kobayashi M, et al. . Clinical Features of Diabetes Mellitus With the Mitochondrial DNA 3243 (a-G) Mutation in Japanese: Maternal Inheritance and Mitochondria-Related Complications. Diabetes Res Clin Pract (2003) 59(3):207–17. doi: 10.1016/s0168-8227(02)00246-2
    1. van Essen EH, Roep BO, ′t Hart LM, Jansen JJ, Van den Ouweland JM, Lemkes HH, et al. . HLA-DQ Polymorphism and Degree of Heteroplasmy of the A3243G Mitochondrial DNA Mutation in Maternally Inherited Diabetes and Deafness. Diabetes Med (2000) 17(12):841–7. doi: 10.1046/j.1464-5491.2000.00379.x
    1. Liou CW, Huang CC, Wei YH. Molecular Analysis of Diabetes Mellitus-Associated A3243G Mitochondrial DNA Mutation in Taiwanese Cases. Diabetes Res Clin Pract (2001) 54 Suppl 2:S39–43. doi: 10.1016/s0168-8227(01)00334-5
    1. Grady JP, Pickett SJ, Ng YS, Alston CL, Blakely EL, Hardy SA, et al. . MtDNA Heteroplasmy Level and Copy Number Indicate Disease Burden in M.3243A>G Mitochondrial Disease. EMBO Mol Med (2018) 10(6):e8262. doi: 10.15252/emmm.201708262
    1. Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial Effects of Creatine, Coq10, and Lipoic Acid in Mitochondrial Disorders. Muscle Nerve (2007) 35(2):235–42. doi: 10.1002/mus.20688
    1. Fragaki K, Chaussenot A, Benoist JF, Ait-El-Mkadem S, Bannwarth S, Rouzier C, et al. . Coenzyme Q10 Defects may be Associated With a Deficiency of Q10-Independent Mitochondrial Respiratory Chain Complexes. Biol Res (2016) 49:4. doi: 10.1186/s40659-015-0065-0
    1. Salles JE, Moisés VA, Almeida DR, Chacra AR, Moisés RS. Myocardial Dysfunction in Mitochondrial Diabetes Treated With Coenzyme Q10. Diabetes Res Clin Pract (2006) 72(1):100–3. doi: 10.1016/j.diabres.2005.09.005
    1. Suzuki S, Hinokio Y, Ohtomo M, Hirai M, Hirai A, Chiba M, et al. . The Effects of Coenzyme Q10 Treatment on Maternally Inherited Diabetes Mellitus and Deafness, and Mitochondrial DNA 3243 (a to G) Mutation. Diabetologia (1998) 41(5):584–8. doi: 10.1007/s001250050950
    1. Kim NH, Siddiqui M, Vogel J. MELAS Syndrome and MIDD Unmasked by Metformin Use: A Case Report. Ann Intern Med (2021) 174(1):124–5. doi: 10.7326/l20-0292
    1. Chatzispyrou IA, Held NM, Mouchiroud L, Auwerx J, Houtkooper RH. Tetracycline Antibiotics Impair Mitochondrial Function and its Experimental Use Confounds Research. Cancer Res (2015) 75(21):4446–9. doi: 10.1158/0008-5472.Can-15-1626
    1. Leiter LM, Thatte HS, Okafor C, Marks PW, Golan DE, Bridges KR. Chloramphenicol-Induced Mitochondrial Dysfunction Is Associated With Decreased Transferrin Receptor Expression and Ferritin Synthesis in K562 Cells and Is Unrelated to IRE-IRP Interactions. J Cell Physiol (1999) 180(3):334–44. doi: 10.1002/(sici)1097-4652(199909)180:3<334::Aid-jcp4>;2-q
    1. Lam CW, Lau CH, Williams JC, Chan YW, Wong LJ. Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS) Triggered by Valproate Therapy. Eur J Pediatr (1997) 156(7):562–4. doi: 10.1007/s004310050663
    1. Moyle G. Mitochondrial Toxicity: Myths and Facts. J HIV Ther (2004) 9(2):45–7.
    1. Okuyama H, Langsjoen PH, Hamazaki T, Ogushi Y, Hama R, Kobayashi T, et al. . Statins Stimulate Atherosclerosis and Heart Failure: Pharmacological Mechanisms. Expert Rev Clin Pharmacol (2015) 8(2):189–99. doi: 10.1586/17512433.2015.1011125
    1. Sinnathuray AR, Raut V, Awa A, Magee A, Toner JG. A Review of Cochlear Implantation in Mitochondrial Sensorineural Hearing Loss. Otol Neurotol (2003) 24(3):418–26. doi: 10.1097/00129492-200305000-00012

Source: PubMed

3
Tilaa