Investigating the Efficacy and Safety of Thalidomide for Treating Patients With ß-Thalassemia: A Meta-Analysis

Yanfei Lu, Zhenbin Wei, Gaohui Yang, Yongrong Lai, Rongrong Liu, Yanfei Lu, Zhenbin Wei, Gaohui Yang, Yongrong Lai, Rongrong Liu

Abstract

At present, the main therapies for ß-thalassemia patients include regular blood transfusion and iron chelation, associating with a number of limitations. Thalidomide, a fetal hemoglobin (HbF) inducer that promotes γ-globin gene expression, has been reported to be effective for ß-thalassemia. Thus, this meta-analysis was conducted to assess the efficacy and safety of thalidomide for treating patients with ß-thalassemia. We searched the related studies from eight databases published from inception until December 1, 2021. The R 4.0.5 language programming was used to perform meta-analysis. After screening of retrieved articles, 12 articles were included that enrolled a total of 451 patients. The Cochrane Collaboration risk assessment tool was used to evaluate the quality and the bias risk of the randomized controlled trials (RCTs), and non randomized trials were assessed using Newcastle-Ottawa Scale (NOS). After treatment with thalidomide, the pooled overall response rate (ORR) was 85% (95% confidence interval (CI): 80-90%), and the pooled complete response rate (CRR) was 54% (95% confidence interval: 31-76%). Compared with the placebo group, the thalidomide group had higher odds of overall response rate (odds ratio = 20.4; 95% CI: 6.75-61.64) and complete response rate (odds ratio = 20.4; 95% CI: 6.75-61.64). A statistically significant increase in hemoglobin level and HbF level after treatment, while there was no statistically significant difference in adult hemoglobin (HbA) level, spleen size, and serum ferritin. According to the results of ORR and CRR, transfusion-dependent thalassemia (TDT) patients showed remarkable efficacy of thalidomide, 83 and 52% respectively. So we analyzed 30 transfusion-dependent thalassemia patients from three studies and found that the most frequent ß-globin gene mutations were CD41-42 (-TCTT), while response to thalidomide did not show any statistically significant relationship with XmnI polymorphism or CD41-42 (-TCTT) mutation. About 30% of patients experienced mild adverse effects of thalidomide. Collectively, thalidomide is a relatively safe and effective therapy to reduce the blood transfusion requirements and to increase Hb level in patients with ß-thalassemia.

Keywords: hemoglobin level; meta-analysis; thalidomide; therapy; ß-thalassemia.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Lu, Wei, Yang, Lai and Liu.

Figures

FIGURE 1
FIGURE 1
Flowchart of study selection process. NOS, Newcastle-Ottawa Scale.
FIGURE 2
FIGURE 2
A forest plot illustrating overall response rate in population-based subgroups.
FIGURE 3
FIGURE 3
A forest plot illustrating complete response rate in population-based subgroups.
FIGURE 4
FIGURE 4
A forest plot illustrating Hb level (g/dl) after the treatment of thalidomide in population-based subgroups.
FIGURE 5
FIGURE 5
A forest plot illustrating HbF level (%) after the treatment of thalidomide.
FIGURE 6
FIGURE 6
A forest plot illustrating adverse effects of thalidomide.

References

    1. Aerbajinai W., Zhu J., Gao Z., Chin K., Rodgers G. P. (2007). Thalidomide Induces Gamma-Globin Gene Expression through Increased Reactive Oxygen Species-Mediated P38 MAPK Signaling and Histone H4 Acetylation in Adult Erythropoiesis. Blood 110 (8), 2864–2871. 10.1182/blood-2007-01-065201
    1. Algiraigri A. H., Wright N. A. M., Paolucci E. O., Kassam A. (2017a). Hydroxyurea for Lifelong Transfusion-dependent β-thalassemia: A Meta-Analysis. Pediatr. Hematol. Oncol. 34 (8), 435–448. 10.1080/08880018.2017.1354948
    1. Algiraigri A. H., Wright N. A. M., Paolucci E. O., Kassam A. (2017b). Hydroxyurea for Nontransfusion-dependent β-thalassemia: A Systematic Review and Meta-Analysis. Hematol. Oncol. Stem Cel Ther 10 (3), 116–125. 10.1016/j.hemonc.2017.02.002
    1. Amirshahrokhi K., Khalili A. R. (2015). The Effect of Thalidomide on Ethanol-Induced Gastric Mucosal Damage in Mice: Involvement of Inflammatory Cytokines and Nitric Oxide. Chem. Biol. Interact 225, 63–69. 10.1016/j.cbi.2014.11.019
    1. Angastiniotis M., Modell B. (1998). Global Epidemiology of Hemoglobin Disorders. Ann. N. Y Acad. Sci. 850, 251–269. 10.1111/j.1749-6632.1998.tb10482.x
    1. Begum M., Moslem Md. M. H., Begum N. N. F., Rahman Md. Z. (2020). Outcome of Treatment with Thalidomide in Transfusion Dependent Thalassemia Patients: A Prospective Study in a Thalassemia Center, Dhaka, Bangladesh. Am. J. Pediatr. 6 (3), 168–171. 10.11648/j.ajp.20200603.11
    1. Chandra J., Parakh N., Sidharth, , Singh N., Sharma S., Goel M., et al. (2021). Efficacy and Safety of Thalidomide in Patients with Transfusion-dependent Thalassemia. Indian Pediatr. 58 (7), 611–616. 10.1007/s13312-021-2254-y
    1. Chen J., Zhu W., Cai N., Bu S., Li J., Huang L. (2017). Thalidomide Induces Haematologic Responses in Patients with β-thalassaemia. Eur. J. Haematol. 99 (5), 437–441. 10.1111/ejh.12955
    1. Chen J. M., Zhu W. J., Liu J., Wang G. Z., Chen X. Q., Tan Y., et al. (2021). Safety and Efficacy of Thalidomide in Patients with Transfusion-dependent β-thalassemia: a Randomized Clinical Trial. Signal. Transduct Target. Ther. 6 (1), 405. 10.1038/s41392-021-00811-0
    1. Dulmovits B. M., Appiah-Kubi A. O., Papoin J., Hale J., He M., Al-Abed Y., et al. (2016). Pomalidomide Reverses γ-globin Silencing through the Transcriptional Reprogramming of Adult Hematopoietic Progenitors. Blood 127 (11), 1481–1492. 10.1182/blood-2015-09-667923
    1. Fard A. D., Kaviani S., Noruzinia M., Saki N., Mortaz E. (2014). Induction of Fetal Hemoglobin as a Novel Therapeutic Strategy for β-hemoglobinopathy. Lab. Hematol. 20 (1), 1. 10.1532/lh96.12015
    1. Gambari R., Fibach E. (2007). Medicinal Chemistry of Fetal Hemoglobin Inducers for Treatment of Beta-Thalassemia. Curr. Med. Chem. 14 (2), 199–212. 10.2174/092986707779313318
    1. Haghpanah S., Zarei T., Eshghi P., Zekavat O., Bordbar M., Hoormand M., et al. (2018). Efficacy and Safety of Resveratrol, an Oral Hemoglobin F-Augmenting Agent, in Patients with Beta-Thalassemia Intermedia. Ann. Hematol. 97 (10), 1919–1924. 10.1007/s00277-018-3392-8
    1. Islam A., Mahfuz D. C. H., Ara D. T., Telfer D. P., Dokal P. I., Allard D. S., et al. (2020). Effectiveness of Thalidomide in Transfusion Dependent Thalassemia Patients where Transfusion and Chelation Are Challenging with Alarming High Incidence of Transfusion Transmitted Infection. HemaSphere 4, 1058. 10.1097/HS9.0000000000000404
    1. Jain M., Chakrabarti P., Dolai T. K., Ghosh P., Mandal P. K., Baul S. N., et al. (2021). Comparison of Efficacy and Safety of Thalidomide vs Hydroxyurea in Patients with Hb E-β Thalassemia - a Pilot Study from a Tertiary Care Centre of India. Blood Cell Mol Dis 88, 102544. 10.1016/j.bcmd.2021.102544
    1. Jain M., De R., Jitani A., Chakrabarti P., Mondal P. K., Baul S., et al. (2019). Efficacy of Thalidomide and Hydroxyurea as HB F Inducer in Non-transfusion Dependent Thalassemia. Indian J. Hematol. Blood Transfus. 35 (1), S54. 10.1007/s12288-019-01207-5
    1. Jalali Far M. A., Dehghani Fard A., Hajizamani S., Mossahebi-Mohammadi M., Yaghooti H., Saki N. (2016). Thalidomide Is More Efficient Than Sodium Butyrate in Enhancing GATA-1 and EKLF Gene Expression in Erythroid Progenitors Derived from HSCs with β-globin Gene Mutation. Int. J. Hematol. Oncol. Stem Cel Res 10 (1), 37–41.
    1. Javed R., Radhakrishnan V., Basu S., Chandy M. (2020). Challenges in Transfusion and the Role of Thalidomide in E-β-Thalassemia-A Case Report. Clin. Case Rep. 8 (11), 2208–2210. 10.1002/ccr3.3141
    1. Kalantri S. A., Ray R., Chattopadhyay A., Bhattacharjee S., Biswas A., Bhattacharyya M. (2018). Efficacy of Decitabine as Hemoglobin F Inducer in HbE/β-Thalassemia. Ann. Hematol. 97 (9), 1689–1694. 10.1007/s00277-018-3357-y
    1. Kalra M., Khanna V. K., Trehan A., Mahajan A. (2017). Thalidomide in Transfusion Dependent Thalassemia: Hope or Hype. J. Pediatr. Hematol. Oncol. 39 (6), 485. 10.1097/mph.0000000000000900
    1. Karimi M., Zarei T., Bahmanimehr A., Aramesh A., Daryanoush S., Haghpanah S. (2021). Long-term Safety and Efficacy of Hydroxyurea in Patients with Non-transfusion-dependent β-thalassemia: a Comprehensive Single-center Experience. Ann. Hematol. 100 (12), 2901–2907. 10.1007/s00277-021-04627-4
    1. Khamphikham P., Nualkaew T., Pongpaksupasin P., Kaewsakulthong W., Songdej D., Paiboonsukwong K., et al. (2020). High-level Induction of Fetal Haemoglobin by Pomalidomide in β-thalassaemia/HbE Erythroid Progenitor Cells. Br. J. Haematol. 189 (6), e240–e245. 10.1111/bjh.16670
    1. Li X., Hu S., Liu Y., Huang J., Hong W., Xu L., et al. (2021). Efficacy of Thalidomide Treatment in Children with Transfusion Dependent β-Thalassemia: A Retrospective Clinical Study. Front. Pharmacol. 12, 722502. 10.3389/fphar.2021.722502
    1. Li Y., Ren Q., Zhou Y., Li P., Lin W., Yin X. (2018). Thalidomide Has a Significant Effect in Patients with Thalassemia Intermedia. Hematology 23 (1), 50–54. 10.1080/10245332.2017.1354427
    1. Mancuso A., Maggio A., Renda D., Di Marzo. R., Rigano P. (2006). Treatment with Hydroxycarbamide for Intermedia Thalassaemia: Decrease of Efficacy in Some Patients during Long-Term Follow up. Br. J. Haematol. 133 (1), 105–106. 10.1111/j.1365-2141.2006.06002.x
    1. Modell B., Darlison M. (2008). Global Epidemiology of Haemoglobin Disorders and Derived Service Indicators. Bull. World Health Organ. 86 (6), 480–487. 10.2471/blt.06.036673
    1. Moutouh-de Parseval L. A., Verhelle D., Glezer E., Jensen-Pergakes K., Ferguson G. D., Corral L. G., et al. (2008). Pomalidomide and Lenalidomide Regulate Erythropoiesis and Fetal Hemoglobin Production in Human CD34+ Cells. J. Clin. Invest. 118 (1), 248–258. 10.1172/jci32322
    1. Nag A., Radhakrishnan V. S., Kumar J., Bhave S., Mishra D. K., Nair R., et al. (2020). Thalidomide in Patients with Transfusion-dependent E-Beta Thalassemia Refractory to Hydroxyurea: A Single-Center Experience. Indian J. Hematol. Blood Transfus. 36 (2), 399–402. 10.1007/s12288-020-01263-2
    1. Olivieri N. F., Saunthararajah Y., Thayalasuthan V., Kwiatkowski J., Ware R. E., Kuypers F. A., et al. (2011). A Pilot Study of Subcutaneous Decitabine in β-thalassemia Intermedia. Blood 118 (10), 2708–2711. 10.1182/blood-2011-03-341909
    1. Papadakis M. N., Patrinos G. P., Tsaftaridis P., Loutradi-Anagnostou A. (2002). A Comparative Study of Greek Nondeletional Hereditary Persistence of Fetal Hemoglobin and Beta-Thalassemia Compound Heterozygotes. J. Mol. Med. (Berl) 80 (4), 243–247. 10.1007/s00109-001-0312-4
    1. Peslak S. A., Khandros E., Huang P., Lan X., Geronimo C. L., Grevet J. D., et al. (2020). HRI Depletion Cooperates with Pharmacologic Inducers to Elevate Fetal Hemoglobin and Reduce Sickle Cell Formation. Blood Adv. 4 (18), 4560–4572. 10.1182/bloodadvances.2020002475
    1. Ren Q., Zhou Y. L., Wang L., Chen Y. S., Ma Y. N., Li P. P., et al. (2018). Clinical Trial on the Effects of Thalidomide on Hemoglobin Synthesis in Patients with Moderate Thalassemia Intermedia. Ann. Hematol. 97 (10), 1933–1939. 10.1007/s00277-018-3395-5
    1. Ricchi P., Costantini S., Spasiano A., Cinque P., Di Matola T., Ammirabile M., et al. (2019). Rechallenging to Hydroxycarbamide Post Thalidomide Treatment and Response in a Non Transfusion-dependent Patient, Is it Possible? Indian J. Hematol. Blood Transfus. 35 (3), 587–589. 10.1007/s12288-019-01093-x
    1. Rigano P., Pecoraro A., Calzolari R., Troia A., Acuto S., Renda D., et al. (2010). Desensitization to Hydroxycarbamide Following Long-Term Treatment of Thalassaemia Intermedia as Observed In Vivo and in Primary Erythroid Cultures from Treated Patients. Br. J. Haematol. 151 (5), 509–515. 10.1111/j.1365-2141.2010.08397.x
    1. Sen A., Dolai T. K., Mandal P. K. (2020). Efficacy and safety of thalidomide in HB e beta thalassemia. HemaSphere 4, 1064. 10.1097/HS9.0000000000000404
    1. Shearstone J. R., Golonzhka O., Chonkar A., Tamang D., van Duzer J. H., Jones S. S., et al. (2016). Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2. PLoS One 11 (4), e0153767. 10.1371/journal.pone.0153767
    1. Stamatoyannopoulos G. (2005). Control of Globin Gene Expression during Development and Erythroid Differentiation. Exp. Hematol. 33 (3), 259–271. 10.1016/j.exphem.2004.11.007
    1. Suragani R. N., Cadena S. M., Cawley S. M., Sako D., Mitchell D., Li R., et al. (2014). Transforming Growth Factor-β Superfamily Ligand Trap ACE-536 Corrects Anemia by Promoting Late-Stage Erythropoiesis. Nat. Med. 20 (4), 408–414. 10.1038/nm.3512
    1. Testa U. (2009). Fetal Hemoglobin Chemical Inducers for Treatment of Hemoglobinopathies. Ann. Hematol. 88 (6), 505–528. 10.1007/s00277-008-0637-y
    1. Winichagoon P., Fucharoen S., Chen P., Wasi P. (2000). Genetic Factors Affecting Clinical Severity in Beta-Thalassemia Syndromes. J. Pediatr. Hematol. Oncol. 22 (6), 573–580. 10.1097/00043426-200011000-00026
    1. Witt O., Monkemeyer S., Rönndahl G., Erdlenbruch B., Reinhardt D., Kanbach K., et al. (2003). Induction of Fetal Hemoglobin Expression by the Histone Deacetylase Inhibitor Apicidin. Blood 101 (5), 2001–2007. 10.1182/blood-2002-08-2617
    1. Yang K., Wu Y., Zhou Y., Long B., Lu Q., Zhou T., et al. (2020). Thalidomide for Patients with β-Thalassemia: A Multicenter Experience. Mediterr. J. Hematol. Infect. Dis. 12, e2020021. 10.4084/mjhid.2020.021
    1. Yassin A. K. (2020). Promising Response to Thalidomide in Symptomatic β-Thalassemia. Indian J. Hematol. Blood Transfus. 36 (8), 337–341. 10.1007/s12288-019-01231-5

Source: PubMed

3
Tilaa