Toxicity of Microplastics and Nanoplastics in Mammalian Systems

Cheryl Qian Ying Yong, Suresh Valiyaveettil, Bor Luen Tang, Cheryl Qian Ying Yong, Suresh Valiyaveettil, Bor Luen Tang

Abstract

Fragmented or otherwise miniaturized plastic materials in the form of micro- or nanoplastics have been of nagging environmental concern. Perturbation of organismal physiology and behavior by micro- and nanoplastics have been widely documented for marine invertebrates. Some of these effects are also manifested by larger marine vertebrates such as fishes. More recently, possible effects of micro- and nanoplastics on mammalian gut microbiota as well as host cellular and metabolic toxicity have been reported in mouse models. Human exposure to micro- and nanoplastics occurs largely through ingestion, as these are found in food or derived from food packaging, but also in a less well-defined manner though inhalation. The pathophysiological consequences of acute and chronic micro- and nanoplastics exposure in the mammalian system, particularly humans, are yet unclear. In this review, we focus on the recent findings related to the potential toxicity and detrimental effects of micro- and nanoplastics as demonstrated in mouse models as well as human cell lines. The prevailing data suggest that micro- and nanoplastics accumulation in mammalian and human tissues would likely have negative, yet unclear long-term consequences. There is a need for cellular and systemic toxicity due to micro- and nanoplastics to be better illuminated, and the underlying mechanisms defined by further work.

Keywords: human cells; microplastics; mouse cells; nanoplastics; oxidative stress; toxicants; toxicity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A schematic diagram illustrating potential (speculative at the moment) cellular mechanisms of MP/NP toxicity. MPs/NPs can be taken up through ingestion and inhalation. MPs/NPs could damage the plasma membrane and impair the gut barrier (left). These could also perturb signaling of cell surface receptors, and alter gene expression in the nucleus. Endocytosed MPs/NPs could also perturb the endocytic pathway function and compromise the endosomal membranes. Stresses arising from the above could activate the cellular innate immune system, with endogenous and secreted damage-associated molecular patterns (DAMP) inducing the innate immunity-mediating toll-like receptors (TLRs). Stresses could induce ROS production from the NADP oxidases (NOXs). Mitochondrial impairment, either by MPs/NPs from endosomes or in response to stresses, could also produce more ROS through impairment in the efficiency of electron transport chain (ETC) processes. MPs/NPs gain access into the circulation if the gut–vascular barrier is compromised or it may speculatively occur by transcytosis, thus reaching other organs. The lung probably has a more direct access to airborne MPs/NPs (right).

References

    1. Zalasiewicz J., Waters C., Ivar do Sul J., Corcoran P., Barnosky A., Cearreta A., Edgeworth M., Gałuszkah A., Jeandel C., Leinfelder R., et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene. 2016;13:4–17. doi: 10.1016/j.ancene.2016.01.002.
    1. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017;3:e1700782. doi: 10.1126/sciadv.1700782.
    1. Gündoğdu S., Yeşilyurt İ.N., Erbaş C. Potential interaction between plastic litter and green turtle Chelonia mydas during nesting in an extremely polluted beach. Mar. Pollut. Bull. 2019;140:138–145. doi: 10.1016/j.marpolbul.2019.01.032.
    1. Chapron L., Peru E., Engler A., Ghiglione J.F., Meistertzheim A.L., Pruski A.M., Purser A., Vétion G., Galand P.E., Lartaud F. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Sci. Rep. 2018;8:15299. doi: 10.1038/s41598-018-33683-6.
    1. Akdogan Z., Guven B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019;254:113011. doi: 10.1016/j.envpol.2019.113011.
    1. de Souza Machado A.A., Kloas W., Zarfl C., Hempel S., Rillig M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018;24:1405–1416. doi: 10.1111/gcb.14020.
    1. Auta H.S., Emenike C.U., Fauziah S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017;102:165–176. doi: 10.1016/j.envint.2017.02.013.
    1. Galloway T.S., Cole M., Lewis C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017;1:116. doi: 10.1038/s41559-017-0116.
    1. da Costa J.P., Santos P.S.M., Duarte A.C., Rocha-Santos T. (Nano)plastics in the environment—Sources, fates and effects. Sci. Total Environ. 2016;566–567:15–26. doi: 10.1016/j.scitotenv.2016.05.041.
    1. Gigault J., Halle A.T., Baudrimont M., Pascal P.Y., Gauffre F., Phi T.L., El Hadri H., Grassl B., Reynaud S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018;235:1030–1034. doi: 10.1016/j.envpol.2018.01.024.
    1. de Sá L.C., Oliveira M., Ribeiro F., Rocha T.L., Futter M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018;645:1029–1039. doi: 10.1016/j.scitotenv.2018.07.207.
    1. Alimba C.G., Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019;68:61–74. doi: 10.1016/j.etap.2019.03.001.
    1. Lambert S., Scherer C., Wagner M. Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties. Integr. Environ. Assess. Manag. 2017;13:470–475. doi: 10.1002/ieam.1901.
    1. Adam V., Yang T., Nowack B. Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters. Environ. Toxicol. Chem. 2019;38:436–447. doi: 10.1002/etc.4323.
    1. Hartmann N.B., Rist S., Bodin J., Jensen L.H., Schmidt S.N., Mayer P., Meibom A., Baun A. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr. Environ. Assess. Manag. 2017;13:488–493. doi: 10.1002/ieam.1904.
    1. Liu J., Ma Y., Zhu D., Xia T., Qi Y., Yao Y., Guo X., Ji R., Chen W. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environ. Sci. Technol. 2018;52:2677–2685. doi: 10.1021/acs.est.7b05211.
    1. Caruso G. Microplastics as vectors of contaminants. Mar. Pollut. Bull. 2019;146:921–924. doi: 10.1016/j.marpolbul.2019.07.052.
    1. Sgier L., Freimann R., Zupanic A., Kroll A. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat. Commun. 2016;7:11587. doi: 10.1038/ncomms11587.
    1. Wu X., Pan J., Li M., Li Y., Bartlam M., Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019;165:114979. doi: 10.1016/j.watres.2019.114979.
    1. Sussarellu R., Suquet M., Thomas Y., Lambert C., Fabioux C., Pernet M.E.J., Le Goïc N., Quillien V., Mingant C., Epelboin Y., et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA. 2016;113:2430–2435. doi: 10.1073/pnas.1519019113.
    1. Cui R., Kim S.W., An Y.J. Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci. Rep. 2017;7:12095. doi: 10.1038/s41598-017-12299-2.
    1. Gray A.D., Weinstein J.E. Size and shape dependent effects of microplastic particles on adult daggerblade glass shrimp, Palaemonetes pugio. Environ. Toxicol. Chem. 2017 doi: 10.1002/etc.3881.
    1. Bergami E., Pugnalini S., Vannuccini M.L., Manfra L., Faleri C., Savorelli F., Dawson K.A., Corsi I. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat. Toxicol. 2017;189:159–169. doi: 10.1016/j.aquatox.2017.06.008.
    1. Ziajahromi S., Kumar A., Neale P.A., Leusch F.D.L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 2018;236:425–431. doi: 10.1016/j.envpol.2018.01.094.
    1. Bour A., Haarr A., Keiter S., Hylland K. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environ. Pollut. 2018;236:652–660. doi: 10.1016/j.envpol.2018.02.006.
    1. Tang J., Ni X., Zhou Z., Wang L., Lin S. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ. Pollut. 2018;243:66–74. doi: 10.1016/j.envpol.2018.08.045.
    1. Marques-Santos L.F., Grassi G., Bergami E., Faleri C., Balbi T., Salis A., Damonte G., Canesi L., Corsi I. Cationic polystyrene nanoparticle and the sea urchin immune system: Biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology. 2018 doi: 10.1080/17435390.2018.1482378.
    1. Jaikumar G., Brun N.R., Vijver M.G., Bosker T. Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environ. Pollut. 2019;249:638–646. doi: 10.1016/j.envpol.2019.03.085.
    1. Eltemsah Y.S., Bøhn T. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna. Environ. Pollut. 2019;254:112919. doi: 10.1016/j.envpol.2019.07.087.
    1. Jiang X., Chen H., Liao Y., Ye Z., Li M., Klobučar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 2019;250:831–838. doi: 10.1016/j.envpol.2019.04.055.
    1. Chae Y., An Y.J. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Mar. Pollut. Bull. 2017;124:624–632. doi: 10.1016/j.marpolbul.2017.01.070.
    1. Sharma S., Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. Int. 2017;24:21530–21547. doi: 10.1007/s11356-017-9910-8.
    1. Wang W., Gao H., Jin S., Li R., Na G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 2019;173:110–117. doi: 10.1016/j.ecoenv.2019.01.113.
    1. Farrell P., Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) Environ. Pollut. 2013;177:1–3. doi: 10.1016/j.envpol.2013.01.046.
    1. Mattsson K., Ekvall M.T., Hansson L.A., Linse S., Malmendal A., Cedervall T. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 2015;49:553–561. doi: 10.1021/es5053655.
    1. Chae Y., Kim D., Kim S.W., An Y.J. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci. Rep. 2018;8:284. doi: 10.1038/s41598-017-18849-y.
    1. Velzeboer I., Kwadijk C.J.A.F., Koelmans A.A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ. Sci. Technol. 2014;48:4869–4876. doi: 10.1021/es405721v.
    1. Hüffer T., Hofmann T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 2016;214:194–201. doi: 10.1016/j.envpol.2016.04.018.
    1. Hüffer T., Weniger A.K., Hofmann T. Sorption of organic compounds by aged polystyrene microplastic particles. Environ. Pollut. 2018;236:218–225. doi: 10.1016/j.envpol.2018.01.022.
    1. Fang S., Yu W., Li C., Liu Y., Qiu J., Kong F. Adsorption behavior of three triazole fungicides on polystyrene microplastics. Sci. Total Environ. 2019;691:1119–1126. doi: 10.1016/j.scitotenv.2019.07.176.
    1. Tourinho P.S., Kočí V., Loureiro S., van Gestel C.A.M. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ. Pollut. 2019;252:1246–1256. doi: 10.1016/j.envpol.2019.06.030.
    1. Chua E.M., Shimeta J., Nugegoda D., Morrison P.D., Clarke B.O. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environ. Sci. Technol. 2014;48:8127–8134. doi: 10.1021/es405717z.
    1. Batel A., Linti F., Scherer M., Erdinger L., Braunbeck T. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ. Toxicol. Chem. 2016;35:1656–1666. doi: 10.1002/etc.3361.
    1. Gandara E Silva P.P., Nobre C.R., Resaffe P., Pereira C.D.S., Gusmão F. Leachate from microplastics impairs larval development in brown mussels. Water Res. 2016;106:364–370. doi: 10.1016/j.watres.2016.10.016.
    1. Chen Q., Yin D., Jia Y., Schiwy S., Legradi J., Yang S., Hollert H. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci. Total Environ. 2017;609:1312–1321. doi: 10.1016/j.scitotenv.2017.07.144.
    1. Lu K., Qiao R., An H., Zhang Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio) Chemosphere. 2018;202:514–520. doi: 10.1016/j.chemosphere.2018.03.145.
    1. Banaee M., Soltanian S., Sureda A., Gholamhosseini A., Haghi B.N., Akhlaghi M., Derikvandy A. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio) Chemosphere. 2019;236:124335. doi: 10.1016/j.chemosphere.2019.07.066.
    1. Miranda T., Vieira L.R., Guilhermino L. Neurotoxicity, behavior, and lethal effects of Cadmium, microplastics, and their mixtures on Pomatoschistus microps juveniles from two wild populations exposed under laboratory conditions-Implications to environmental and human risk assessment. Int. J. Environ. Res. Public Health. 2019;16:2857. doi: 10.3390/ijerph16162857.
    1. Barboza L.G.A., Vieira L.R., Branco V., Figueiredo N., Carvalho F., Carvalho C., Guilhermino L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758) Aquat. Toxicol. 2018;195:49–57. doi: 10.1016/j.aquatox.2017.12.008.
    1. Bradney L., Wijesekara H., Palansooriya K.N., Obadamudalige N., Bolan N.S., Ok Y.S., Rinklebe J., Kim K.H., Kirkham M.B. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019;131:104937. doi: 10.1016/j.envint.2019.104937.
    1. Wright S.L., Kelly F.J. Plastic and human health: A micro issue? Environ. Sci. Technol. 2017;51:6634–6647. doi: 10.1021/acs.est.7b00423.
    1. Rubio L., Marcos R., Hernández A. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. J. Toxicol. Environ. Health B Crit. Rev. 2020;23:51–68. doi: 10.1080/10937404.2019.1700598.
    1. Smith M., Love D.C., Rochman C.M., Neff R.A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 2018;5:375–386. doi: 10.1007/s40572-018-0206-z.
    1. Kim J.S., Lee H.J., Kim S.K., Kim H.J. Global pattern of microplastics (MPs) in commercial food-grade salts: Sea salt as an indicator of seawater MP pollution. Environ. Sci. Technol. 2018;52:12819–12828. doi: 10.1021/acs.est.8b04180.
    1. Pivokonsky M., Cermakova L., Novotna K., Peer P., Cajthaml T., Janda V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018;643:1644–1651. doi: 10.1016/j.scitotenv.2018.08.102.
    1. Koelmans A.A., Mohamed Nor N.H., Hermsen E., Kooi M., Mintenig S.M., De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019;155:410–422. doi: 10.1016/j.watres.2019.02.054.
    1. Oßmann B.E., Sarau G., Holtmannspötter H., Pischetsrieder M., Christiansen S.H., Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018;141:307–316. doi: 10.1016/j.watres.2018.05.027.
    1. Zuccarello P., Ferrante M., Cristaldi A., Copat C., Grasso A., Sangregorio D., Fiore M., Oliveri Conti G. Exposure to microplastics (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res. 2019;157:365–371.
    1. Hernandez L.M., Xu E.G., Larsson H.C.E., Tahara R., Maisuria V.B., Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into Tea. Environ. Sci. Technol. 2019 doi: 10.1021/acs.est.9b02540.
    1. Prata J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018;234:115–126. doi: 10.1016/j.envpol.2017.11.043.
    1. Schwabl P., Köppel S., Königshofer P., Bucsics T., Trauner M., Reiberger T., Liebmann B. Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med. 2019 doi: 10.7326/M19-0618.
    1. World Health Organization Microplastics in Drinking-Water. 2019. [(accessed on 26 February 2020)]. Available online:
    1. Foley C.J., Feiner Z.S., Malinich T.D., Höök T.O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 2018;631–632:550–559. doi: 10.1016/j.scitotenv.2018.03.046.
    1. Wang W., Ge J., Yu X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf. 2020;189:109913. doi: 10.1016/j.ecoenv.2019.109913.
    1. Ašmonaitė G., Sundh H., Asker N., Carney Almroth B. Rainbow Trout Maintain Intestinal Transport and Barrier Functions Following Exposure to Polystyrene Microplastics. Environ. Sci. Technol. 2018;52:14392–14401. doi: 10.1021/acs.est.8b04848.
    1. Ašmonaitė G., Larsson K., Undeland I., Sturve J., Carney Almroth B. Size matters: Ingestion of relatively large microplastics contaminated with environmental pollutants posed little risk for fish health and fillet quality. Environ. Sci. Technol. 2018;52:14381–14391. doi: 10.1021/acs.est.8b04849.
    1. Jacob H., Gilson A., Lanctôt C., Besson M., Metian M., Lecchini D. No effect of polystyrene microplastics on foraging activity and survival in a post-larvae coral-reef fish, Acanthurus triostegus. Bull. Environ. Contam. Toxicol. 2019;102:457–461. doi: 10.1007/s00128-019-02587-0.
    1. Mattsson K., Johnson E.V., Malmendal A., Linse S., Hansson L.A., Cedervall T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep. 2017;7:11452. doi: 10.1038/s41598-017-10813-0.
    1. Chen Q., Gundlach M., Yang S., Jiang J., Velki M., Yin D., Hollert H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ. 2017;584–585:1022–1031. doi: 10.1016/j.scitotenv.2017.01.156.
    1. Pitt J.A., Kozal J.S., Jayasundara N., Massarsky A., Trevisan R., Geitner N., Wiesner M., Levin E.D., Di Giulio R.T. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio) Aquat. Toxicol. 2018;194:185–194. doi: 10.1016/j.aquatox.2017.11.017.
    1. Yin L., Liu H., Cui H., Chen B., Li L., Wu F. Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii) J. Hazard. Mater. 2019;380:120861. doi: 10.1016/j.jhazmat.2019.120861.
    1. Mak C.W., Yeung K.C.-F., Chan K.M. Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol. Environ. Saf. 2019;182:109442. doi: 10.1016/j.ecoenv.2019.109442.
    1. Pannetier P., Morin B., Le Bihanic F., Dubreil L., Clérandeau C., Chouvellon F., Van Arkel K., Danion M., Cachot J. Environmental samples of microplastics induce significant toxic effects in fish larvae. Environ. Int. 2020;134:105047. doi: 10.1016/j.envint.2019.105047.
    1. Yang H., Xiong H., Mi K., Xue W., Wei W., Zhang Y. Toxicity comparison of nano-sized and micron-sized microplastics to Goldfish Carassius auratus Larvae. J. Hazard. Mater. 2020;388:122058. doi: 10.1016/j.jhazmat.2020.122058.
    1. Karami A., Romano N., Galloway T., Hamzah H. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus) Environ. Res. 2016;151:58–70. doi: 10.1016/j.envres.2016.07.024.
    1. Cong Y., Jin F., Tian M., Wang J., Shi H., Wang Y., Mu J. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma) Chemosphere. 2019;228:93–100. doi: 10.1016/j.chemosphere.2019.04.098.
    1. Wang J., Li Y., Lu L., Zheng M., Zhang X., Tian H., Wang W., Ru S. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma) Environ. Pollut. 2019;254:113024. doi: 10.1016/j.envpol.2019.113024.
    1. Pitt J.A., Trevisan R., Massarsky A., Kozal J.S., Levin E.D., Di Giulio R.T. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. Sci. Total Environ. 2018;643:324–334. doi: 10.1016/j.scitotenv.2018.06.186.
    1. Lu Y., Zhang Y., Deng Y., Jiang W., Zhao Y., Geng J., Ding L., Ren H. Uptake and accumulation of polystyrene microplastics in Zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 2016;50:4054–4060. doi: 10.1021/acs.est.6b00183.
    1. LeMoine C.M.R., Kelleher B.M., Lagarde R., Northam C., Elebute O.O., Cassone B.J. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio) Environ. Pollut. 2018;243:591–600. doi: 10.1016/j.envpol.2018.08.084.
    1. Ding J., Zhang S., Razanajatovo R.M., Zou H., Zhu W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus) Environ. Pollut. 2018;238:1–9. doi: 10.1016/j.envpol.2018.03.001.
    1. Wan Z., Wang C., Zhou J., Shen M., Wang X., Fu Z., Jin Y. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere. 2019;217:646–658. doi: 10.1016/j.chemosphere.2018.11.070.
    1. Qiao R., Sheng C., Lu Y., Zhang Y., Ren H., Lemos B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ. 2019;662:246–253. doi: 10.1016/j.scitotenv.2019.01.245.
    1. Lei L., Wu S., Lu S., Liu M., Song Y., Fu Z., Shi H., Raley-Susman K.M., He D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2018;619–620:1–8. doi: 10.1016/j.scitotenv.2017.11.103.
    1. Xia X., Sun M., Zhou M., Chang Z., Li L. Polyvinyl chloride microplastics induce growth inhibition and oxidative stress in Cyprinus carpio var. larvae. Sci. Total Environ. 2020 doi: 10.1016/j.scitotenv.2019.136479.
    1. Chen L., Hu C., Lok-Shun Lai N., Zhang W., Hua J., Lam P.K.S., Lam J.C.W., Zhou B. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. Environ. Pollut. 2018;240:17–26. doi: 10.1016/j.envpol.2018.04.062.
    1. Brun N.R., van Hage P., Hunting E.R., Haramis A.P.G., Vink S.C., Vijver M.G., Schaaf M.J.M., Tudorache C. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun. Biol. 2019;2:382. doi: 10.1038/s42003-019-0629-6.
    1. Greven A.C., Merk T., Karagöz F., Mohr K., Klapper M., Jovanović B., Palić D. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas) Environ. Toxicol. Chem. 2016;35:3093–3100. doi: 10.1002/etc.3501.
    1. Espinosa C., García Beltrán J.M., Esteban M.A., Cuesta A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ. Pollut. 2018;235:30–38. doi: 10.1016/j.envpol.2017.12.054.
    1. Lu L., Wan Z., Luo T., Fu Z., Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci. Total Environ. 2018;631–632:449–458. doi: 10.1016/j.scitotenv.2018.03.051.
    1. Limonta G., Mancia A., Benkhalqui A., Bertolucci C., Abelli L., Fossi M.C., Panti C. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Sci. Rep. 2019;9:15775. doi: 10.1038/s41598-019-52292-5.
    1. Choi J.S., Hong S.H., Park J.W. Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. Mar. Environ. Res. 2019 doi: 10.1016/j.marenvres.2019.104838.
    1. Zhu M., Chernick M., Rittschof D., Hinton D.E. Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes) Aquat. Toxicol. 2019;220:105396. doi: 10.1016/j.aquatox.2019.105396.
    1. Malafaia G., de Souza A.M., Pereira A.C., Gonçalves S., da Costa Araújo A.P., Ribeiro R.X., Rocha T.L. Developmental toxicity in zebrafish exposed to polyethylene microplastics under static and semi-static aquatic systems. Sci. Total Environ. 2020;700:134867. doi: 10.1016/j.scitotenv.2019.134867.
    1. Barboza L.G.A., Lopes C., Oliveira P., Bessa F., Otero V., Henriques B., Raimundo J., Caetano M., Vale C., Guilhermino L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2019 doi: 10.1016/j.scitotenv.2019.134625.
    1. Pannetier P., Cachot J., Clérandeau C., Faure F., Van Arkel K., de Alencastro L.F., Levasseur C., Sciacca F., Bourgeois J.P., Morin B. Toxicity assessment of pollutants sorbed on environmental sample microplastics collected on beaches: Part I-adverse effects on fish cell line. Environ. Pollut. 2019 doi: 10.1016/j.envpol.2018.12.091.
    1. Almeida M., Martins M.A., Soares A.M.V., Cuesta A., Oliveira M. Polystyrene nanoplastics alter the cytotoxicity of human pharmaceuticals on marine fish cell lines. Environ. Toxicol. Pharmacol. 2019;69:57–65. doi: 10.1016/j.etap.2019.03.019.
    1. Rainieri S., Conlledo N., Larsen B.K., Granby K., Barranco A. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio) Environ. Res. 2018;162:135–143. doi: 10.1016/j.envres.2017.12.019.
    1. Lee W.S., Cho H.J., Kim E., Huh Y.H., Kim H.J., Kim B., Kang T., Lee J.S., Jeong J. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale. 2019;11:3173–3185. doi: 10.1039/C8NR09321K.
    1. Zhang S., Ding J., Razanajatovo R.M., Jiang H., Zou H., Zhu W. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus) Sci. Total Environ. 2019;648:1431–1439. doi: 10.1016/j.scitotenv.2018.08.266.
    1. Trevisan R., Voy C., Chen S., Di Giulio R.T. Nanoplastics Decrease the Toxicity of a Complex PAH Mixture but Impair Mitochondrial Energy Production in Developing Zebrafish. Environ. Sci. Technol. 2019;53:8405–8415. doi: 10.1021/acs.est.9b02003.
    1. Deng Y., Zhang Y., Lemos B., Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017;7:46687. doi: 10.1038/srep46687.
    1. Deng Y., Zhang Y., Qiao R., Bonilla M.M., Yang X., Ren H., Lemos B. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus) J. Hazard. Mater. 2018;357:348–354. doi: 10.1016/j.jhazmat.2018.06.017.
    1. Jin Y., Lu L., Tu W., Luo T., Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 2018;649:308–317. doi: 10.1016/j.scitotenv.2018.08.353.
    1. Yang Y.F., Chen C.Y., Lu T.H., Liao C.M. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J. Hazard. Mater. 2019;366:703–713. doi: 10.1016/j.jhazmat.2018.12.048.
    1. Luo T., Wang C., Pan Z., Jin C., Fu Z., Jin Y. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ. Sci. Technol. 2019;53:10978–10992. doi: 10.1021/acs.est.9b03191.
    1. Li B., Ding Y., Cheng X., Sheng D., Xu Z., Rong Q., Wu Y., Zhao H., Ji X., Zhang Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2019;244:125492. doi: 10.1016/j.chemosphere.2019.125492.
    1. Luo T., Zhang Y., Wang C., Wang X., Zhou J., Shen M., Zhao Y., Fu Z., Jin Y. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environ. Pollut. 2019;255:113122. doi: 10.1016/j.envpol.2019.113122.
    1. Stock V., Böhmert L., Lisicki E., Block R., Cara-Carmona J., Pack L.K., Selb R., Lichtenstein D., Voss L., Henderson C.J., et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 2019;93:1817–1833. doi: 10.1007/s00204-019-02478-7.
    1. Rafiee M., Dargahi L., Eslami A., Beirami E., Jahangiri-Rad M., Sabour S., Amereh F. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere. 2018;193:745–753. doi: 10.1016/j.chemosphere.2017.11.076.
    1. Walczak A.P., Kramer E., Hendriksen P.J.M., Tromp P., Helsper J.P.F.G., van der Zande M., Rietjens I.M.C.M., Bouwmeester H. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology. 2015;9:453–461. doi: 10.3109/17435390.2014.944599.
    1. Fiorentino I., Gualtieri R., Barbato V., Mollo V., Braun S., Angrisani A., Turano M., Furia M., Netti P.A., Guarnieri D., et al. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Exp. Cell Res. 2015;330:240–247. doi: 10.1016/j.yexcr.2014.09.017.
    1. Magrì D., Sánchez-Moreno P., Caputo G., Gatto F., Veronesi M., Bardi G., Catelani T., Guarnieri D., Athanassiou A., Pompa P.P., et al. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: Characterization and toxicology assessment. ACS Nano. 2018;12:7690–7700. doi: 10.1021/acsnano.8b01331.
    1. Hesler M., Aengenheister L., Ellinger B., Drexel R., Straskraba S., Jost C., Wagner S., Meier F., von Briesen H., Büchel C., et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol Vitro. 2019;61:104610. doi: 10.1016/j.tiv.2019.104610.
    1. Prietl B., Meindl C., Roblegg E., Pieber T.R., Lanzer G., Fröhlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol. Toxicol. 2014;30:1–16. doi: 10.1007/s10565-013-9265-y.
    1. Schirinzi G.F., Pérez-Pomeda I., Sanchís J., Rossini C., Farré M., Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res. 2017;159:579–587. doi: 10.1016/j.envres.2017.08.043.
    1. Wu B., Wu X., Liu S., Wang Z., Chen L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere. 2019;221:333–341. doi: 10.1016/j.chemosphere.2019.01.056.
    1. Hwang J., Choi D., Han S., Choi J., Hong J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 2019;684:657–669. doi: 10.1016/j.scitotenv.2019.05.071.
    1. Poma A., Vecchiotti G., Colafarina S., Zarivi O., Aloisi M., Arrizza L., Chichiriccò G., Di Carlo P. In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line. ACS Appl. Nanomater. 2019;9:1299. doi: 10.3390/nano9091299.
    1. Dong C.D., Chen C.W., Chen Y.C., Chen H.H., Lee J.S., Lin C.H. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J. Hazard. Mater. 2020;385:121575. doi: 10.1016/j.jhazmat.2019.121575.
    1. Xu M., Halimu G., Zhang Q., Song Y., Fu X., Li Y., Li Y., Zhang H. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci. Total Environ. 2019;694:133794. doi: 10.1016/j.scitotenv.2019.133794.
    1. Lim S.L., Ng C.T., Zou L., Lu Y., Chen J., Bay B.H., Shen H.M., Ong C.N. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology. 2019;13:1117–1132. doi: 10.1080/17435390.2019.1640913.
    1. Oh N., Park J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014;9:51–63.
    1. Zhang S., Gao H., Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–8671. doi: 10.1021/acsnano.5b03184.
    1. Horstmann H., Ng C.P., Tang B.L., Hong W. Ultrastructural characterization of endoplasmic reticulum--Golgi transport containers (EGTC) J. Cell Sci. 2002;115:4263–4273. doi: 10.1242/jcs.00115.
    1. Treyer A., Pujato M., Pechuan X., Müsch A. Iterative sorting of apical and basolateral cargo in Madin-Darby canine kidney cells. Mol. Biol. Cell. 2016;27:2259–2271. doi: 10.1091/mbc.E16-02-0096.
    1. Cordani M., Somoza Á. Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cell Mol. Life Sci. 2019;76:1215–1242. doi: 10.1007/s00018-018-2973-y.
    1. Besseling E., Wang B., Lürling M., Koelmans A.A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 2014;48:12336–12343. doi: 10.1021/es503001d.
    1. Liu Z., Cai M., Yu P., Chen M., Wu D., Zhang M., Zhao Y. Age-dependent survival, stress defense, and AMPK in Daphnia pulex after short-term exposure to a polystyrene nanoplastic. Aquat. Toxicol. 2018;204:1–8. doi: 10.1016/j.aquatox.2018.08.017.
    1. Jeong J., Choi J. Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere. 2019;231:249–255. doi: 10.1016/j.chemosphere.2019.05.003.
    1. Bedard K., Krause K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005.
    1. Riera Romo M., Pérez-Martínez D., Castillo Ferrer C. Innate immunity in vertebrates: An overview. Immunology. 2016;148:125–139. doi: 10.1111/imm.12597.
    1. De Lorenzo G., Ferrari S., Cervone F., Okun E. Extracellular DAMPs in plants and mammals: Immunity, tissue damage and repair. Trends Immunol. 2018;39:937–950. doi: 10.1016/j.it.2018.09.006.
    1. Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2019 doi: 10.1038/s41577-019-0215-7.
    1. Shen H., Kreisel D., Goldstein D.R. Processes of sterile inflammation. J. Immunol. 2013;191:2857–2863. doi: 10.4049/jimmunol.1301539.
    1. Plata C., Cruz C., Cervantes L.G., Ramírez V. The gut microbiota and its relationship with chronic kidney disease. Int. Urol. Nephrol. 2019 doi: 10.1007/s11255-019-02291-2.
    1. Jin M., Qian Z., Yin J., Xu W., Zhou X. The role of intestinal microbiota in cardiovascular disease. J. Cell Mol. Med. 2019;23:2343–2350. doi: 10.1111/jcmm.14195.
    1. Francescone R., Hou V., Grivennikov S.I. Microbiome, inflammation, and cancer. Cancer J. 2014;20:181–189. doi: 10.1097/PPO.0000000000000048.
    1. Ma Q., Xing C., Long W., Wang H.Y., Liu Q., Wang R.F. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J. Neuroinflamm. 2019;16:53. doi: 10.1186/s12974-019-1434-3.
    1. Mohr K., Sommer M., Baier G., Schöttler S., Okwieka P., Tenzer S., Landfester K., Mailänder V., Schmidt M., Meyer R. Aggregation behavior of polystyrene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J. Nanomed. Nanotechnol. 2014;5 doi: 10.4172/2157-7439.1000193.
    1. Gopinath P.M., Saranya V., Vijayakumar S., Mythili Meera M., Ruprekha S., Kunal R., Pranay A., Thomas J., Mukherjee A., Chandrasekaran N. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci. Rep. 2019;9:8860. doi: 10.1038/s41598-019-45139-6.
    1. Pan D., Vargas-Morales O., Zern B., Anselmo A.C., Gupta V., Zakrewsky M., Mitragotri S., Muzykantov V. The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS ONE. 2016;11:e0152074. doi: 10.1371/journal.pone.0152074.

Source: PubMed

3
Tilaa